发布时间:2022-06-28 11:13:57
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的光纤通信论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。
1.光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。
2.光纤通信技术的特点
(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
3.光纤通信技术在有线电视网络中的应用
20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目
有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)
光纤通信简而言之是将原始的电信号转成光信号进行传输,但是实现起来有很多因素要考虑。光纤通信自它的产生之日起,就是为了实现大批量数据的高速传输,主要应用于民用通信领域,在各应用领域都有约定俗成的标准,所以要将它引入过来用以实现通信对抗系统的实时串行总线设计,必须进行精心的设计。
1.1物理链路的设计
首先是并串、串并转换集成电路的选取。在通信领域已经有许多高速并串转换的芯片,但大部分都是面向民用通信领域的通用协议设计的,针对性强,协议架构复杂,不适合串行自定义总线协议的实现。经过一番比对,笔者选取了TI公司的TLK1501芯片。该芯片在应用层是开放式的,应用相对简单,利于自定义总线协议的实现,便于开发调试。它的串行吞吐速率为0.6~1.5Gbps[2],已能满足应用。考虑到PCB布板及实时数据传输的需要,选择800Mbps作为数据传输速率。其次是光模块的选取。光模块现在已经发展到具有支持波分复用的能力,考虑到引导总线实时只传输一种指令,所以选择单一波长的光模块即可。目前主要有三种波长的光模块可以选择:850nm,1310nm,1550nm。850nm多模光模块主要应用于短距离传输,一般500米以内;1310nm,1550nm光模块一般应用在单模光纤。考虑到性价比因素笔者选用了某公司的1310nm波长光模块EO2F-13-311423。该光模块输出功率-7dBm左右,灵敏度-21dBm左右,即使光纤转接有些损耗,整个光纤通路也有比较充裕的动态范围来保证通信的可靠。TLK1501与EO2F-13-311423间的接口电路见图1。
1.2TLK1501设计
TLK1501负责整个物理链路中数据的并串、串并转换,是数据高速传输的关键节点,设计时应注意以下3点。1)时钟的选取TLK1501有8bit/10bit转换机制,这样在FPGA与TLK1501的并行数据端口的16bit数据进入芯片后会转成20bit数据进行传输;反过来推算,16位并行端口的速率应为40MHz。选择40MHz时钟时应注意,发送方和接收方TLK1501对时钟的要求比较高,频差须在0.01%以内,时钟的抖动不能超过40ps。设计时将FPGA送给TLK1501的时钟与并行数据的输送时钟尽可能做到同相位,布线长度也尽量相近。2)收发的同步设计TLK1501只有进入同步状态后才能正常传输数据,它有两种方式发送同步码,一种是TX-EN、TX-ER为00时发送端强制发送同步码;另一种是当LCKREFN为高时,TLK1501内部状态机自动控制发送同步码。本设计采用的是第一种同步设计。FPGA首先控制TX-EN、TX-ER为00,产生IDLE码字,一段时间之后传输正常的数据,接收模块根据接收到的帧同步信号判断链路是否同步。如果链路同步,可以发送正常数据。如果链路失同步,则再产生IDLE码字,等待重新进入同步状态。3)PRBS测试为了使整个光通信链路的调试进展顺利,可以先在每个用户端口对TLK1501的收发进行PRBS回环测试,如回环测试有问题,可能是因为时钟抖动太大,或电源不稳定,需改进设计。在每个用户的TLK1501分别通过测试后,可以进行两个用户间的PRBS测试,验证用户间的两个时钟是否匹配,如两个用户间PRBS测试通过,就可以进行高速光纤串行通信总线的测试了。
