发布时间:2022-03-23 10:03:11
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的数学思维论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
一、定势思维的内涵及创造思维的形成
1.定势思维的内涵及在教学中的表现定势是有机体的一种暂时状态。定势思维是指人们按习惯的、比较固定的思路去考虑问题、分析问题,表现为在解决问题过程中作特定方式的加工准备。具体地,定势思维主要有3种特性及表现方式。
①趋向性。思维者具有力求将各种各样问题情境归结为熟悉的问题情境的趋向,表现为思维空间的收缩。带有集中性思维的痕迹。如学习立体几何,应强调其解题的基本思路:即空间问题转化为平面问题。
②常规性。要求学生掌握常规的解题思想方法,重视基础知识与基本技能的训练。如学因式分解,必须掌握提取公因式法、十字相乘法、公式法、分组分解法等常规的方法。
③程序性。是指解决问题的步骤要符合规范化要求。如证几何题,怎样画图、怎样叙述、如何讨论、格式摆布,甚至如何使用“因为、所以、那么、则、即、故”等符号,都要求清清楚楚、步步有据、格式合理,否则就乱套。
定势思维通常有两种形式:适合定势思维和错觉定势思维。前者是指人们在思维过程中形成了某种定势,在条件不变时,能迅速地感知现实环境中的事物并作出正确的反应,可促进人们更好地适应环境。后者是指人们由于意识不清或精神活动障碍,对现实环境中的事物感知错误,作出错误解释。在教学过程中,教师要有目的、有计划、有步骤地帮助学生形成适合定势思维,防止学生形成错觉定势思维。
2.创造思维的形成过程
创造思维是指个人在头脑中发现事物之间的新关系、新联系或新答案,用以组织某种活动或解决某种问题的思维过程。它要求个人在已有知识经验的基础上,重新组合产生新的前所未有的思维结果,并创造出新颖的具有社会价值的产物。创造思维的产生因人而异,没有固定的模式。一般经历4个阶段。①准备阶段。这一阶段的主要任务是搜集资料和有关信息、储存经验,以便为创造做准备。②酝酿阶段。这一阶段的任务是消化、传换信息,在头脑里反复进行象征性的尝试,重新组合概念。③大悟阶段。这时头脑中事物各部分仿佛突然接通了,发现了新关系、新联系,构成了新形象、新假设,得出了新结论。④验证阶段。将产生的思维结果付诸实施。
集中思维和发散思维是构成创造思维的必要成份,逻辑思维是创造思维的基础,灵感的形成是创造性思维的关键。定势思维是夹杂在各种形式的思维活动中起奠基的作用。教师在教学中要认真把握,注意培养。
二、定势思维与创造思维
1.定势思维是集中思维活动的重要形式
课本内容是学生学习的根本所在,它是前人经验、智慧的结晶,从内容到方法,都有严格的规定,它需要利用固有经验,按一定模式去解决问题,而这正是完成基础知识和基本技能教学任务的需要。
2.定势思维是逻辑思维活动的前提
逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。数学教学中主要的思维活动是逻辑思维。如明确定义、推导法则、公式、证明定理、运用知识解决问题等活动,时时刻刻都在运用逻辑思维。在进行逻辑思维时,要经过一步一步的分析,多环节、多步骤地逐步将条件转化为结论,每一步都要“言必有据”并遵循推理的法则。这正是定势思维所要求的。
3.定势思维是创造思维的基础
定势思维一方面表现为思维空间的收缩,另一方面,思维者力求扩充已有经验、观念认识的应用范围,表现为思维空间的扩散。因此,定势思维又成为推动思维展开的动力。从这个意义上讲,定势思维可以成为类比、归纳、联想等发现手段的基础。
