发布时间:2022-08-29 02:11:46
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的激光原理论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
一、招生人数
学院2016年计划招收博士研究生46名,实际招生人数以总部下达计划为准。
二、报考条件
我院博士研究生只面向现役军人招生,报考2016年博士研究生应当具备以下条件:
1、品德优良,遵纪守法,立志献身国防事业;未受过纪律处分。
2、军队在职干部按师(旅)级单位推荐、军级单位政治部审批、军区级单位政治部干部部门核准、总政治部干部部备案的程序进行审批,由师(旅)级单位干部部门开具介绍信。军队院校应届硕士毕业生经所在院校政治机关审批同意。
3、身体健康,体能达标,年龄不超过40周岁(1976年9月1日以后出生)。
4、在职干部须获得硕士学位,其中本院在职干部报考工学博士须有被SCI或EI收录的以第一作者发表的学术论文;应届硕士毕业生须完成学位论文初稿,在中文核心期刊(含录用通知)或国际会议发表2篇以上学术论文。
5、有两名与报考学科相关的高职人员推荐。
三、报名手续
考生持公民身份证和军官证(学员证)于2015年9月20日至30日到学院教学实验综合楼研究生招生办公室(1127室)报名,外地考生可函报。报名时应提交:
1、填制完毕的《2016年报考攻读博士学位研究生登记表》和《报考军队院校研究生政治审查表》(9月1日后,院内考生可从学院研究生处网站下载;院外考生可来电索要)。
2、已获硕士学位者,提交硕士课程成绩单、硕士学位论文及评阅意见书复印件;应届硕士毕业生提交硕士课程成绩单、硕士学位论文初稿、已发表学术论文版权页或录用通知。
3、硕士学历、学位证书原件及复印件(应届生于获得证书后补交)。
4、档案所在师(旅)级单位干部部门同意报考的证明信。
5、一寸正面半身免冠照片3张,报名费300元。
上述手续齐备,审查合格者发放准考通知,考生可于10月9日到研招办领取《准考证》。
四、考试安排
博士研究生入学考试总分值为600分,包括六项内容:英语笔试、数学笔试、科研学术成果计分、硕士学位论文评分、专业综合面试、综合素质面试,每项内容满分100分。
考试时间拟定于2015年10月11至12日,考试地点和具体安排详见《准考证》。
五、其他
1、考生可于2015年11月初查询录取情况,入学时间为2016年3月份(详见通知书)。
2、我院提供部分往年考试试题,考生可登录学院研究生处网站下载。
六、联系方式
联系人:谭继帅(参谋) 手机:13831189507座机:0311-87992123(地);0221-92123(军)
E-mail:tanjishuai@126.com 通信地址:河北省石家庄市和平西路97号研究生招生办公室(050003)
招生专业目录
专业代码、名称及研究方向
导师
专业综合(面试)
数学(笔试)
080200机械工程
01机械性能检测与诊断
张英堂
测试技术与信号处理
矩阵理论
02地面运载平台维修理论与技术
张培林
状态监测与智能诊断技术
03机械振动与冲击防护
白鸿柏
振动理论
04机电液集成系统控制技术
何忠波
车辆工程
05机械制造及其自动化
倪新华
断裂力学
080300光学工程
01军用光电系统设计与应用
刘秉琦
陈志斌
应用光学、物理光学、光电测试技术
矩阵理论
02激光技术
沈学举
激光原理及应用
03光学信息安全
光学信息技术原理与应用、光学信息安全
04微纳光学
汪岳峰
光电子技术
080402测试计量技术及仪器
01测试性设计与分析
黄考利
测试技术
矩阵理论
02精密仪器与微系统
王广龙
03装备状态监测与故障预测
李洪儒
测试与诊断技术
矩阵理论或应用数理统计
04网络安全技术
王 韬
计算机网络
081100控制科学与工程
01装备测试与故障诊断
尚朝轩
测试与诊断
矩阵理论或应用数理统计
02火力与指挥控制理论及应用
全厚德
孙世宇
数字信号处理
矩阵理论
03武器系统建模与仿真
朱元昌
系统仿真
04电子装备自动测试、故障诊断及可靠性
蔡金燕
测试与诊断
05目标识别与信息处理技术
王春平
图像工程
06精确制导理论与技术
杨锁昌
精确制导、控制与仿真技术
07无人机数据链抗干扰技术
陈自力
线性系统理论、数字信号处理
08目标探测与识别
马彦恒
数字信号处理、现代控制理论
09飞行器控制
齐晓慧
线性系统理论
10无人机协同控制
李小民
现代飞行控制理论、导航控制技术
11无人机信息处理与传输技术
王长龙
数字信号处理
12非线性系统的稳定性与控制
徐 瑞
动力系统的稳定性理论
082600兵器科学与技术
01装备轻量化技术
郑 坚
火炮与自动武器原理、材料学
应用数理统计
02兵器试验理论与技术
秦俊奇
火炮专业相关理论
矩阵理论
03装备维修理论与技术
陶凤和
火炮与自动武器原理、现代机械测试技术
04兵器性能检测与诊断技术
房立清
机械装备故障诊断与预测、武器系统装备知识
应用数理统计
冯广斌
火炮与自动武器原理、工程信号处理、现代机械测试技术
矩阵理论
05兵器结构动力学理论与应用
王瑞林
枪炮设计原理、振动理论、电磁场理论
06武器系统仿真与虚拟样机技术
马吉胜
振动理论、动力学仿真
07弹道学理论及应用
宋卫东
弹道学理论、制导理论与技术
08弹道修正理论与技术
弹道学、自动控制与导弹设计理论
矩阵理论或应用数理统计
09兵器性能检测与故障诊断
唐力伟
振动理论
10兵器新材料技术
王建江
材料学
应用数理统计
11弹药系统设计与试验评估
高欣宝
系统仿真技术及其在信息化弹药工程中的应用
矩阵理论
罗兴柏
爆炸及其防护技术在弹药保障中的应用
12弹药保障与安全技术
安振涛
炸药理论、弹药保障及安全风险评估
穆希辉
弹药保障
矩阵理论或应用数理统计
13信息感知与控制技术
齐杏林
弹药引信论证、设计、试验及评估理论与技术
14防护材料与特种能源技术
杜仕国
防护材料与特种能源技术及其在弹药工程中的应用
矩阵理论
15电磁发射理论与技术
雷 彬
电磁场理论、测试技术
16武器系统建模与仿真
苏群星
武器系统仿真与模拟器设计
17红外图像末制导技术
高 敏
弹道学、自动控制与导弹设计理论
矩阵理论或应用数理统计
18装备维修保障理论与技术
贾希胜
石 全
康建设
赵建民
可靠性、维修性、维修工程
应用数理统计
朱小冬
可靠性、维修性、维修工程、建模与仿真
矩阵理论或应用数理统计
19装备维修性理论与应用
郝建平
可靠性、维修性、维修工程、虚拟仿真
20电磁防护理论与技术
刘尚合
魏光辉
电磁场理论、微波与天线
矩阵理论
王庆国
大学物理、有机化学、固体物理、电磁场理论
谭志良
电子技术基础、通信原理、微波与天线
21脉冲电磁场测试技术
朱长青
电路分析、电磁场理论和微波技术、数电模电
110900军事装备学
01装备保障信息化
卢 昱
网络信息安全保障
军事运筹学
02装备保障理论与应用
石 全
军事装备学、战役基本理论
应用数理统计或军事运筹学
于永利
可靠性、维修性、维修工程、建模与仿真
军事运筹学