1.3传输协议的设计
信息交换帧由帧头、帧长度、命令码、引导信息、校验字、帧尾等字段组成,帧格式定义见表1。帧的基本组成为字,每个字为16bit,即2个字节,正好匹配TLK1501芯片并行数据端口的数据位数,位定义符合TLK1501芯片的数据总线定义。帧头与帧尾各有3个16比特的字,通信时方便用户将完整的一帧内容接收下进行解析。对于一些不能丢帧的指令的通信,如图2所示,可由ACK校验和握手机制[3]来确保重发,图中T1:1~10μs。若ACK校验和错误,则自动重发;累计重发次数超过5次或是T1超时1s,本次传输结束,由上位机决定是否重发。
2高速光纤串行总线测试
两个设备间用光纤互联后可以进行高速光纤串行总线的调试与测试,测试框图见图3。测试时在两个设备间定时发送按协议格式简化的一个帧,包括帧头、帧尾,帧头帧尾中间填充有规律的便于观察统计的测试数据,例:“AA55,55AA,5A5A,0000,0001,0002,0003,0004,5A5A,5AA5,A55A”。图4是利用QUARTUS软件自带的SignalTap抓取的传输数据,从图中的接收数据(ser_data_in)可以看到一个完整的带帧头、帧尾,测试数据正确的帧。测试前,可预先在通信板卡的控制芯片例如DSP的程序中增加一段测试代码,专门用于统计通信的误码率。试验的测试结果比较理想,几万次的通信传输中未发现误码,可见误码率是很低的,可以满足工程应用。
3结束语
关键词:光纤通信技术优势接入技术
近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。
一、光纤通信技术定义
光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。论文百事通在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
二、光纤通信技术优势
2.1频带极宽,通信容量大光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz?km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。
2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。
2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。
2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。
2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。
三、光纤接入技术
随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。
现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。
为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
随着网络的发展,大量的信息进行发送、传输、接收使信息传输操作面临严峻的形势。我国正在建设信息高速公路,综合考虑传输速度快、信息量大、出错率小等因素,光纤传输最为适合。光纤全称光导纤维,由玻璃或者塑料制成的纤维,由包层、内芯和树脂涂层三部分组成,每根光纤内芯很细,由包层保护,光纤聚集在一起形成光缆。光纤又分为单模光纤和多模光纤。光纤通信采用光波传输,通信带宽大、抗干扰性好和信号衰减小等优点,成为了现在主流传输方式,它是一个庞大的系统,由每一部分协调运行。
2 光纤通信技术的发展史
近几十年来,通信技术发展迅速,随着通信技术要求越来越高,光纤通信具有带宽高、出错率小、传输快速等特点,使其逐渐走进人们视野,成为应用最广泛的通信技术。目前,我国主干网基本上也都是光纤通信,但仍存在一些不足。为了更好、更安全的通信,我们需了解光纤通信技术的发展史。光纤通信技术起源于国外,20世纪五六十年代,开始研制出光纤,但那个时候光纤的损耗高达每千米358分贝。后又经过英国科学家几年的研究,研究出理论损耗可以减少到每千米19分贝的新型光纤。接着日本也开始研究光纤,但还是没能达到最低损耗。最后,康宁公司采用粉末法研制出了每千米损耗20分贝的石英光纤。最近,掺锗石英光纤损耗降到了每千米0.2分贝,已经达到了石英光纤理论上提出的最低损耗极限。