4.定势思维与创造思维可以相互转化
定势思维与创造思维是相辅相成的两个概念,而非对立。它们总是互相依赖,互相促进,并在一定条件下可以相互转化。当定势思维积蓄到一定程度时,就会由量变引起质变,转化为创造思维。每一次转化都使二者同时进入一个新的更高水平阶段,如此进行,人们的思维能力才能得到不断发展和提高。
5.定势思维对形成创造思维的消极作用
在强调定势思维积极作用的同时,我们也应该看到它的消极作用,错觉定势思维在数学教学中的影响是客观存在的。不少学生总是习惯于搬用已有的经验,被动记忆、机械模仿、生搬硬套,表现出思维的依赖性、呆板性,这些均是产生错觉定势思维的温床。如用6根火柴搭成4个三角形,这些三角形的每边都是一根火柴那么长。学生解决此问题感到棘手,怎么摆弄也摆不出4个三角形,其原因正是“平面错觉定势”的影响。
三、几个应该重视的问题
1.要重视定势思维自身形成的过程
数学教学的目的在于建立符合数学思维自身要求的具有哲学方法意义的定势思维。这种定势不仅是数学观念系统的重要组成部分,而且也是数学思维能力的具体体现。定势思维的作用不在于定势思维本身,而在于定势思维如何形成。例如,概念的教学,如果就概念讲概念,草率地把概念硬灌给学生,那么只能形成僵硬的概念定势;如果充分调动学生学习的积极性,从实际事例和学生已有知识出发,通过分析比较,引导学生步步深入地揭示概念的内涵和外延,抓住事物的本质,那么学生头脑中建立起来的就是积极的、活跃的“概念定势”,形成适合定势思维。上述两种教法,均是建立“概念定势”,究其过程是有本质区别的,我们在教学中应加以重视。
2.要淡化所谓的“解题规律”
在数学教学活动中,配备适量及适当的习题进行训练是必要的,但是过分地强调并不基本的解题技巧、方法和观点,突出所谓的“解题规律”是不科学的,无疑会使学生形成呆板思维。更有甚者,在学生未能理解的情况下,让他们死记一些解题的诀窍、程序或口诀,这是造成错觉定势思维的重要原因。有一位初中数学教师,将几何题分成几种类型,让学生死记硬背其规律,应付考试,效果不错,得到了部分家长的“称赞”,某种程度上助长了这种错误做法,这也是题海战术长盛不衰的一个重要因素。这种教学方法尽管在某些场合可以暂时取得良好的成绩(分数),但从长远来看,不利于学生思维能力的发展。难怪爱因斯坦曾说过:“现在的教学方法扼杀了人们研究问题的神圣好奇心,在学校里,甚至觉得自己象头野兽一样,被人用鞭子强迫着吃食!”这种状况确实是我们教育的悲哀,这不是在培养和发展人的创造思维能力,而是在“铸造”机器人。
3.正确处理好定势思维与创造思维之间的关系
创造是定势的突破,同时又是定势的产物,并非某些文章中所归纳的,定势思维是制造错误的发源地。消除定势思维的消极作用的关键在于克服错觉定势思维,发展适合定势思维。众多文章过多渲染定势思维的消极作用,无形中给中学数学教学带来了某些不良影响。如有的教师只重视创造思维能力的提高,不重视打好基础,导致学生成绩严重两极分化;有的脱离《大纲》和课本的要求,违背学生的认知发展规律,追求“高难度、高技巧、妙方法”,造成多数学生如入迷雾,不知所措,非但没有形成创造能力,而且必须学的知识也没能掌握。因此,创造思维的训练要有度,教师要注意把握学生掌握知识的阶段性、连贯性和贯力性,合理处理定势思维与创造思维之间的关系。促进定势思维的形成——突破——形成的良性循环,达到提高学生创造思维能力的目的。
参考文献:
1.张焕庭赵兴中《心理学》,江苏教育出版社,1986年6月
(一)改进教学手段,强调实践教学
