首页 优秀范文 铁路通信论文

铁路通信论文赏析八篇

发布时间:2022-04-27 19:28:23

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的铁路通信论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

铁路通信论文

第1篇

1现状及问题

传统车载通信设备主要是无线列调机车电台,设备组成简单,承载业务单一,机车交路一般在本铁路局管内进行运用,为了动态掌握机车电台运用信息,维护单位使用“机车电台运用揭示牌”进行运用管理,基本能够满足运用管理要求。

随着铁路无线技术发展,GSM-R、CIR、客列尾、货列尾、列车接近预警、列车防护报警等新技术、新设备、新业务的大量应用,车载通信设备的装备数量快速增长。以南昌铁路局为例,全局1274台机车、58列动车组和323台自轮运转设备均加装了CIR设备,投入使用的CIR设备近2000台。CIR设备结构复杂,承载业务多,是当前铁路最主要的车载通信设备,其关键组成部件达10余种,有主控单元、G网语音和数据单元、450MHz列调单元、防护报警单元(LBJ)、操作显示终端(MMI)、存储记录单元、合路器和多频段天线等。目前车载通信设备运维管理中存在的主要问题:①传统车载通信设备动态运用揭示牌更新不及时,数据不准确,与实际运用存在较大偏差;②设备或板件故障修复后,难以换回至原车使用,定机、定台(板件)实现困难;③设备软硬件版本靠人工台账记录,管理手段落后;④机车、动车组频繁调整配属,车载通信设备随车调整配属,车载通信设备的技术履历管理困难;⑤现场无线检测作业与无线检修作业之间检修信息未能实现共享,信息交互困难,同时对车载无线设备的故障或状态跟踪困难;⑥设备到期按整机报废处理,管理粗放,部分未到使用寿命的板件也一并报废,整机和关键部件的使用寿命不能按实际寿命区别管理,造成投资浪费。

随着机车交路不断延长,车载通信设备的运用管理和动态质量依靠传统的管理手段和模式,难以实现设备的精细化管理。

2解决方案

采用物联网、计算机网络、互联网应用、无线局域网、RFID、条形码、数据库等现有成熟技术,结合车载通信设备出入库自动检测系统平台及既有运维管理模式,构建车载通信设备动态运用管理系统,解决无线车载通信设备运维管理过程中存在的主要难题,实现设备整机和关键部件的智能化、精细化、寿命化、定机定台(板件)管理目标,最终达到充分挖掘设备潜力,降低设备更新改造成本。车载通信设备的动态运用管理系统主要包括后台数据库处理服务器、现场客户终端、现场手持终端和RFID扫描检测设备等,网络结构如图1所示。

系统采用B/S与C/S混合工作模式,在铁路局(或通信段)设置服务器,铁路局、通信段、车间、工区用户按分层分权管理,分配操作权限,操作相关功能模块。系统功能模块如图2所示。系统界面简洁、操作简便,符合现场快捷要求,尽量在无输入或较少输入的情况下,完成数据采集、记录、上传,系统关联、分析、统计现场碎片化作业行为和内容,实现设备维护管理、运用管理等生产过程控制,充分体现自动化、网络化的管理模式。

3系统功能

3.1设备基础台账管理

针对机车、CIR主机、LBJ、MMI,设置RFID身份识别标签;针对主控板、语音模块、数据模块、GIS单元等板件,设置身份识别条形码;人工输入软、硬件版本信息数据,以无线出入库检测点为最小管理单元,将各出入库检测点管理范围内的运用设备、备品备件等设备的基础信息、状态信息录入或导入系统服务器,形成全局的无线车载设备基础台账。条件具备情况下,无线出入库自动检测系统和动态运用管理系统之间开放数据交互接口,无线出入库检测系统可获取归属该出入库检测点的相关基础数据,动态运用管理系统可获取出入库自动检测系统检测结果、质量分析等相关数据。

3.2电子无线车载设备动态运用揭示牌

现场操作终端使用专用账户登录后,弹出电子揭示牌,揭示牌信息根据权限从数据服务器提取与出入库检测点配属相对应的设备信息,定期刷新。揭示牌分三个功能区:①当前机车入库到达信息;②设备运用揭示,一般情况显示机车型号、机车号、设备厂家、设备型号、设备编号等,当鼠标移动至该机车时,弹出悬停窗进一步显示主机设备、软硬件版本等详细信息;③该出入库检测点的备品备件、故障修设备等信息。