3 光纤通信技术
3.1 光纤通信技术概述
光纤采用光波通信,光纤是一种由玻璃或塑料制成的纤维,利用全反射原理来传输信息的材料。光纤的发射装置的一端采用发光二极管或者一束激光将光脉冲传输至光纤,另一端接收装置采用光敏元件检测脉冲信号。光纤又分单模光纤和多模光纤,单模光纤的直径在8um-10um之间,多模光纤的直径有50um和62.5um两种。两者相比,单模光纤的传输距离更长。
3.2 光纤通信技术的特点
3.2.1 传输带宽高、容量大
光纤与双绞线和同轴电缆相比,其传输带宽高及信息容量大。带宽高和光纤的直径没有直接关系,即:不会由于光纤的直径大而带宽高 。随着光纤通信系统各个终端设备技术的改进,与密集波分复用技术结合应用,使得光纤的通信带宽高及信息容量大。
3.2.2 损耗低,传输距离长
在光纤、双绞线和同轴电缆三种传输介质中,光纤的传输损耗最低。由于损耗低,那么传输的距离相对而言也就长。减少了通信系统中的中继器使用量,从而降低了布置整个系统的成本,直接给运营商带来更好的经济利益。
3.2.3 抗干扰性好,保密性强
光纤以石英为材料制成,石英有较好的绝缘性、抗腐蚀性,从而抗电磁波干扰性强,不会形成接地回路。一般电磁波传输容易泄露信息,从而保密性差,而光纤基本上不会发生串扰现象,保密性强。光纤在通信中,受环境影响极小,可见光纤适用于强电领域。光纤还有质量小,轻便,布网方便,成本低,原材料石英丰富,耐高温等特点。
4 现代光纤通信技术的现状
21世纪,光纤通信技术快速发展起来。光纤通信技术主要是引入了光纤接入网技术和波分复用技术,从而大大的提高了通信的质量和安全性。
4.1 光纤接入网技术
光纤接入网技术是光纤通信技术一个全新的领域,来实现信息快速和高速传输,满足了人们生活的需求。光纤接入网技术由宽带的主干传输网络和用户接入各部分组成。光纤接入网技术的关键环节或者最后一个环节就是用户接入技术。要想所有用户实现信息的高速传输,满足用户的带宽需求,用户接入技术主要是对接入网的用户终端而言,通过该技术为用户提供方便,方便为用户提高不受限制的宽带,来满足用户需求。光纤接入网技术除了为网络通信主干网负责数据传输外,还负责网络中所有用户接入网络的用户接入技术。目前,根据光纤宽带的接入位置,来进一步区分光纤,主要有FTTB、FTTC、FTTCab、FTTH等类型。首先,介绍光纤到户技术,简称FTTH。光纤到户技术主要在光纤宽带接入方面来提供全光的接入方式。光纤到户技术利用光纤带宽的特点,先收集宽带信息,接下来整理处理宽带信息,最后传输宽带信息。通过这样的操作来给用户提供所需要的带宽,来满足用户上网需求和信息传输需求。可见,光纤接入网的最后一个环节是光纤到户技术。根据光纤到户技术不同的应用来看主要分为光纤有源接入技术和光纤无源接入技术两种形式。光纤有源接入技术实际上就是点到点的P2P技术,其主要为用户可以实现用户PC到服务器终端的直接连接,P2P可以实现高带宽接入;光纤无源接入技术则为一点到多点的XPON技术。传统网络通信方式一般都具有通信瓶颈的问题,光纤接入网技术能够很好地解决这个问题,能够满足主干网络或者核心网络的传输通信信息量。为了更好地满足用户和网络的传输需求,通常光纤接入网技术会结合SDH. ATM等多种技术混合使用,产生GPON、APON和EPON三种技术。一般而言,在电路交换性的业务通常使用GPON技术;只在信息传输过程中起到点对多点的连接作用的是EPON;相比较而言APON技术相对复杂,其用的比较少。
4.2 波分复用技术