柏彦奇
高 崎
关键词:接触网;受电弓;系统响应;接触压力;拉出值;硬点;接触线高度;激光测距
中图分类号:U226 文献标识码:A
在电力机车的运行过程中,受电弓在接触悬挂下高速滑动运行,从动力学角度,表现出弓网接触压力的作用和受电弓滑板产生横向振动的动态响应,如图1表示。
图1 系统信号分析框图
目前国内外广泛采用弓网接触压力直接测试方法。但在高速运行时,测量信号容易受到弓网接触振动造成的电磁火花的干扰;附加的压力传感器,增加了滑板重量,改变了滑板的外形,使受电弓的稳定性和安全性受到影响。
本论文提出的测试方法(图2),是在车顶并排对称安装多个激光测距传感器,通过测试受电弓滑板底部横向振动位移,从而,计算弓网接触压力、拉出值、弓网冲击(硬点)和接触线高度等动态参数。
图2 受电弓滑板响应测试模型
1 弓网接触响应测试原理
滑板在弓网接触运行中的振动,可近似认为是两端固支的滑板弹性梁的横向弯曲振动、两端弹性支撑的滑板刚梁上下传动和平面转动的复合运动。滑板弯曲振动模态则可以用欧拉-伯努利梁求解。图2中表示作用在滑板梁的第个节点的弓网接触激振力,其作用的不同位置示意接触线拉出值的变化。表示放置于车顶平面对准受电弓滑板底部第个高速激光传感器的位移测量值,其动态响应关系用传递函数可表示成如下矩阵形式:
(1)
(1)式中可通过单位冲击响应的数字计算得到,于是,根据卷积原理,弓网接触压力可表示如下:
(2)
由各激光传感器测试的离散位移信号,可实时得到弓网冲击加速度,导线高度和拉出值,表示如下:
(3)
(4)
(5)
上式中为车顶传感器的基准高度,为激光传感器的个数,为激光传感器的分布序号,表示各激光传感器几何位置对称加权系数。
2 滑板梁的动力学分析
将图2的模型分解为一个两端固定支撑的受电弓弹性滑板梁和一个两端等刚度弹性支撑的受电弓刚性滑板梁。先分别求出各自的动态响应,然后在静平衡位置的轴上的同一点对横向响应位移进行叠加。
2.1 受电弓滑板刚梁在平面内的振动
设支撑弹簧刚度为,滑板刚梁长度为、线密度为、质量为、质心为,滑板刚梁绕质心的转动惯量为,取质心的横向位移及滑板刚体绕质心的角位移作为广义坐标(),对滑板进行受力分析,建立受迫振动微分方程如下:
(6)
(7)
令,由此求得刚梁横向振动的固有频率和刚梁绕质心转动的固有频率为:
(8)
(9)
采用Duhamel积分法求解(6)式和(7)式,由图3知当弓网接触力在处作用时,滑板刚体处由横向振动和绕质心转动产生的复合横向振动位移可表示如下:
(10)
2.2 受电弓滑板弹性梁弯曲振动振型函数
以两端固定支撑的滑板弹性梁在横截面对称平面内的横向位移作为广义坐标,并设梁的线密度为,抗弯刚度为EI,受力分析如图4所示。根据达朗贝尔原理和力矩平衡原理可得到滑板梁横向振动的四阶齐次偏微分方程:
(11)
对(11)式用分离变量法求解并应用克雷诺夫函数可得滑板梁固有频率的计算公式和横向弯曲振动振型函数:
(12)
(13)
为计算方便,振动滑板梁的计算参数取值如表1所示。
由此求得1阶模态的固有频率为94.5Hz,2阶模态的固有频率为258Hz,3阶模态的固有频率为505Hz,4阶模态的固有频率为829Hz。
(13)式中可以是任意常数。只要将各阶固有频率对应的的值代入该式,即可求得滑板弹性梁横向弯曲振动的各阶相应的主振型。
2.3 受电弓滑板弹性梁动力冲击响应 (见图5)
在滑板梁的处,假设有一弓网接触压力作用,自由振动运动方程可得到:
(14)
滑板均匀弹性梁的振型函数为式(13),将主振型正则化,利用其正交性特点,可得:
(15)
设各阶固有频率为,主振型为,1,2,3,….则弹性梁动力响应可用模态叠加(坐标变换)表示为:
(16)
利用主振型正交性质,由杜哈美(Duhamel)积分法求解得:
(17)
将式(17)代入式(16),可得滑板弹性梁原广义坐标的响应:
(18)
3 用数字计算方法求响应矩阵和传递函数矩阵
为了求式(1)中的传递函数矩阵[],必须先求下式(19)中的响应矩阵[]。
(19)
传递函数矩阵[]和响应矩阵[]的关系为:
(20)
基于系统响应分析数字计算步骤如下:
(1)如图2所示,先假设在滑板上从左到右第一个确定的输入节点上作用一个确定的弓网冲击接触力,通过式(10)和式(18),分别计算各激光传感器对应位置的位移响应值、、…、。通过下式:
(21)
即可计算出。
(2)其它矩阵元素的计算方法同上,即通过下式可计算得到。
(22)
(3)由式(20)计算[]。
(4)由式(1)和式(2)计算。
(5)由式(3)、式(4)、式(5)分别计算接触网几何参数和动力学参数。
4 响应测试系统仿真
对图2所示的响应测试模型进行仿真,假设对称配置5个激光测距传感器,测试受电弓滑板底部-0.4m,-0.2m,0m,0.2m,0.4m 等5个点的位移,如图6所示,取2.5,取1720Nm2,取0.8m,取2500 N/m 。
假设依次在受电弓滑板上-0.4m,-0.2m,0m,0.2m,0.4m的地方垂直向下施加110N的弓网接触压力,通过式(10)和式(18),分别计算各激光传感器对应位置的位移响应值、、…、。通过式(21)计算,可得到响应关系矩阵式(23)。
由上式D矩阵求逆,可得到传递函数矩阵如式(24)。
如果还是用150N的弓网接触压力,在-0.4m和-0.2m,的地方垂直向下施加,并由此得到,再将代入式(2),反过来求得接触力为150N;如果还是用110N的弓网接触压力,在-0.25m的地方垂直向下施加,并由此得到,再将代入式(2),反过来求得接触力为98.77N,误差为10%,该误差主要由激光传感器的配置位置造成。
如果用150N的弓网接触压力在受电弓滑板上-0.4m 处垂直向下施加,如图7(a)所示,传感器各点位移响应如图6(a)所示;在-0.2m、0m、0.2m、0.4m处施加,力的作用图(图7(b)-(e))与位移响应图(图6(b)-(e))一一对应。
由此可见,采用传递函数计算方法的仿真与实际情况基本相符。
结语
基于系统响应原理测试高速铁路接触网动态参数的方法,其重要意义在于将测试传感器完全从受电弓滑板上撤离下来,这是高速铁路接触网车载动态测试追求的目标。如果采用图象处理和激光雷达等非接触式检测方式,由于其扫描周期和处理时间的限制,使得该方法从原理上无法实现对弓网高频动态特性的测试。在实际应用中,作者认为必须在实验室直接测试数据,然后对数据进行回归分析,校正核实计算模型。
参考文献
[1]于万聚.高速电气化铁路接触网[M].西南交通大学出版社,2003
[2]Gukow,Kiessling Puschmann,Schmider,Schmidt.Fahrleitungen elektrtrischer
Banhnen.B.G.Teubner Stuttgart,1997
[3]张卫华.准高速铁路接触网动态性能的研究[D].西南交通大学学报,1997(2)
[4]藤井保和.高速铁路接触网的受流理论[J].铁道与电气技术,1991.6
[5]夏永源,张阿舟.机械振动问题的计算解法[M].北京:国防工业出版社,1993
关键词:迈克尔逊干涉仪; 异常现象; 调节.