教师作为教育工作的直接参与者,对提高学校的教学质量发挥着重要的作用,这就需要教师具有实践教学的教育理念,既要精通理论知识和实践能力,又要亲自指导学生实践,培养学生实践能力。在教学模式上,打破传统的讲授教学模式,突出教学内容的实用性,让实践教学模式渗透到学生的财经学习过程中,使学生能够充分利用所学知识提升自己的职业技能。
(二)创新实践教学手段
学校应该紧跟时展,引进新的教学手段,把传统的讲授教学方式逐步转变为运用多媒体、电子教程、投影仪等现代化教学方式上来,摆脱以往学习的枯燥乏味,活跃课堂气氛,提高学生对于所学课程的学习兴趣。师生之间加强交流沟通,促进教学质量的改进。再者,中职院校应充分利用已有的教学资源,提高教学效率。建立财经类综合实践实训基地,不断进行实训基地各种教学制度的完善,明确自身管理职责,进行综合实训基地的统一规划和管理,实现规范、科学的教学管理[3]。
(三)强化教师团队建设,培养学生综合实践能力
在学校教学过程中,教师是教学活动的组织者和领导者,强化教师团队建设是提高学生实践能力的关键。在日常实践教学过程中,应设立专业对口的实训项目或是与校企单位进行合作,经过专业教师的指导,实现学生真正上岗实践,通过所学理论在实际工作过程中的运用,能够加快学生理论知识与实践能力的整合,增强学生自身对财经类工作岗位的认识,树立积极的职业观和价值观。实践上岗教学模式,能够培养学生的探索实践能力,能够在实际的实践工作过程中,按照企业规定严格约束自己的行为,培养更多符合社会需要的实践型人才。通过上岗实践教学使学生在学习态度上有了重大的转变,体验到在企业中生存的基本法则,这种压力激励着他们不断进取,使得学生的探究、分析问题、解决问题的能力得到了很大程度的提升[4]。
(四)结语
在教学中培养学生的概括能力,教师首先应提供足够直观的背景材料。“直观”包括学生熟知的知识、经验、手段、工具、策略等,这是材料的“质”;“足够”的材料,是准确而完整地概括所必需的最少例证,这是材料的“量”。
有了背景材料的质、量保证,就为学生科学地概括提供了充分条件。
其次,要恰当变换问题的具体情境。面对一种思维情境,没有显而易见的解决方法,这样的情境就是问题,问题解决就是从已知状态到目标状态的运动过程。
小学生概括的肤浅性,往往表现为从问题次要的、表面的形式上去观察和比较,而对问题主要的、本质的东西视而不见。针对这种现象,教学的,教师应当先显示标准的常式,再出示非标准的变式,即先揭示概念的内涵后揭示概念的外延。
提供的变式材料,一定要注意改变事物的非本质属性和非特定情形,不要改变事物的本质属性,这样能使学生的概括集中指向事物的本质要素,不致于干扰和阻碍概括的过程。
第三,发挥解题模式的诱发功能。目前,小学数学界对题型分类和解题模式一直争论不休。现行统编教材编排更是十分忌讳模式或类型。然而无论怎么改变,模式却是客观存在的。事实上,一个公式、一条定律、一道范例,都自然成了学生思维的模式。就连最简单的20以内的进位加法中的“凑十法”也是地道的模式。
模式就是可供模仿的原型。在思考问题的,任何人总要把新问题归结成记忆力已知的认知图式或解题模式。因此,在解数学问题时,在学生进行数学概括时,教师应适时引导学生联想相关的解题模式及其要素、在模式的指导下进行有的放矢的思维,这样可以缩短概括的过程,提高概括水平。
第四,教会学生概括的主要方法。简单地讲有以下4种:
1.从观察和比较中概括。
要让学生养成耐心、全面地观察,精细、认真地比较的良好习惯,特别是要能从相同中发现不同点,或从相异处找出相同点。让学生经常自问:有哪些相同的地方?不同处在哪里?