波分复用技术是使用波分复用器,来大大降低光纤的损耗,从而来提高带宽,传输更大的信息量。波分复用技术可以使用在不同的光波频段和不同的波长,将传输的低损耗窗口分为很多个单通信管道。波分复用技术同时也在发送端装备波分复用器,利用它把不同的信号一起传送到光纤中,再利用光纤进行信息的传输。同样也在接收端安装波分复用器,其作用是把光纤中输出的信号再按不同的频率和波长进行分开处理。在接收端分离这些不同信号过程中,在同一个信道里的光波信号是独立的,从而实现不同光波信号在同一个信道里传输,即光复用技术传输。目前,波分复用技术在飞速发展,使用范围不断扩大。波分复用技术其中的粗波分复用技术,其信道间隔为20nm,采用波分复用技术中的集体发送和划分,从而实现在1260nm-1620nm范围内波长的波分复用。采用此技术能够大大降低光器件的成本,从而提高运营商的经济利益,同时也在很大程度上提高了信道容量。因此,波分复用技术得到了很多运营商的好评并得到了很大程度的应用。
4.3 光放大技术
在光纤接入网技术和波分复用技术两个技术成熟的同时,为了更好地通信,进一步引入光放大技术,光放大技术主要是采用光放大器对光信号进行放大加强。光放大技术很大程度上促进了光复用技术、光孤子通信以及全光网络的快速发展。在放大传信号之前,应该进行OEO变换,即:光电变换及电光变换。
5 总结
在获取网络及光纤区域网络上的模块与元器件的应用需要上存在这一定的差异,DWDM技术不是其中主要的发展方向和趋势。由于现阶段大多数的获取网和区域网距离高层次的发展程度上还有很大的距离,需要的一些传输频率普遍较低。比如,早已经确定出了现阶段非常热门的1Gb/s、OpticalEthernet标准,对于传输网络只能够单一频道的传输速率或者骨干的传输方式上,区域网络的传输方式上都已经能够很好的给予满足。
2光纤通信的被动元器件和模块技术分析
解多工器和DWDM光波长多工是光纤通信被动元器件和模块当中最为基本的器具所在,将一些不同的波长光分开到不同的光纤当中或是向着同一个光纤中合并,这就是解多工和多工两种形式。因为有较小的间距存在于DWDM频道之间,一般的时候会维持在100GHz或者50GHz。对于这种多工/解多工的任务,只有平头、陡裙、窄频的滤波器才能够予以胜任。可以对多种类型的技术进行使用,来将这种波长多工/解多工器制作出来,主要涵盖着阵列光波导元器件、传统绕射式光栅、光学镀膜、全光纤式元器件等。其中现阶段最为成熟的技术即为光学镀膜式的波长多工/解多工器。在光学镀膜式解多工器/波长多工中,光学镀膜式滤镜是关键的元器件之一。要将和要求相符合的DWDM滤镜制作出来,一定要确保有一百层存在于镀膜的层数当中,按照四分之一的波长来对每层的厚度进行确定,为了能够达到陡群和平头的要求,要对三个共振的空腔结构进行使用。并且最为重要的是要非常准确的确定出每层的厚度,需要有准确及时的厚度监控装置存在于制作当中。阵列式光波导元器件为制作DWDM波长多工/解多工器的第二种有效方式。在第一段结合处通过了入射光之后,由于绕射的作用,进而向着中间的阵列光波导中分布的入射,通过阵列光波导,光向着另一端中传导,不同变化率的线性相位改变会存在于不同频率的光中,在改变了这种线性相位之后,在第二段的结合处将会令不同频率的光在输出端的某一光波导中会重新的聚集。其中所谓的阵列天线就是其中的主要原理所在,在控制阵列波导的基础上,辐射光的方向对中盐阵列光波导的长度变化率和波导的间距能够适当的去选择,这样就会有定值的频道存在于频道的间距当中,这样在输出端的光波导阵列中就能够刚好聚焦入射进去,进而对DWDM多解工和多工的功能上能够很好的给予实现。全光纤式的元器件为第三种对DWDM解多工器/波多长工进行制作的方法,同时,又有两种大的种类存在于这类元器件中:串接光纤干涉仪式元器件和光纤光栅式元器件。在光纤的核心中,直接产生作用,对于一些周期性折射系数的光栅可以用UV光感器直接的感应出来,对布拉格绕射的作用上进行利用,能够将窄频发射式滤波器直接的制作出来。但是,由于是在一维光纤里面存在的一种反射式的滤波器,这样就很难分开入射光和其中的反射光,这样就需要对光纤干涉仪和旋光器的架构进行使用,不然光的损耗在其中就会非常的大。针对串接光纤干涉仪式的元器件,在对具有周期性穿透频谱的滤波器进行制作的过程中,对串接式光纤干涉仪进而就能够非常直接的进行使用,对光纤干涉仪两臂的长度借助适当的选择方式,对平头、陡群和窄频的要求上进而能够很好的给予完成。
3模块技术及光纤通信主动元器件