1.引 言
迈克尔逊干涉仪是光学实验中的重要仪器,许多现代被广泛利用的计量仪器,比如泰曼–格林干涉仪、傅里叶变换光谱仪、接触式干涉仪、干涉显微镜、激光测长仪等,都是基于迈尔尔逊干涉仪的基本原理改进制成的,具有结构简单、精确度高、光路直观等优点[1]。多年来利用迈克尔逊干涉仪测量激光波长及光源的相干长度是国内理工类高校普遍开设的一个物理实验。
迈克尔逊干涉仪由一个倾角可调可移动的平面镜、一个倾角可调的固定平面镜、一块底面镀有半反半透膜的分光板、一块跟分光板具有相同厚度而没有镀膜的补偿板、一个观察屏、底座、主尺、粗调手轮和细调手轮组成。只要有关微小位移、微小角度的测量,原理上都可以用迈克尔逊干涉仪测量完成。实验室中除了可以测量激光的波长、钠光灯的相干长度,还可以用来测量透明物体的折射率[2]和细铁丝的杨氏模量[3]。
在目前报道的文献中,据我们所知,有关异常现象分析的基本都局限于对现象的报道及有关软件对干涉现象的模拟[4-6],而对所形成的物理原因几乎没有涉及,本论文首先针对本科生在迈克尔逊干涉仪调节过程中经常出现的平行直线和椭圆干涉条纹这两种异常干涉现象给予相应的物理解释,然后指定出一份迈尔尔逊干涉仪的调节细则,有助于本科生在短时间内调出清晰的圆形干涉条纹,极大的提高迈克尔逊干涉仪的教学效率。
2. 异常干涉条纹及相应的物理分析
迈克尔逊干涉仪的两种常见的异常干涉条纹是“平行”直线条纹和椭圆形条纹,下面我们介绍这两类异常现象形成的物理原因。
2.1 “平行”直线干涉条纹
在实验室中,我们常看到一类近乎平行的条形干涉条纹。通常人们认为这是由两个平面镜的不垂直而产生的等效楔形平板形成的等厚干涉条纹,而本论文认为实验所观测到的平行直条纹仍然是等倾干涉条纹,只是因为迈克尔逊干涉仪的两个平面镜稍有不垂直而导致干涉条纹的中心不在观察屏的中心,再加上两束光的光程差比较小,故干涉条纹半径较大,从而使得看到的条纹比较像平行的直条纹。
比较等倾干涉和等厚干涉的实验原理,不难发现,等厚干涉条纹的形成需要保证到达楔形板前的光是平行关,这样条纹明暗才能反映出楔形板不同厚度的干涉情况。而对于迈克尔逊干涉仪,我们使用的是半导体光源,其在楔形板前的光波是球面波,因此,实验中所观察的“平行”直线干涉条纹本质上仍然是等倾干涉圆条纹,只是该圆条纹的中心偏离观测屏比较远而呈现出来的一种干涉现象。
2.2 椭圆干涉条纹
椭圆形条纹形成的原因比较多,下面分别分析其形成原因。
2.2.1 可移动平面镜垂直于固定平面镜,但观测屏与可移动平面镜不平行
当迈克尔逊干涉仪的两个平面镜严格垂直,但是观测屏不平行于可移动平面镜时,观测屏上的干涉条纹会变成一个以水平方向为长轴、竖直方向为短轴的椭圆。这是因为由两个虚光源发出的两束锥形区域的球面波发生干涉,其干涉区域也应该是一个锥形的区域,所以当观测屏与可移动平面镜不平行时,会看到椭圆形的干涉条纹。
2.2.2 观测屏与可移动平面镜平行,但可移动平面镜不垂直于固定平面镜,
当迈克尔逊干涉仪的观测屏平行于可移动平面镜时,但两个平面镜不能严格垂直时,也会在实验中观测到椭圆形的干涉条纹。这是因为激光光源在这两个平面镜中所呈现的两个虚光源的连线不与观测屏垂直,而是成小于90o的夹角,这样以来,两个虚光源所形成的锥形干涉条纹在观测屏上将呈现出椭圆形状,该形成原因本质上和2.2.1类似,都是由于观测屏不与两个虚光源所形成的干涉区域底面垂直而引起的一种实验现象。
这里,我们强调造成两个虚光源的连线与观测屏不垂直的原因主要有三个,其一,实验过程中由于调节精度所限,难以使两个平面镜的垂直度很高,其二,实验过程中分光板和平面镜之间的角度发生了改变,即不是45o的夹角,其三,分光板和补偿板不严格的平行。
2.2.3 可移动平面镜和固定平面镜所形成的两排光斑错重合
理论上讲,我们应分别选取每排光斑中最亮的光斑,然后使其相互重合,但是在通过肉眼观测时,往往很难分辨每排光斑中哪个光斑最亮,因此,很容易选错最亮的光斑而导致错重合。
3. 迈克尔逊干涉仪实验调节细则
根据上述异常条纹出现的物理分析,我们制定了一个迈克尔逊干涉仪测量激光波长的实验流程如下:
(1) 实验前检查
(a) 检查两个平面镜的两个水平和竖直调节螺丝是否可以调节,并将调节旋钮上黄铜螺帽旋到最外侧;
(b) 检查分光板到可移动平面镜和分光板到固定平面镜的距离是否相等,如不相等,请用粗调手轮调至相等位置;
(c) 检查分光板和补偿板是否平行,并检查者两块板有无放反;
(2) 圆形干涉环调出
(a) 使用水平和竖直调节旋钮调节可移动平面镜,使其与观测屏相互平行;
(b) 将激光器的光强调到最弱;
(c) 移开观测屏,透过分光板向可移动平面镜方向观察,会观察到两排光点,调节固定平面镜的水平和竖直调节旋钮,使得两排光点上下各自最亮的两个光点重合;
(d) 放上观测屏,增加激光器的光强;
(e) 若此时观察到椭圆的条纹,或者共轭双曲线条纹、或者条纹不清晰、或者干涉条纹半径很小,可能原因是最亮的光斑错了,这时重新回到(b)步骤,换一个光斑进行尝试。
依上述调节方案,可使本科生在短时间调出清晰的圆形干涉条纹。
4. 总 结
本论文首先分析了迈克尔逊干涉实验过程中平行直线和椭圆形干涉条纹的形成机制,并制定了一份迈克尔逊干涉仪测定激光波长的调节细则,经过4个班级的实验证明,此调节细则可极大缩短了本科生调出清晰、易读的圆形干涉条纹所需时间。
参考文献
[1] 陈玉林, 徐飞, 丁留贯. 大学物理实验[M]. 北京: 科学出版社, 2013, 5: 269-275.