3.3机车入库到达提示

在机车入库咽喉位置设置RFID读取设备,当机车入库时,自动读取机车上RFID卡片并反馈至后台,系统将机车的到达信息及搭载的无线设备信息推送到无线出入库检测点现场操作终端,例如显示:2014年7月21日7:37HXD3C-0037机车入库,CIR厂家世纪东方,WTTJ-I。另外,根据实际情况提示前期故障修的设备(板件)是否需要执行归位操作,供作业人员参考。

3.4板件级动态运用管理

车载通信设备或板件因故障等原因需倒换时,或设备或板件入所修(含返厂修)时,使用现场手持终端扫描RFID或条形码并选取相应操作即可完成。设备(板件)的状态、位置发生变化时,手持终端将相关信息进行记录并上传至数据服务器。根据系统记录运用日志信息,当维修板件位置信息已经到达对应无线出入检测点时,系统根据机车入库到达信息,判断并声光提示在出入库检测点进行设备(板件)归位操作。现场对设备(板件)进行故障倒换时,输入故障现象等信息(为了减少输入繁琐,可预制常用故障信息供选择),信息自动跟随故障件至无线检修所。无线检修所对故障件进行维修后,检修记录终身跟随故障件,供各级技术人员查询。

3.5全寿命跟踪管理

运用RFID及条形码技术,结合手持终端的使用,系统对无线车载设备(板件)从上道开始,至报废或调拨出局,对其运用状态发生变化的行为及原因进行跟踪,记录运用日志。系统可设置无线车载设备或板件使用寿命年限,根据上道时间自动计算到期时间,在运用揭示牌界面可根据要求自动提示到期剩余时间。系统还可设置运用日志组合查询、智能分析功能,对设备运用情况自动进行统计分析,对即将到更新改造周期或经常使用不良的设备进行智能分析、提示,也可人工手动定向查询、分析,实现对设备全寿命动态跟踪管理。

3.6机车或设备调拨管理

机车或设备的调拨由通信段级管理人员发起,选择机车或设备、输入/导入调拨原因和依据,发起调拨程序。局内调拨时,调出的出入库检测点在确认机车下线并进入整备状态后,确认调出,调入的出入库检测点在确认机车到达后确认调入,完成调拨工作。出局调拨时,调出出入库检测点在确认机车下线并完成整备后确认即可完成。

3.7报废管理

针对车载通信设备(或板件)进行报废操作,报废界面应显示设备的主要构成,如CIR主机、LBJ、MMI、主控板、语音模块、数据模块、GIS单元等,以及上道时间、障碍信息。选择已到报废年限的部件进行报废操作,对于还未到报废年限的部件进行转备品操作,可实现精细化管理,节约投资和成本,减少投资浪费。

3.8软硬件版本管理

车载设备或板件的软、硬件版本及GIS数据版本发生变化时,可选择软硬件版本管理界面,采用人工手动操作方式进行修改。具备条件时,可通过出入检测系统或无线车载设备开放的数据接口,在出入库检测时,自动获取并自动更新软、硬件版本等相关信息。3.9履历管理

根据总公司车载设备履历簿管理要求,系统提取设备基础台账信息、运用日志信息,自动生成实时履历簿。3.10信息共享

各级用户可根据权限查阅设备(板件)全寿命范围内的基础数据、检修记录、运用日志等相关数据。如:无线检修所可以查询现场设备运用情况、机车入库检测记录、设备故障现象、倒换原因、处理人员等信息;无线检修工区可查询设备(板件)的入所修测试记录、状态、检修人员,上次机车入库情况等信息;各级管理人员可根据需要进行查询。技术管理文件、设备技术资料、作业指导书、故障案例、数据分析软件、维护软件、GIS数据、各次软件升级补丁等资料的共享,通过、浏览、下载方式实现。充分利用办公局域网覆盖通信各管理环节,以及系统基础数据、检修记录、运用日志等,可根据不同管理需求进行功能扩展。如:工作任务管理,具备任务下达通知、签认、闭环管理;年、月度检修计划及进度管理;无线检修所设备轮修过程管理及检修记录电子化;设备运用质量报表统计、分析;故障、障碍登记簿管理等,最终实现无线车载设备维护管理无纸化。