2.从类比和归纳中概括。
类比是从特殊到特殊的推理,归纳是从特殊到一般的推理,这两种推理的结论,都必须进行概括。类比实质上是从提供的原型中找到模式,再利用模式获得新的概括,如把比例尺的关系式同百分数应用题的数量关系式类比,可以发现它们的相同点:比例尺相当于百分率,图上距离相当于标准量,实际距离相当于比较量,这样可合二为一获得新的概括--比例尺应用题实质上可归结为百分数应用题的解题思路。并且这样解题更加简捷明快。归纳是建构模式中不可能少的环节,演绎则是对模式的具体应用,由于教材封闭性的特点,大多数内容只能以演绎体系呈现,实质上就减少了概括的过程,通过归纳,不仅可以复原结论的形成过程,而目可以在归纳中学会概括一类事物的本质属性,提高概括能力,扇形面积公式就是通过旧纳而概括成的。
3.从直观和抽象中概括。
直观的板书、演示、操作等,为小学生的概括减少了难度,定律、法则等内容较多的结论,可借助板书帮助概括。在抽象中概括,主要指联合各独立的数学条文,形成包摄程度更高更为一般的概括、如从分数乘以整数、一个数乘以分数以及带分数乘法中概括出分数乘法的统一法则就属这一情形。
4.从小结和评价中概括。
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:"你发现了什么?"学生们纷纷发言:"小球旋转形成了一个圆"小球始终绕着中心旋转而不跑到别的地方去。"我还看见好像有无数条线"……¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到"无数条线"则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学"分数应用题"时,有这么一道习题:"修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工
程还要多少天?"就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)]÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
一、着眼于“疑”,是读与思的前提与基础
数学是比较抽象的一门基础科学,要想使儿童有很强的求知欲,必须激发他们的兴趣,从而使之积极、主动地阅读和操作学习材料,并促进思维发展。课堂中我常抓住契机,巧妙设疑,利用学生好胜的欲望,为读与思做好铺垫:例如在教《长方体和正方体的表面积》一课时,我先拿出长方体的教具,然后把它展开,用手演示一下长方体的表面有多大,接着设疑:“什么是长方体的表面积呢?”学生们看着刚才我手中还是立体图,转眼间成了平面图形,就想它们之间的关系,那到底什么是长方体的表面积呢?思考片刻后,同学们纷纷举手发表自己的意见,并且想急于知道自己所说的是否正确。这时,我就说:“同学们,请翻开书看课本上如何讲的?是否和你所说的一样?”学生们此时对数学书产生了浓厚兴趣,轻声地读出了长方体和正方体表面积的概念。
因此,“读’是理解的前提,“疑”是思维的开端。教学中围绕知识要点,制造悬念,能诱发学生迫切阅读的动机。
二、着力于“导”,是读与思的关键与重点
课堂中,教师主导不仅是用恰当的方式启迪学生的求知欲,更要引导学生读例题、读思维过程进行自学,善于抓住学生的反馈信息进行思维训练,通过训练让学生自己学会所学的内容,让全体同学的智力在原有基础上有所提高。
例如在教《较复杂的百分数应用题》时,根据例题是求一个数比另一个数多百分之几,我给学生出了三个思考题:(1)该题题意是什么,找出条件和问题;(1)题中的关键句是什么,该句说的什么意思:(3)如何列式解答,是否有不同的方法,学生通过这三道思考题自学例题,深刻理解例题中所阐述的思维过程,并四人小组讨论,一一解答问题,也层层深入地思考,根据教师的导读,学生条理了思维过程,正确列出算式,而且用不同的方法解答了该题。
我在他们的回答过程中进行点拨,重点突出、难点突破、引导学生自己发现规律;求一个数比另一个数多百分之几就是求一个数比另一个数多的量是这个数的百分之几。所以,要使学生思路条理,必须在教师的主导下,以读为本、读出过程、读出思路、读出方法。
三、着手于“练”,是读与思的巩固与升华
课堂练习是巩固知识,加深理解,形成技能技动的最好途径。而在练习时,读题、审题,不仅是良好的学习习惯,最重要的是为分析、综合,辨别等思维方式奠定了基础。因而,着手于“练”,是读与思的巩固与升华。
例如在《长方体和正方体的表面积》的练习中,设计了求火柴盒的外壳、内壳的表面积、学生读练习题时,要注意图中所求的内容进行区分,然后思考火柴盒内壳、外壳分别是几个面,并且将如何求,才可动手来做。在《稍复杂的百分数应用题》中,我将例题租加变化,将“增加了”改成“增加到”,让学生读出不同之处,再做出正确答案,这样就提高的学生解题的灵活性。
一、提出问题进行补充条件的练习。
简单应用题一般都有两个已知条件和一个问题。这种形式的练习的具体做法是:提出一个问题,要求学生补出必须具备的两个条件,而且补出的条件的数据要合理。
二、根据已知条件提出多个问题的练习。
例如结合已知条件:“同学们参加搬砖劳动,五年级5个班,每班搬砖650块,四年级4个班,每班搬砖596块”。在教师启发下,同学们提出了这样9个问题:
1、一共有几个班参加劳动?