[2] 张静,迈尔尔逊等倾干涉法晶体折射率测量方法研究[D]. 山东: 山东大学, 2009: 12-18.
[3] 闫凯,池红岩,韩仁学,利用迈克尔逊干涉仪测杨氏弹性模量的方法[J]. 实验科学与技术, 2014, 12(5): 31-32.
[4] 樊俊义,张丽珠. 迈克尔逊干涉仪调节中的故障处理[J]. 实验室科学, 2008, 4: 141.
[5] 柯红卫,张宝颖,杨嘉. 迈克尔逊干涉仪产生特殊干涉条纹的原因[J]. 物理实验, 2007, 27 (1): 34-35.
关键词 :三维激光扫描仪;误差测定;影响因素;
中图分类号: R814 文献标识码: A 文章编号:
引言
三维激光扫描技术是一种先进的全自动高精度立体扫描技术。又称为“实景复制技术”,主要面向高精度逆向工程的三维建模与重构。它可以高效地采集大量的三维点。少则几万个,多则几百万个。它可以深入到复杂的现场环境中进行扫描,将各种大型的、复杂的、不规则的实景三维数据完整地采集到电脑中,从而快速重构出目标的三维点云模型。此外,它所采集的三维激光点云数据还可进行各种后处理工作,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。这对于有限元分析、工程力学分析、流体动力分析等是非常重要的。这种逆向工程的数据获取方式目前在我国还是个薄弱的领域。
一、三维激光扫描仪的概念
三维激光扫描技术是测绘领域继GPS技术之后的一次技术革命。三维激光扫描仪通过高速激光发射器运用激光测距原理,瞬时测得空间三维坐标值的测量仪器。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型。
二、地面型三维激光扫描系统工作原理
三维激光扫描仪运用了激光的方向性、单色性、高亮性、相干性等特点,实现了测量速度快,操作简单,测量精确度高等目的。对地面三维激光扫描仪来说,采用的是仪器坐标系统,即所采集到的物体表面点的空间信息是以其自身的坐标系统为准的。系统以激光束发射处为坐标原点;Z轴位于仪器的竖向扫描面内,向上为正;X轴位于仪器的横向扫描面内;Y轴位于仪器的横向扫描面内且与X轴垂直,如图1-1,由此可得点坐标的计算公式:
图1采用脉冲测距法的三维激光点坐标 图2 目标物体倾斜引起测距偏差
二、点云数据的误差来源及分析
从误差理论来分析,径向扫描系统测量误差可分为系统误差和偶然误差。系统误差引起三维激光扫描点的坐标偏差。可通过公式改正或修正系统予以消除或减小。测量系统的偶然性误差是一些随机性误差的综合体现。
三维激光脚点测量误差的影响因素较多。大致可分为三类:仪器误差、与目标物体反射面有关的误差、外界环境条件。仪器误差是仪器本身性能缺陷造成的测量误差,包括激光测距的误差、扫描角度测量的误差;与目标物体反射面有关的误差主要包括目标物体反射面倾斜的影响和表面粗糙度的影响;外界环境条件主要包括温度、气压等因素。
2.1激光测距的影响
激光测距信号处理的各个环节都会带来一定的误差,特别是光学电子电路中光脉冲回波信号处理时引起的误差,主要包括扫描仪计时的系统误差和测距技术中不确定间隔的缺陷引起的误差。脉冲计的系统误差造成循环、混淆现象与测距的凸角误差相类似,测距技术中不确定间隔更可能造成数据突变,目前,可运用一些较好的技术(如频率倍乘、微调作用)处理这些突变的误差。激光测距误差综合体现为测距的固定误差和比例误差,可以通过仪器检定确定测距误差的大小。
2.2扫描角的影响
扫描角的影响包括水平扫描角度和竖直扫描角度测量的影响。扫描角度引起的误差是扫描镜的镜面平面角误差、扫描镜转动的微笑震动、扫描电机的非均匀转动控制误差等因素的综合影响。目前扫描角测量可达到很高的精度,如徕卡的HDS2500三维激光扫描仪的扫描角精度达到±0.5″。
2.3目标物体反射面倾斜的影响
激光扫描测距系统中激光测距单元由激光发射头和激光接收器两部分组成。用于加工发射和接受窗口的孔径直径有一定的大小。由于激光发射哈接受共用一条光路,且激光光束具有一定的发散角,扫描到目标物体表面形成激光角点光斑。激光角点光斑的大小d、激光发散孔径D和激光光束发散角y存在如下关系:
(2)
式中,S为激光发散点到物体表面上激光角点中心之间的距离。
当扫描目标物体倾斜时,则出现扫描目标物体表面法线与激光光束方向不重合。当表面切平面法线与激光光束方向的夹角为α,根据图2,存在如下几何关系:
(3)
则引起激光角点的位置的最大偏差ds
(4)
由于y/2很小,则siny/2=y/2,所以
(5)
2.4目标物体反射表面粗糙程度的影响
三维激光扫描点云的精度与物体表面的粗糙程度有密切关系。由于三维激光回波信号有多值性特点,有些三维激光扫描系统只能处理首次反射回来的回波信号,有些三维激光扫描系统只能处理最后反射回来的回波信号,也有一些三维激光扫描系统能够综合处理首次和最后反射回来的回波信号。以处理首次反射回来激光回波信号为例(如图3所示),目标物体表面粗糙程度引起激光角点位置的偏差ds,接近于物体表面粗糙极值的1/2.
2.5温度、气压等外界环境条件的影响
温度、气压等外界环境条件对激光扫描的影响主要表现为温度变化对精密机械结构关系的细微影响、扫描过程中风的震动、激光在空气中传播的方向等。较差的外界环境条件对三维激光扫描数据的影响也较大。
径向三维激光扫描仪测量的主要误差来源于测距误差或扫描角误差。由于测距误差包含固定误差和比例误差两部分,其影响具有一定是规律性。如HDS2500仪器的测距误差在50m以内为6mm,超过50m后仪器测距误差随距离线性增加,在200m时达到42mm.扫描角的误差是一种与距离有关的误差,扫描角对扫描点的影响随距离增大而增大。
目前,基于TOF测距技术的三维激光扫描仪已经成为测绘领域的一个新的研究热点,但是,对三维激光扫描仪的仪器设备及测量误差的研究还很少。本文在对三维激光扫描仪的分类基础之上,对径向三维激光扫描仪器的测量误差影响因素进行了较为全面地理论分析,并指出了测距误差和扫描角误差是三维激光扫描误差的主要误差源之一。
结束语
现今,人类社会已经进入了高度文明的时代,各行各业都在寻求更好的发展途径,三维激光测量技术的应用越来越广泛,在今后的发展中,我国必定会不断完善测量技术,为相关领域的稳定收益保驾护航。三维激光扫描仪目前广泛应用于各个领域,是研究的热点。本文主要研究了三维激光测量误差来源――仪器误差、与目标物体反射面有关的误差和外界条件影响。通过实验得知了仪器Trimble GX200的测距精度和扫描精度。
参考文献
[1] 马立广. 地面三维激光扫描测量技术研究[D]武汉:武汉大学硕士论文.2005.