4系统构建建议

物联网、计算机网络、互联网应用、无线局域网、RFID、条形码、数据库等均为现有成熟技术,不存在技术上难点。系统涉及面广、作业环节较多,有专业交叉,管理较复杂,而且通信管理人员与系统开发人员彼此专业了解不够,这些都对双方参与人员的综合素质提出较高要求。通信管理人员要参与并协助系统开发人员充分了解车载通信设备维护管理体系及特点,现场作业流程和各环节要点,设备的编号规则,设备主要构成、关联关系;机务部门相关的机车管理体系及特点;通信与机务部门结合部的关联关系;通信部门的需求等,这些需求对接清楚是系统构建的一个难点,需要双方充分交流。而且系统覆盖全局,点多面广,现场维修人员接受和使用信息系统的能力参差不齐,因此,现场维修人员与信息系统的衔接是否顺利成为了构建车载通信设备动态运用管理系统的又一个难点,需在系统启用前,在试用期间对员工加强培训。

第2篇

1.1运营商IP数据网

中国移动、中国电信、中国联通三大运营商IP数据骨干网,基本覆盖了所有省会节点和大部分地市节点,采用核心、汇聚和接入3层结构。它们基本都采用BGPMPLSVPN承载业务,建立了服务质量保证(QoS)体系,在全网部署了IGP/LDP快速收敛功能,并部署了MPLSTEFRR链路保护功能,域内路由协议采用IS-IS,并通过MP-iBGP传播MPLSVPN路由信息。

1.2铁路既有IP数据网

铁路数据通信网由建设于不同时期的客运专线数据网、铁通公司划转的专用数据网及铁路综合计算机网(TMIS数据网)3个相对独立的网络构成。客运专线数据网目前已经覆盖了铁路总公司,各铁路局的调度中心,京沪、京石武、武广、甬台温、温福、郑西、沪宁、沪杭等已建成的客运专线沿线站段、动车所等业务节点。铁路局区域网络由核心节点、汇聚节点、接入节点构成。骨干网络暂采用北京、武汉、西安、上海局区域网络的核心节点路由器作为临时域间数据转发节点,满足各铁路局对总公司区域网络间,以及各铁路局区域网络间数据路由转发需求。客运专线数据网采用MPLSVPN实现对业务的承载。既有普速线数据网大部分为铁通公司划转铁路之前的铁通建设,目前各铁路局网进行基础通信网改造工程,在改造完成后基本实现了对既有普速线所有车站的覆盖,并实现了与客运专线数据网的整合。铁路综合计算机网为2层网络结构,覆盖铁路总公司、铁路局及部分车站。随着网络安全工程的实施,铁路总公司、铁路局机关局域网实行三网分离,即局域网被分割成内部服务网、安全生产网、外部服务网3个逻辑子网,分属于不同的安全域。TMIS网络以路局为分界点,路局以上是骨干网,路局以下是基层网,总公司至各路局为星形组网。目前TMIS数据网与客运专线数据网(即铁路数据通信网)未实现整合。

2铁路数据通信网网络建设

铁路数据通信网建设的目标为以既有数据网为基础,整合成一张综合的IP数据网,实现对不涉及行车安全及资金往来的铁路信息系统和通信数据业务的承载,采用适合铁路需求的技术策略,提高数据网络运行效率。

2.1骨干网建设方案

骨干网络由汇接节点、转发节点和接入节点组成。骨干网汇接节点设置在铁路总公司;转发节点设置在北京、西安、武汉、上海、成都;接入节点设置在各铁路局。每个节点设置2台路由器。骨干网为一个独立自治域。北京、武汉、西安转发节点间构成半网状连接方式,相邻骨干网转发节点间互联,每个转发节点与总公司节点间直联,实现全网流量在骨干网层面转发;骨干网接入节点同时与2个大区转发节点互联。骨干网节点间采用10GEWAN接口互联。

2.2区域网络建设方案

每个铁路局区域网络均作为一个独立的自治域,区域网络间的互访通过骨干网络实现。铁路局区域网络由铁路局所在地的核心节点、业务相对集中的汇聚节点和接入节点组成。接入节点到汇聚节点间、汇聚节点到核心节点间的连接,在城市范围内或有需求的节点,采用星形或环形方式接入上层节点,在铁路沿线范围,接入节点采用链型双归方式接入汇聚节点。对于接入节点,采用分层PE技术,在大型车站部署SPE节点,小型站段或工区部署UPE节点。

2.3既有数据网整合方案

由于TMIS数据网承载着货票、确报、调度、车号自动识别、行车安全监控(5T)、铁路办公自动化、统计、工务、财务核算等多个应用系统,因此,铁路数据网与TMIS网络的整合要分步骤实施。第一步:TMIS数据网业务之间存在大量互通需求,因此没有对承载业务做严格的访问隔离,而铁路数据通信网采用VPN方式实现业务接入,为避免对TDMS广域网承载业务造成影响,第一步将承载的全部业务以一个统一VPN接入铁路数据网。第二步:新的信息业务直接接入铁路数据网,TMIS既有业务逐步向铁路数据网割接,业务割接后TMIS网络设备根据性能及配置情况,融入铁路数据网各类节点中,实现一张统一的数据网,实现信息资源共享。