在模块和主动元器件方面,有这样几个重要的内容存在于具体的发展中:光传接模块技术、光放大器技术、选频激光、可调频激光、表面辐射激光技术等。光通信用激光光源的一种技术方式中就包括着表面辐射激光。因为存在着较短的共振箱,这样对单纵模的输出上就能够很好的给予完成,因此,窄频宽在其中是允许存在的;能够利用垂直的方式来发射输出光,因此对on-wafertest能够进行应用;因为存在着较为对称的辐射光模态,因此,向光纤中的耦合就能够非常容易的予以实现。因为存在这上述的一些特征,不管是构造的具体成本,还是元器件的在具体制程,和边射型激光比较起来都会非常的低。因此,造成边射型激光被用于短距离高速率的资料传输连接,被850nm的VESEL完全取代了。但是,现阶段还没有非常成熟的产品存在于长波长VESEL当中,因此,边射型激光还是该通信波段的核心所在。现阶段掺铒光纤放大器仍为光放大器的主要技术方式所在,可以是在L-band,也可以是在C-band上面,可以是拥有动态增益控制或者平坦化的复杂光放大器次系统。低成本是半导体光放大器的主要优点所在,但是,因为存在着较短的载子生命周期,因此,有着较大的非线性效应存在于其中,这样对很多波长不适合同时来进行放大。但是,在处理一些非线性信号的时候却非常的适用,集中3R技术就是其中的典型代表,就是将直接高速的信号直接的应用到光学层当中。Raman光放大器为另一种形式的放大器,这种类型的放大器就是对光纤的Raman效应进行合理使用,进而将放大的效果彰显出来,这样一个高功率的激发光源在其中是绝对不能缺少的。能够由激光发源的波长来决定光放大的波段,这是其中最为显著的优点所在,并且这种放大器有着分布式的特点,将光纤中的信号能够有效的降低下来,这样对传输信号时的非线性效应能够有效的降低下来,但是也有一定的不足之处,即为存在功率较高的激光发射源,并且还有较为昂贵的价格。
4结语
1光纤通道的配置方式
电力系统主要是由发电厂、输变电系统、配电系统等共同组成。而在系统中,信息的采集和传输是其正常运行的关键因素,因此光纤通信技术在电力系统中扮演着越来越重要的角色。双光纤通信的组网方式极其灵活,大致分为树形、星型、链型、网状、环状等。按照智能电网配电自动化系统的特点,光纤网通常采用环型网或者树型环型相结合的网络,并通过与计算机的连接实现数据资源共享。由于环路节点较多,为防止光缆设备故障、通讯中断等通信事故出现,大多数企业采用双光纤环路自愈网,并配置具有自愈功能和自动切换的光纤收发器。当光缆出现故障时,断点两侧的光纤设备通过双环路切换器构成新的光纤路径,实现自愈功能,为电网的运行调度和继电保护系统保驾护航。
2光纤通信有利于保护输电线路
供电单位作为一个特殊的部门,对电网可靠性的要求极高,因此对继电保护的要求也越来越高。当系统发生故障时要求必须做出及时高效的反应,快速切除,及时解决故障,绝不允许出现任何纰漏,继电保护发生拒动的现象更是不被允许的。另一保护电网的有效方法是全线速动的纵联保护,其保护作用的发挥程度直接关系到高压电网的稳定运行。当出现故障时,高压线路纵联保护两端的保护装置通过故障信息的交换,可以甄别出是本线路故障还是区外故障,并根据不同的故障采取不同的方法。在遇到区外故障时不动作,在甄别出是区内故障时,快速反应及时切除故障以达到保护的作用。光纤抗干扰性,容量大的特点为电流差动保护的应用提供了强大的技术支持。
3光纤通信在电网中的发展前景
随着经济、技术的发展,光纤通信技术、计算机技术也越来越多的应用到了现代生产生活中。光纤通信讯技术在电力系统中的应用也越来越深入广泛,电力系统调度自动化已经成为了一种必然发展趋势。通过数字传输手段传递电量讯号、用光纤作为传输媒介取代金属电缆共同构成了网络通信的二次系统,这种网络二次系统成为电力系统的未来发展趋势。自动化技术的发展是智能化电力系统的基础。而智能化电力系统则是对信息传输全程实现数字化,这对光纤通信技术提出了更高的要求。光纤通信技术也应积极创新,与时俱进,实现应用上的平稳发展,并对重点技术及科技难题进行逐一突破、逐步完善。电网现代化要求调度自动化进一步加强,要求人力从繁复的劳动中解放出来。调度自动化有利于优化配电网络结构,简化保护和运营程序,提高供电的可靠性和电能质量。作为新的传输媒介,将光纤运用到电力通信系统中,并依据电力系统自身特点对其进行科学的改进,可以提高电力系统各个组成部分的运转能力,也可以提高电力系统运转的稳定性、安全性和可靠性。随着光纤的不断发展进步,电力通信会越来越完善,光纤在电力系统中的应用也会越来越深化。