[2] 杨伟,刘春,刘大杰.激光扫描数据三维坐标转换的精度分析[J].工程勘察,2004.
[3] 吴剑锋, 王文, 陈子辰. 激光三角法测量误差分析与精度提高研究[J].机电工程.2003.
【关键词】物理教学;现代物理
Modern Physics in high school physics teaching the necessity and significance
Li Yong-li
【Abstract】Social modernization, the modernization of teaching methods, teaching content should be followed up, teaching content should be modernized, it is necessary to allow more modern physics knowledge into our classroom.
【Key words】Physics teaching; Modern physics
物理学在不断地发展变化,也带动社会迅猛发展,物理教学必须要跟得上时代步伐,将物理学发展的前沿动态和物理学的实际应用引入课堂教学,使学生及时了解当前科学技术的发展概况,是十分必要的。
一、现代物理知识运用到中学物理教学中的必要性和重要意义
1、据有关调查中学生所掌握的科技知识没有达到令人满意的地步,且学生较少关注和参与科学技术相关的社会活动,其实验能力也较差。
2、我国现行教材基本上都是经典内容,新的教材虽做了一些改变,但这些变化都集中在增加学生生活、社会性物理知识的应用和提供学科内进行研究性学习的材料方面,在现代物理知识的吸纳方面做的不够,长期以来,学生的思维方式、知识结构局限在经典物理中,远落后于现代物理和科学社会的发展。
3、现代物理知识对提高学生学习兴趣有独特作用。物理学是最早发展起来的自然科学,从哲学中分离,在生活中诞生,为应用而发展。从诞生的那一天起,它就与大自然、人类的生活密不可分。在教学中有意识地突出现代物理的广泛应用,可开阔学生视野,增强物理有用性的认识,培养理论联系实际的习惯,强化学习意识,提高学习物理的兴趣。
4、有效地讲授现代物理知识是提高学生科学素养的重要途径。
二、现代物理知识运用到中学物理教学中的可能性
有些人认为,中学物理教学内容即20世纪以前的物理学是基础中的基础,而中学生的知识基础不可能去接受理解高深的物理知识理论,中学物理与现代物理之间存在着巨大的鸿沟,难以逾越。笔者认为在中学传授一定的现代物理知识已具备一定基础,但要讲究传授的方法、途径。
中学生通过一段时间的经典物理基础知识学习,可以说已具备了进一步学习现代物理相关知识的可能性,再者,高中生已具有一定的抽象思维能力和科学思想方法。布鲁纳曾强调学习各门学科的基本结构。指出基本结构就是最能反映其本质的基本概念、原理和规划。学科的结构就是本学科的基本理论,掌握这种基本理论,可联系各种相关现象,从而理解各种相关现象,学科的基本结构是课程的核心,也是教学过程认识的基点。他还认为基本学科是可以提早学习的,并且必须提早学习,因为早年学习一些观念和作风影响着人们的一生。这些为我们进行现代物理知识教学提供了认识论基础。现代物理是刚发展起来的新理论体系,虽然对绝大多数一般的学习者来说他是深奥和抽象的,要用到精、专的物理学理论及相应的数学物理方法,并非一般初涉物理学领域的人所能掌握的。但我们可把有关知识的基本结构和方法论教授给初学者(中学生),他们是完全能够掌握和理解的。布鲁纳就认为,“凡是用现行手段教授的一切题材,都可能用单纯的形式,更早地教给儿童。”
三、现代物理知识运用到教学中的途径
如何有效地在中学讲授现代物理知识,还需要广大教师在实践中进行尝试研究,笔者在此谈一点个人想法。
1、将基础知识拓宽延伸。
现代物理知识追根溯源都有它最初的端倪和最原始的理论,正如爱因斯坦所说:"我们的科学进步得如此之快,以致大多数原始论文很快失去了它的现实意义,而显得过时了,但是另一方面,根据原始论文来追踪理论的形成过程,始终具有一种特殊的魅力。
例如通过激光冷却技术使人们实现了操纵和控制单个原子。同时依靠这种新的手段,人们在分子原子物理学领域获得了一个又一个重大突破。通过冻结原子降低温度,1995年两名美国科学家康奈尔和维曼以及德国科学家克特勒分别在极为接近绝对零度的条件下首次通过实验证实了玻色-爱因斯坦凝聚(简称BEC),玻色-爱因斯坦凝聚是爱因斯坦在75年前所预言的一种特殊物质状态。这被物理学家认为是20世纪末物理学上的最重要的成就。我国也于2002年由中科院院士王育竹领导的研究小组在铷原子云中实现了BEC。这项技术也可用于涉及新型的原子钟,其精确度比现在最精确的原子钟(精确度达到了百万亿分之一)还要高百倍,可应用于太空航行和精确定位。
激光制冷是通过激光光子的能量直接束缚被冷却物质的分子或原子的热运动来降低温度的,是微观对微观的物质行为。根据量子力学理论,如果正在进行中的原子被迎面而来的激光照射,只要激光的频率和原子的固有频率一致,就会引起原子的跃迁,原子会吸收迎面而来的光子而减小动量。与此同时,原子又会因跃迁而发射同样的光子,不过它发射的光子是朝着四面八方的,因此,实际效果是原子的动量每碰撞一次就减小一点,直至最低值。动量和速度成正比,动量越小,速度也越小,温度也就越低。因此激光冷却的实质是原子或分子在激光的作用下的减速。
在学习了原子跃迁后,有机地进行渗透这些内容,学生就不会觉得现代物理遥不可及,学生不仅掌握了物理知识,更了解了这些知识的实用价值和社会价值。
2、通过物理事件或物理现象讲授有关知识
当某些理论很深奥、抽象难懂时,可以用一个事件的阐述,使学生了解有关知识产生的历史和过程,从事件中领悟知识原理。
如著名的双生子佯谬实验。狭义相对论的相对论效应认为相对做匀速直线运动的两个惯性系中,其中在一个参照系中的观察者测的另一参照系中的长度变短,时钟变慢。这时有人提出这样一个设想:有双生子兄弟二人,哥哥乘上飞船离开地球,以接近光速的速度逛游太空,根据相对论效应,弟弟看到飞船上的时钟变慢了。那么在飞船返回地球时,是否哥哥比弟弟变年轻了?我们知道,运动的观测是相对的,当哥哥乘上飞船逛游时,弟弟相对哥哥在反向运动,哥哥看弟弟的时钟也变慢了。因而他会认为弟弟变年轻了。这样就得不到一个确定的答案。这就是著名的双生子佯谬。这时狭义相对论无法解释。通过分析,狭义相对论只适用于一切惯性系,而哥哥乘飞船离开地球要加速,返回地面要转弯、减速,所以哥哥处在非惯性系。在这样的背景下爱因斯坦完成了广义相对论的研究。利用广义相对论的结论--时空弯曲解释了飞船上的时钟变慢,因此飞船返回时哥哥显得年轻了。