2、五年级共搬了几块砖?
3、四年级共搬了几块砖?
4、四、五年级一共搬了几块砖?
5、五年级比四年多搬了几块砖?
5、四年级比五年级少搬几块砖?
7、五年级与四年级每班相差几块?
8、四、五年级9个班平均每班搬几块?
9、四年级再搬多少块就和五年级搬的同样多?
以上两种形式的练习能够帮助学生初步应用分析、综合的逻辑思维的方法,掌握初步的逻辑推理。第二种形式的练习还能发展学生的发散思维,培养学生思维的灵活性。
三、根据应用题的条件和问题,设计一系列问题,进行口述练习。
解答应用题的关键是解题思路。最常用的解题思路有分析法和综合法。本人在复合应用题的教学中分别由从问题出发推想到已知条件的逆推思路与从已知条件出发推想到问题的顺推思路,设计一系列问题,让学生进行口述练习,帮助学生学会用分析法和综合法解题,初步掌握逻辑推理。实践证明,这种练习能获得较好的效果。
例如:“中心小学二年级有4个班,每班40人,三年级有3个班,每班36人,二、三年级一共有多少人?”
用分析法来分析,提出以下问题请学生回答。
“这道题要我们求的问题是什么?”
“要求二、三年级一共有多少人,需要知道哪两个条件?”
“二、三年级各有多少人,题目有没有直接告诉?”
“从题目的已知数中能算出二年级有多少人吗?根据哪两个条件可以算出?”
“三年级有多少人怎样算呢?”
“这道题要先算什么,后算什么?”
作综合法来分析,提出下列问题请学生回答。
“这道题告诉我们哪些条件?”
“知道二年级有4个班,每班40人,可以求出什么?”
“知道三年级有3个班,每班36人,可以求出什么?”
“知道了二、三年级各有多少人后,可以求出什么?”
“这道题应先算什么,后算什么?”
四、给出一些有多余条件的应用题,让学生根据问题正确地选用已知条件。
这一类型的练习,不但可以促使学生更好地理解数量之间的依存关系,而且还可以提高学生比较、判断能力。
例如:一支铅笔的价钱是2角,一块橡皮擦的价钱的6分,一个铅笔刨子的价钱是3角,一瓶墨水的价钱是1元2角,一支钢笔的价钱是3元8角。问:
1、买一支钢笔与一个钢笔刨子要多少钱?
2、买3支钢笔与一块橡皮擦要多少钱?
3、买一支钢笔与一瓶墨水要多少钱?
4、买一瓶墨水比买3支钢笔多多少钱?
5、买一个铅笔刨子的钱可买几块橡皮擦?
五、根据式题编造文字题的练习。
例如:式题248÷4=62从意义上来编造的文字题有:
1、把248平均分成4份,每份是多少?
2、248里面有几个4?
3、248是4的几倍?
从术语上来编造的文字题有:
1、被除数是248,除数是4,商是多少?
2、除数是4,被除数是248,商是几?
3、已知两个数的积是248与其中一个因数是4,求另一个因数是多少?
从读法上来编造的文字题有:
1、248除以4得多少?
2、4除248是多少?
3、248与4的商是多少?
通过这种形式的练习,学生不但进一步理解除数、被除数、商的概念,弄清它们之间的关系,而且还掌握初步的抽象、概括思维方法。
除了以上介绍的几种形式的练习外,经常让学生进行“一题多解”、“一题多变”的练习。这些类型的练习,有利于拓宽学生思路,培养学生的思维的灵活性和敏捷性。在小学数学教学中,在培养学生的初步逻辑思维能力的同时,应注意发展学生的非逻辑思维,使学生在小学阶段就能形成良好的思维品质。
关键词:创造思维观察想象求异思维思维灵感
所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?在教学实践中,我从以下几方面进行了探索。
一、指导学生认真观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,我做到给学生提出明确而又具体的目的、任务和要求。其次,在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,努力培养学生浓厚的观察兴趣。
例如教学“圆柱体的体积”时,我引导学生进行动手实践,将圆柱体拼割成一个近似长方体,先将圆柱沿底面平分割成8等份,对拼成一个近似长方体,学生则观察割拼过程。
我向学生提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”
学生回答后,我接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。再问:“这次是不是更象长方体了?”