4小结
1.1光纤保护的分类和主要内容光纤通信运用在电力系统继电保护中主要分为以下两类。第一,光纤保护主要就是为传送电气物理量信息的一种光纤纵联差动保护装置。第二,主要用来传送故障元件的信息的一种纵联方向保护与纵联距离保护装置。线路的纵联距离保护装置主要传送的是线路故障方向和地址码,且都是逻辑信号,内容较为单一。而纵差保护装置则是传送三相电流相量、地址码以及通信时标。
1.2继电保护对于光纤通道延迟的要求对于电力系统的继电保护来说,相关的标准对于继电保护动作发生的具体时间有一定的要求。继电保护的“四性”给出了各种保护方案中传递信息的最大允许时间,其中纵联保护对故障发生时的位置判断只与电气信号的值有关,时间长短与光纤通道的延迟无关。但在对故障发生地点的判断上是基于本侧的电气信息进行分析的,当得出故障发生在本侧时还要分析故障的方向。其次,纵联保护是根据相关的信息来分析故障发生在对侧的方向,只有保障两条分析都在同一方向时,才能确定故障发生的区域。由此可见,电力系统的继电保护时间就纵联保护来说是有叠加现象的。而就纵差保护来说,光纤延迟对继电保护的相应时间也分为两个因素。一方面,在继电保护系统对电气信息进行分析和计算的过程中,当发现电流并不等于两侧电流的总和时,实际上接收到的是对边电流与同一时刻本侧电流的和。另一方面,在本侧发生保护动作前,不仅需要本侧的差动数据满足,更需要对侧的数据保障,以避免突然断线引起的错误动作,从而影响电力系统运行。
1.3专用光纤通信方式对于电力系统来说,利用光纤通信需要为继电保护装置敷设专用的光纤通道,并且在此通道中只允许传输继电保护信息。因光的收、发接口工作距离限制和敷设的光缆成本的限制,用于继电保护装置的通信距离通常在100km以内。专用通道由光缆中断箱直接接入继电保护设备的光收发口,省去了复杂的中间环节,不需要其他的专业设备,就能实现简单、可靠的信息传输,管理起来也比较方便,因此被逐渐运用到了电力系统继电保护系统中。
2光纤通信通道异常对机电保护的影响
2.1线路交互错位影响在实际的电力系统运行过程中,如果出现光纤线路非致命性的故障时,线路自身拥有功能能够进行自动检查与修复,这也就是常说的可自愈网络。通过线路交互错位的方式,当系统的主线路出现了故障需要进行及时检修时,系统将会自动把负荷调整到备用的线路上,再通过备用的线路将数据传输到调度中心,等到主线路的故障得到修复并调整至原来的状态后即可恢复。
2.2M线路时限参数选择影响在电力系统运行的过程中,输送线路或者相应中断的异常运行很可能给SDH输送网络造成影响。通常,这种影响主要表现在线路交互错位、线路错误率变高两个层面,而如果不及时针对存在的异常进行处理,很有可能导致整个线路无法正常运行。由上述可知,SDH输送网络相较于传统的相比拥有无法超越的优势,但在实际的运用过程中,不能完全按照该种网络系统中的PDH分支线路输出信号来调整时限。因分支线路中一旦出现VC信号极易导致输出信号过大波动而难以精准对故障进行定位,其实,进行时限调整的目的就是为了将即时网络时间信息与数据信息统一传送至分支线路中。具体可参考图1所示。就我国目前的形式来看,继电保护装置就是为了实现线路进出信息的一致性,一般通过在PHD分支线路上附上实现控制设备来实现。对于这种情况,线路出口与入口上起到保护作用的PCM需要保持一致的高度,否则将会影响到保护装置的正常使用。为了保证线路保护时限的一致性,通过更改时间记录、校正记录信息以及更正系统时间等方式来进行操作,保证线路两端的响应一直。更改事件记录的方式需要通过限流信息时差和线路两端时间记录时差的对比,并根据对比的结果进行分析,以修正辅助装置的操作时间。