通过这一事件学生了解了狭义相对论、时钟变慢、广义相对论等基本概念。同时一些著名事件能激发中学生的兴趣,培养其科学精神和思维方式。
3、让现代物理知识、思想及应用渗透在STS问题中
如2004年12月26日印尼苏门答腊岛附近海域强烈地震引发了海啸,造成的破坏程度和人员伤亡数之众,被联合国称为近几世纪以来最严重的自然灾害。地震海啸给人带来的灾难是十分巨大的,对于海啸,目前人类没有能力阻止其发生,但可以通过预警和防备来减少死伤,海啸的预警就用到了物理知识。
如,学习了万有引力后,可及时向学生介绍有关“神州”七号或“嫦娥一号”的材料。随着中国在航天技术方面的全面发展,标明我国完全有能力独立自主地攻克尖端技术,在世界高科技领域占有一席之地。关于“神州”七号,在发射、运行、变轨、返回等方面可以编很多试题。如:简述将“神州”七号载人飞船送入太空的“”2号捆绑式大推力运载火箭发射的原理和提高最终速度的因素。火箭点燃后生成的气体以很大的速度向后喷出,根据动量守恒定律,火箭向前做反冲运动;提高火箭最终速度的因素,一方面是喷气速度,另一方面是火箭开始飞行的质量与燃料烧尽时的质量之比,喷气速度越大,质量比越大,火箭最终速度越大。可以让学生思考的问题很多,此处不一一例举。有关卫星问题是大家所关注的问题,其某些方面的基本原理和最基础问题是学生可以理解和可以解决的,这也是引导学生将物理问题应用于实际、关注科技进步、关注前沿问题、关心国家的最好契机。
【论文摘要】:对磁力仪未来发展进行了展望。重点介绍了:1.光泵磁力仪及其光源和共振元素的选择与设计2.超导技术的进步推动了超导量子干涉磁力仪的发展3.对处于研究、探索阶段的原子磁力仪进行了关注。
引言
目前,在空间、海洋、勘探、在医院和其它实验室中广泛的应用着各种磁力仪,用于测量地磁场以及生物磁场。在这些领域,新型的光泵磁力仪、超导磁力仪(Superconducting Quantum Interference Device, SQUID);以及处于研究、试验阶段的固体电子自旋共振磁力仪(Electron Spin Resonance ,ESP)、原子磁力仪(Atomic Magnetometer, AM)必将以其超高的精度担负起越来越重的任务。
过去测量磁场强度的单位是奥斯特(Oersted,Oe),采用和推广国际单位制(SI)以后,测量磁 感 应 强度( 磁 通量密度)的 单 位 是 特 斯 拉(Tesla,T)或高斯(Gaus ,Gs)。 它们之间的对应关系为1nT= 10-9 T = 1gamma(γ)。特 斯 拉的换算关系为:1T(特斯拉)= 109nT (纳特)=1012pT(皮特)=1015fT(飞特)=1018aT(阿特)[1]。
磁场强度曾经用过T、F、Be等几个符号表示,许多文献中曾采用F、Be。文章中为了规范、清晰采用国际标准单位T。
1.光泵磁力仪
光泵磁力仪是高灵敏的磁测设备。它是以某些元素的原子在外磁场中产生的蔡曼分裂为基础,并采用光泵技术与磁共振技术研制成的。
按照量子理论,在外磁场T中,具有自旋的亚原子粒子(如核子和电子)能级简并(degeneracy)解除,分裂为一些磁次能级(或称为蔡曼能级),在光谱上的表现,就是谱线分裂,这就是蔡曼效应,蔡曼因此获得1902(第二届)诺贝尔物理学奖。分裂的能级间的能量差一般与外界磁场成正比。当粒子在分裂的能级间发生跃迁时,就会发射或吸收电磁波,其频率与磁次能级间的能量差成正比,测定这个电磁波的频率,即可测定磁场。
光泵磁力仪是目前实际生产和科学技术应用中灵敏度较高的一种磁测仪器。它灵敏度高,一般为0.01nT量级,理论灵敏度高达10-2-10-4nT;响应频率高,可在快速变化中进行测量;可测量地磁场的总向量T及其分量,并能进行连续测量。
光泵磁力仪的种类甚多。按共振元素的不同,可分为氦(He)光泵磁力仪和碱金属光泵磁力仪,共振元素有氦(He4)、铷(Rb85、Rb87)、铯(Cs133)、钾(K39)、汞(Hg)等。对碱金属而言,受温度影响较大,如铯(Cs133)元素在恒温430C左右,方可变成蒸汽状态,而只有在蒸汽状态时才能产生光泵作用。对He3、He4而言,因其本身是气体状态,无需加热至恒温,只需将它激励使其处于亚稳态,就能产生光泵作用。这些条件在设计与制造仪器时,必须予以重视。
光泵磁力仪未来的发展水平,主要取决于光泵光源及共振元素的发展程度。法国曾用可调谐的激光器代替常规的氦灯制成光泵磁力仪,由于谱线的选择性较好,激光又比氦灯的光要强,因此提高了磁力仪的灵敏度,达到10pT/Hz1/2。美国的R.Slcum博士利用二极管激光器作为氦同位素光泵磁力仪的光源,并申请了专利,与氦灯光源相比,灵敏度提高一个量级。最新的激光光泵氦(He4)磁力仪的灵敏度已突破1PT/Hz1/2的界限,达到0.4 PT/Hz1/2,而用高频激发的灯室作为光泵的光源的氦4航空磁力仪达到了20pT/Hz1/2的灵敏度[2-3]。在共振元素的选择上,为了提高精度,需要选择谱线较窄的物质,碱金属符合谱线窄的要求,但需要一定的温度(40-55℃)加热为气态。现在已经有很多利用碱金属制成的磁力仪,前不久问世的钾磁力仪,由于谱线很窄又不重叠,方位误差很小,维修方便,分辨率达到0.1pT,在取样率为20Hz时,灵敏度可达到0.014nT。因此钾光泵磁力仪在光泵磁力仪中占有优势地位。当然随着灵敏度,取样率的提高,其价格也显著提高。
2.超导量子干涉磁力仪
超导量子干涉器件(SQUID)是上世纪60年代中期发展起来的一种新型的灵敏度极高的磁敏传感器。它是以约瑟夫逊(Josephson)效应为理论基础,用超导材料制成的,是超导量子干涉磁力仪的核心。
SQUID由两个用很薄的绝缘体隔开的超导体而形成两个并联的约瑟夫松结(Josephson junction)组成。约瑟弗松获得1973年诺贝尔物理学奖,在此前一年(1972年)J.Bardeen、L.N.Cooper 和J.R.Schrieffer三位物理学家由于共同研究建立解释超导现象的BCS理论获得诺贝尔物理学奖。
SQUID可以检测非常微弱的磁场,足以检测生物电流产生的微弱磁场,人类心脏产生的磁场约为10-10T(0.1nT),人脑的磁场约为10-13T(0.1pT)。如果有一个恒定的电流维持在SQUID中,则测得的电压随两个结上相位的变化而振荡,而相位的变化取决于磁通的变化。量子理论得出的十分重要的结论是,若有一超导体环路,则它包围的磁通量只能取Φ0的整数倍。
Φ0=h/(2e)=2.0678506(54)×10-15Wb≈2.07×10-15 Wb =2.07×nT.cm2
这就是磁通量的量子化,Φ0叫做磁通量量子。如果磁场发生变化,则Φ0的个数也跟着变化,对Φ0个数进行计数就可测得磁场值。超导磁力仪是矢量磁力仪,它测量垂直于超导环路平面的磁场[4]。