这时我启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”在学生回答的基础上,我再总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”
然后我再及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”
“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”我再问:“这个长方体同原来的圆柱体相比什么发生了变化?”学生经过观察,很快回答:“这个长方体的表面积同原来圆柱体的表面积相比发生了变化。”我再问学生:“这个长方体的表面积同原来圆柱体的表面积相比较是增加的还是减少的?增加或者减少了哪几个面?”学生很快能回答:“长方体比圆柱体增加了两个侧面,每个侧面的长和宽是圆柱体的高和底面半径。”
在学生掌握了圆柱体的体积计算公式后,我出示了这样一题:“一个圆柱体的高是5厘米,将这个圆柱体割拼成一个长方体后,表面积比原来增加了20平方厘米,求这个圆柱体的体积。”学生因为刚才经过观察,很快能求出这个圆柱体的底面半径为:20÷2÷5=2(厘米),这个圆柱体的体积则为:3.14×2×2×5=62.8(立方厘米)。
这样引导观察,使学生不但掌握了知识,而且还提高了学生的观察能力和学习能力。
二、引导学生数学想象
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象要有扎实的基础知识和丰富的经验的支持;要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力;要有执着追求的情感。因此,在教学实践中,我们培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底伪的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
又如,在学习“能被3整除的数的特征”时,我先出示一组数12154、718、63、398、570、1495、1506、321。提问:请同学们判断一下,这些数中哪些能被2整除?哪些能被5整除?当学生完成这一复习过程后,我再问:那么这里的数哪些能被3整除?学生通过口算很快就说出了正确答案。此时,我诱发学生猜想:“其实能被3整除的数也有自己的特征,请大家猜一猜,它们有什么特征?”于是,学生思维的闸门打开了,情绪被完全调动起来了。他们尽情地表述自己的意见,有的说:我猜个位上的数字是3、6、9的能被3整除。有的说:我猜一个数各位上的数字之和是6、9、12的能被3整除。也有个别学生猜想到“一个数的各位数字之和能被3整除,这个数就能被3整除。”不管学生的猜想是对还是错,都是难能可贵的,因为这是学生自己在探索知识过程中迈出的可喜的第一步。
三、鼓励学生求异思维
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,我出示了这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/9,照这样的速度,修完余下的工程还要多少天?”我引导学生从不同角度去思考,用不同方法去解答。
用上具体量:
解一:3600÷(3600×1/9÷4)-4
解二:(3600-3600×1/9)÷(3600×1/9÷4)
解三:4×[(3600-3600×1/9)÷(3600×1/9)]
思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”:
解四:1÷(1/9÷4)-4
解五:(1-1/9)÷(1/9÷4)
解6:4×(1÷1/9-1);
此时学生思维处于高度活跃状态,又有同学想出:
解七:4÷1/9-4
解八:4×(1÷1/9)-4
解九:4×(9-1)。
这样使学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发学生思维灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,我注意及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,在教学了“折扣”后,我出示了这样一题:“某商场运来300台洗衣机,每台售价500元,每售出1台可得到售价15%的利润,由于其中的20台有些破损,按售价打八五折出售,这批洗衣机售完后实得利润多少元?”