2.3误码产生的影响相较于电力线路或者微波通道来说,光纤通信通道不仅传输的质量高、误码率低,且频带宽、传输信息的容量较大、抗电磁干扰能力强。事实上,光纤通信通道技术也会因长时间持续工作或者其他原因影响下,有一定的误码情况。包括各种噪声源的印象、色散引起的码间干扰、定位抖动产生的误码以及复用器、较差连接设备等设备都有可能引起误码。而具体来说,通道对于保护判据产生的影响有三个方面。第一,误码会导致报文内容或CRC校验值的某一个值发生错误,最终导致报文不能通过校验。第二,误码可能使得报文头或尾部的某一个值发生错误,对报文的完整性进行破坏,导致通信控制芯片出现“报文出错”现象。此外,一般来说报文的比特位数应是8的整数倍,如果出现通道滑码,可能导致比特位数的增加或者丢失,从而导致通信控制芯片出现“非完整报文”的现象。在电力系统的纵差保护中,一旦检测出非完整报文等问题,则必须重新对通道时延进行检测,以保证两侧装置采集的数据实现同步。一方面对于单个的随机误码而言,因其可能影响报文的完整性,从而使得线路的纵差保护没有发生变化,也需要重新启动新的同步过程。另一方面,线路的纵联距离与方向保护则需要交换数据,这种数据只需要允许信号而不会有通道时延一致上的要求,且不必要同步两侧装置的采样时刻。误码可能对当前的通信报文正确性产生了一定的影响,但也不会影响后续通信报文的使用。
3结论
关键词:通信核心网接入网光孤子通信全光网络
近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
一、我国光纤光缆发展的现状
1.普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G..652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G..653规定的色散位移单模光纤实现了这样的改进。
2.核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G..652光纤和G..655光纤。G..653光纤虽然在我国曾经采用过,但今后不会再发展。G..654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
3.接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G..652普通单模光纤和G..652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
4.室内光缆
室内光缆往往需要同时用于话音、数据和视频信号的传输。并且还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。结合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
5.电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
1.超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。超级秘书网
2.光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10-20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
3.全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。
全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。
目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
三、结语
光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用,虽然经历了全球光通信的“冬天”,但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。
参考文献:
[1]辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04).