SQUID灵敏度极高,可达10-15T,比灵敏度较高的光泵磁力仪要高出几个数量级;它测量范围宽,可从零场测量到数千特斯拉;其响应频率可从零响应到几千兆赫。这些特性均远远超过常用的磁通门磁力仪和质子旋进磁力仪。
量子超导磁力仪具有高精度、高灵敏度的同时不足之处也相对十分明显,超导材料自身易碎、不易加工,成本极其昂贵且SQUID磁测仪器要求在低温条件下工作、需要昂贵的液氦(或液氮)和制冷设备,这给SQUID磁测技术的广泛应用带来许多困难。在超导领域的这场竞争中,世界各国都在不断探索,超导从低温向高温的方向进步,同时生产设备和技术也持续的提高。可以预计,量子超导干涉磁力仪随着超导技术的发展将会在许多领域中得到更广泛的应用。
3.原子磁力仪
获得1997年诺贝尔物理学奖的法国物理学家科恩-唐努吉(Claude Cohen-Tannoudji)指出,原子磁力仪是通过测量所含电子自旋已被极化的原子在磁场中的进动(旋进)来实现的。最近美国普林斯顿大学物理系M.v.Romalis教授和位于西雅图的华盛顿大学物理系的J.C.Allred等研制成一种完全利用光学方法测量磁场的新型原子磁力仪,因此有人将这种磁力仪称为全光学磁力仪(alloptical atomic magnetometer)。
首先由激光器产生一定频率的偏振激光束照射气态钾原子,使钾原子跃迁到高能级产生极化,待测的外磁场使原子的极化发生变化,从而原子的磁矩绕着磁场方向进动(旋进),用另一束激光来检测上述变化。即可测定磁场,磁力仪的核心是一个充满了气态钾原子和缓冲气体氦的气室。用一束起光泵作用的圆偏振高功率的激光照射气室,钾原子最外层未配对的价电子吸收激光后进入自旋极化状态.电子的自旋指向圆偏振方向。此时用一个单频二极管激光器发出一束垂直于光泵激光束的取样激光,检测电子自旋在待测磁场中进动(旋进)时电子自旋的取向,取样激光少许离开钾的共振频率,并且当它通过极化了的气态钾时,激光偏振角会转动。转动的角度与自旋指向取样光束的角度成比例。将取样光束聚焦投射到光电二极管阵列上。即可形成磁场的图像[5]。
M.V.Romalis等指出,根据量子力学的测不准原理(uncertainty principle,或不确定性原理),原子磁力仪的极限灵敏度δB=1/(γ(nT2Vt)1/2),式中γ是旋磁比, n是单位体积内工作物资的原子数,T2是横向弛豫(自旋驰豫)时间,V是体积,t是测量时间。由上式可见,在γ、t给定的条件下,要提高灵敏度,必须让n、T2达到尽可能大的数值.而为了提高空间分辨率,V又不能取很大的数值。
M.v.Romalis教授等研制的量子磁力仪正是巧妙的提高了n与T。M.V.Romalis等把钾原子密度增加到n≈6×1013cm-3,是通常的10000倍,并加进大密度(2.9atm)的氦作为缓冲等方法,避免了自旋弛豫,即保持大的T2数值,获得提高测量磁场的灵敏度和空间分辨率的优异成果。灵敏度达到0.54fT/Hz1/2,经过改进后还可提高10-2-10-3fT/Hz1/2,空间分辨率达到毫米级。在弱磁场中工作时.这种磁力仪的灵敏度可能达到10-18T的数量级,那将比SQUID灵敏1000倍,更为重要的是这种磁力仪不需要低温条件。受M.V.Romalis教授等研制的新型原子磁力仪的启发,目前美国已经有公司提出根据频率调制磁学-光学转动原理设计灵敏磁力仪,转动率与磁场成比例,用极化测定方法测量[4][6]。
新型原子磁力仪可用于物理学基本理论的研究,高精度地质调查和油、气等矿产普查,生物磁学研究。前已提及,现在光泵磁力仪已成功地测绘出心脏产生的磁场,磁场幅度为0.1nT,人脑的磁场很弱,只有几个fT。高灵敏度的原子磁力仪,在绘制心磁图、脑磁图作医学诊断乃至是生物磁测、空间磁测,军事侦察等领域,无疑是非常合适的,但仍需进行完善才适应实际应用的需要。
结束语:
虽然现在许多小巧的新兴磁敏传感器(如霍尔磁敏传感器,巨磁阻传感器等)也十分活跃,但其精度远不能与文中涉及的磁力仪相比较。随着磁力仪的发展,磁场探测精度的提高,新兴学科--磁法应用有着广泛的发展空间。
参考文献
[1]张昌达. 量子磁力仪研究与开发近况. 物探与化探. 2005年8月第29卷第4期:283-287.
[2]SlocumRE,SchearerLD,TinP,etal.Nd:LNAlaseropticalpumpingof4He-Applicationtospacemagnetometers[J]. Jour- nalofAppliedPhysics,1988,64:6615-6617.
[3] Giles H,Hamel J,Chéron B. Laserpumped4Hemagnetometer[J]. Review of ScientificInstru ments, 2001,72(5):2253-2260.
[4] 张昌达,董浩斌. 量子磁力仪评说. 工程地球物理学报. 2004年12月第1卷第6期:499-506.
本书在物理模型和数值分析的基础上,探讨了光电子器件的设计和制模问题,重点放在应用方面。运用数字技术对物理方程求解,演示了如何设计一个新的器件或增强一些现有器件的性能,包括一些半导体的光电子器件,例如:半导体激光二极管(LDs)、电吸收调制器(EAMs)、半导体光放大器(sOAs)、超辐射发光二极管(sLEDs)以及它们的集成系统。
本书共12章,分成三部分,第一部分由第2―5章组成,讲述模化光电子器件时,物理方程的推导和说明:1.引言;2.光学模型;3.材料模型I:半导体的带结构;4.材料模型II:光学增益;5.载体传输及热扩散模型。第二部分由第6―9章组成,讲述控制方程的数字求解技术,以及如何将这些求解技术应用于器件的模拟:6.光学方程式的求解技术;7.材料增益方程的求解技术;8.载体传输及热扩散方程的求解技术;9.器件性能的数值分析。第三部分由第10-12章组成,给出了光电子器件的实际设计、模拟案例:10.半导体激光二极管的设计及模型的案例;11.其它单个光电子器件的设计及制模案例;12.集成的光电子器件的设计和制模案例。
本书作者李洵是加拿大麦克马斯特大学(McMaster University)电子和计算机工程系的教授。他1988年在北方交通大学获得博士学位,至今共撰写了160篇科技论文,并创建了阿波罗光电公司,开发了该公司的一个主要软件产品“高级激光二极管模拟器”。他是OSA及SPIE成员,并且是IEEE的资深成员。
关键词:“信息存储与检索”;管理科学专业;课程教学
一、培养目标
课程培养目标是为专业培养目标服务的。同一门课程可能在不同的专业都有开设,但是因为专业培养目标的不同,课程培养目标会存在差异。
1.