这题的一般是:先求出300台洗衣机共获利润多少元,再求出20台洗衣机少得利润多少元,然后求出300台洗衣机售完后实得利润多少元。
综合式:500×300×15%-500×20×(1-85%)=22500-1500=21000(元)
这样解答显然较为复杂,我启发学生能否找到更好的解法,学生经过分析,很快找出了更巧妙的解法:因为1台洗衣机可得15%的利润,那么每台洗衣机的成本就只占售价的(1-15%);而其中的20台按售价打八五折出售,说明这20台是保本出售,所以,这批洗衣机所得利润就是“300-20”台洗衣机所获得的利润。
我就教学工作中的体会谈谈自己的看法。
一、唤醒创新意识,塑造创新品格
创新意识是一种潜伏在人的生理和心理层面的特质,是任何一个人都“与生俱有”的,关键在于是否被挖掘出来。长期以来,由于受传统教育思想影响,教学上只重视了知识传授,忽视了创新意识的培养,因而也抑制了学生创新能力的发展。因此我注重树立学生的自信心,使学生觉得“我能行”、“我能创新”,让学生们放开自己的思维,充分展开想象,勤于动脑。
同时,我还注意让学生克服懒惰心理,勤动脑,多探究,运用科学家的故事激发学生的探索兴趣,引导学生体会科学家们献身科学,生命不息,攻关不止的高尚情操,从而培养起学生崇尚科学,勇于创新的热情。
二、改变师生之间的地位,创造良好的氛围我国伟大的教育家陶行知先生在《创造的儿童教育》
中指出:“创造最能发挥的条件是民主。”可见,要点燃学生心中的智慧火花,培养创新精神,教师必须努力创造平等、民主的教学氛围,放手让学生在学习活动中去讨论、观察、思考、比较、分析、想象、探索、发现。传统的教学模式下学生学得的知识是机械的,僵化的,没有一点主动性,更谈不上创新,这是不行的。采用开放式教学,充分体现学生的主体作用,把课堂这个空间让给学生,才能使学生敢想、敢说、敢问、敢做。例如:在教学九年义务教育六年制小学教科书第八册《除法意义》这一节课时,许多学生从开始考虑问题时就在议论,既然减法是加法的逆运算,除法就是乘法的逆运算。我一听到议论,马上引出自学题,以四人为一小组讨论:为什么每一道乘法算式都能写出两道除法算式呢?为什么只要知道积和其中一个因数就能求出另一个因数呢?
除法的计算和减法的计算思路一样吗?学生们在讨论中互相启发,互相帮助,既保证学生基础知识的学习,又开发了学生的智力。作为教师,我们不能把学生看成是一个空瓶子,一个需要加工的粗胚,任由教师灌输,加工。
三、提供创新空间,给予创新机会
学生一旦有了浓厚的创新兴趣,产生了创新欲望后,教师如果不给他们提供机会,不给他们一个得以展示的空间,则不能使创新教育真正落到实处。因此教师要大胆放手,充分相信学生的能力,给学生的创新开绿灯,架桥梁。特别是在课堂教学这个主渠道中,我改变了传统的课堂教学结构,根据教材的难易程度和学生的实际情况,尽量把学生推到舞台上,让学生唱主角,自主地学习,成为学习的主体,参与学习的全过程。教师该讲的讲,该评的评,能不讲的不讲,能不评的不评。难度较大的内容,在尽可能地分解知识,分散难点的基础上,引导学生去探索;一些较容易的内容,则尽量放手让学生自己去学习,去讨论,有无法解决的困难时,教师才参与;而有些非常简单的内容,则放手让学生自学。最大程度地给学生创新的机会,提供创新的空间,让他们去展示,去发挥,教师只起到铺路架桥的作用。
四、动手操作是发展创新能力的重要手段
作为教师,在备课中要为学生创设更多的动手操作的机会,既满足他们好动,好奇,好表现的欲望,同时在动手操作中培养他们勇于探索,不怕挫折,敢于创新的精神。例如:在教学九年义务教育六年制小学教科书第九册面积的计算这一章时,我要求学生带齐学具,剪刀,硬纸,不管是教学平行四边形、三角形、还是梯形面积,都让学生自己剪拼,剪拼中学会组合,使一些不容易看出的图形面积,拼凑成以前学过的图形面积。课堂异常活跃。后来上组合图形面积时,学生们更是八仙过海,各显神通,想出了很多种方法解决实际问题。通过这样的动手创新活动,既激励了学生的学习兴趣,又调动了学生的积极性。总之,让学生动手,动脑,才能有效地培养学生创新意识。
五、通过多种形式训练创新能力