专业培养目标
管理科学专业主要培养掌握管理科学基本理论,能用先进的管理思想、系统方法、数量模型和信息技术去分析企业活动和社会经济活动的高级管理决策人才和技术人才。为了达到这个目标,学生必须具有宽厚扎实的数理、信息技术、系统科学等方面的基础知识,以及会计与财务、生产与计划、市场与销售等经营方面深入实用的专业知识。
2.
课程培养目标
“信息存储与检索”是管理科学专业的核心课程之一,主要培养学生运用现代信息技术及相关原理进行信息存储与检索,解决实际问题的能力。通过本课程的学习,要求学生能了解信息资源的存储方式,熟练掌握现代常用的检索工具,能根据查找资料种类的不同对资料进行精确查找,增加学生查找信息资源的手段,提高学生获得知识的能力。
二、教材选用
1.
教材选用原则
目前同时涉及信息存储与信息检索两方面内容的教材主要有几个版本:①王知津主编的《信息存储与管理》,该教材详细分析各种信息检索模型、分别介绍文本、多媒体、Web信息存储与检索等,[1]专业性较强,侧重于“技术”类。②张帆编著的《信息存储与检索》,该教材系统阐述现代信息存储与检索的基本原理与技术,重点介绍文本、多媒体、联机、因特网信息存取系统及其检索方法,带有普及性质,侧重于“方法”类。③李四福、叶玫编著的《信息存储与检索》,该建材侧重于“利用”,强调信息检索在科学研究、论文写作、科技查新中的作用。管理科学专业学习“信息存储与检索”的目的是运用检索方法收集资料解决问题,因此教材选用原则重在实用。
2.
教材内容
不同教材因为侧重点不同,内容也不尽相同,但是一般都包括三个大的部分:基础知识部分、信息检索部分、信息利用部分。基础知识部分主要介绍:信息检索的意义和作用,信息资源的类型和特征,原始文献的获取方法、途径及步骤等。信息检索部分主要包括:联机检索、光盘检索和网络信息检索、特种文献的检索方法与途径等。信息利用部分包括:科学研究与开发中的信息用户及信息需求、学位论文的基本构型和要素、论文写作等。
三、教学方法
1.
理论与实践相结合
在“信息存储与检索”的教学中,要坚持理论与实践相结合的原则。一是与学生的实际生活相结合,让学生觉得这门课程有趣。学习基础理论知识是比较枯燥的,因此选择一些与学生生活息息相关的问题,有助于提高学生学习的兴趣与积极性。比如,在介绍信息检索的作用时,学生可以检索查找恋爱攻略与技巧,提高恋爱的成功率;检索了解明星的励志故事;检索了解一些民间风俗的由来。二是与实际工作相结合,让学生觉得有用。可以练习实践运用信息检索方法,解决科研工作、企业生产运作及商务贸易活动中碰到的各种问题,让学生从中感觉到信息存储与检索的价值,并在解决问题的过程中提高信息存储与检索的能力。比如,针对学生在论文写作与项目研究过程中对中外文献资料的需求,引导他们去使用中英文学术搜索引擎,如CNKI,Web of Science等,让他们在完成学习与研究任务的同时,掌握检索的技巧,感受到检索的作用与价值。
2.
案例教学法
案例教学法是通过一个具体教育情景的描述,引导学生对这个特殊情景进行讨论的一种教学方法。通过案例教学这种“做中学”的形式,可以让学生在分析问题、解决问题的过程中获得知识,提高能力。比如,在讲授“检索提问式制定”这个知识点时,可以让学生结合“激光治疗近视眼”案例完成“近视眼手术治疗方面的研究成果”的检索。学生为了完成这个问题,必须认真分析检索课题所包含的概念,充分考虑近义词、同义词、上位词、下位词,灵活进行内容概念的转化,从而获得检索词,并选择合适的逻辑运算符制订检索提问式,还要根据检索目标和命中文献的有无或多寡而调整其查全率与查准率。当学生完成这个案例时,就已经能比较熟练地掌握了信息检索的策略和技巧。案例教学法的关键在于:案例的选取要具有新颖性和针对性,案例的分析要具有逻辑性[2]。
四、建议
1.
加强信息道德教育
随着互联网的普及,各种不良信息在网络泛滥,信息侵权和信息犯罪时有发生。因此,本课程不仅要教学生存储和检索的原理和技能,而且要教学生在信息的创造、使用和传播中遵守信息法规和信息道德。信息道德是整个信息活动中的道德,它是调节信息创造者、信息传递者和信息使用者之间关系的行为规范的总和。通过加强信息道德教育,让学生在使用和传播信息的过程中,自觉遵守信息法律和信息道德,坚决抵制各种违法、迷信、、虚假的信息,尊重知识产权,尊重个人隐私,以时代的信息道德准则规范个人行为,承担一位公民应尽的社会责任和义务。
2.
完善课程教学内容
尽管目前在市场上有几本具有代表性的“信息存储与检索”的教材,但由于使用对象的不同,加上信息存储和检索技术尚处于发展之中,因此至今尚无得到广泛认可的教材。教师在教学的过程中,可以根据所授对象培养目标的定位,选择一本教材为基准,同时博采其他教材之所长,不断完善和丰富教学内容。对管理科学专业而言,“信息存储与检索”是一门应用型很强的工具类课程,在日常生活和工作中被广泛使用,拥有很丰富的实训素材,因此可以加强本门课程的实训体系建设,让教学内容更加科学合理。
3.
探索课程教学模式
目前,尽管老师们在讲授这门课程时,会有意识地引进一些案例,引导学生运用理论去实践一些他们感兴趣的话题,但是总体来讲,传统的教学模式并没有从根本上得以改变。实际上,目前一些比较流行的教学方法和教学模式也可以引入到“信息存储与检索”的教学中来,如翻转课堂和慕课。翻转课堂与传统的课堂教学模式完全不同,学生通过现代信息技术辅助在家或宿舍完成知识的学习,而课堂变成了老师与学生、学生与学生互动的场所[3]。慕课简单点说就是大规模的网络开放课程,其所持信念是“将世界上最优质的教育资源,送达地球最偏远的角落”[4]。那么,我们是否能集中优秀教师资源,把信息存储与检索的基本理论和技能录制成视频,学生可以利用课外时间在宿舍或图书馆完成视频学习,然后把课堂时间用于解决学生在学习中碰到的各种问题,这样既解决了教师常常感觉课程学时不够的问题,也体现了课堂教学中教师的主导地位和学生的主体地位。
参考文献:
[1] 张继燕,欧莹元.关于信息管理与信息系统专业《信息存储与检索》课程的研究[J].软件,2013(05):155―156.
[2] ,李光辉. 《信息存储与检索》课程案例教学探索[J].安徽中医学院学报,2008(04):54―55.