2.4技术策略

铁路数据通信网采用骨干网络及区域网络二级构建,在区域网络接入节点,采用分层PE构建。铁路数据通信网骨干网络链路由OTN承载,采用10GE接口;铁路局区域网络核心、汇聚节点间的链路及接入节点到汇聚节点间的链路,主要由OTN承载,采用GE接口;接入节点间的链路主要由光纤承载,采用GE接口。为保证数据网对业务承载的可靠性,数据网要求OTN承载网启用保护机制,并利用传输网络保护机制、数据网故障检测恢复机制及两者的协调配合,来共同保证数据网的可靠性。数据网通过lay-er3MPLSVPN实现对业务的承载,保证不同业务组的安全隔离,采用OptionB方式实现VPN跨域互通;将layer2MPLSVPN作为补充,提供基于MartiniVLL业务。采用区分业务(DiffServ)同时结合CBQ以及CAR等多种技术方式,来保证各类业务的QoS。骨干网络依靠高带宽的设计提供网络的轻载来保证SLA,采用IPDSCP、IPTOS和MPLSEXP字段标识QoS等级;在PE路由器实现QoS的等级化标记,根据初始业务类型提供6类服务等级对应6种队列;部分关键业务,如GSM-R/GPGS、会议电视、软交换等,考虑直接在区域网核心节点下设置独立的PE接入设备,基于物理端口进行分类和标识。在全网部署路由快速收敛功能,启用BFD完成快速链路故障探测,先期在骨干网络转发节点间对重要业务(如GSM-R/GPRS业务)进行MPLS-TEFRR的部署。域内路由协议采用IS-IS,并通过MP-iBGP传播MPLSVPN路由信息,域间协议采用E-BGP。骨干网络及各区域网络均为独立AS。在骨干网接入路由器部署流量采集设备,在铁路总公司节点设置流量分析与统计服务器,对各铁路局引入骨干网流量进行统计分析,并对异常流量进行告警。数据网为铁路专网综合IP网,与公众互联网采用物理隔离;全网通过实施MPLSVPN,完成各业务系统的隔离;网络支持分域、分权管理;对于网络设备的服务配置,遵循最小化服务原则,关闭网络设备不需要的物理端口及服务;对网络设备实行交互式访问安全措施;支持对接入业务限速处理;在IS-IS、BGP等协议中启用校验和认证功能;网管区域的防火墙具有入侵检测功能;在网络互联端口开启I-SISHello的MD5认证;在区域网出口限制BGP对等体(peer)以外IP地址对179端口的访问。在MPLS环境下向IPv6演进,在所有IPv6业务不需隔离时,可采用6PE技术实现;在IPv6业务需隔离的情况下,可采用6VPE技术实现。

3结束语

第3篇

摘要:随着铁路列车向高速化与准高速化方向的迈进,为保证有效的人机控制和提高运输效率,要求建立一个功能完善的、技术构成先进的铁路通信网。主要介绍了在现实的铁路通信工程建设中,我们应该注意的问题。

一、铁路传输技术

1.1SDH传输技术

SDH是取代PDH的新数字传输网体制,主要针对光纤传输,是在SONET的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。SDH是在电路层上对信号进行复用和上下。当带着信号的光纤通ODF(光纤分配架)进入ADM时,信号必须通过O/E转换和设备上的支路卡才能下成2Mb/s的基本电信号,并经过通信电缆和DDF(数字配线架)接到用户接口或基站BTS(基站收发信机)。

1.2ATM网络传输技术

ATM是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,ATM工作速度有很大的伸缩性,在光缆上可以超过2.5Gbps。

在网络传输中,为了使多个用户共享高速线路,通常采用时分复用方式。时分复用方式又可分为同步传输模式和异步传输模式。在数字通信中通常采用同步传输模式,这种传输模式把时间划分为一个个相等的片段,成为时隙,一定量的时隙组成一个帧,一个信道在一个帧里占用一个时隙,一个用户占用一个或多个信道。而在异步传输模式中,各终端之间不存在共同的时间参考,各个时隙没有固定的占用者。在ATM中时隙有固定的长度而且比较短,一个时隙传输一个信元,每一个信元相当一个分组。各信道根据业务量的大小和排列规则来占用时隙,信息量大的信道占用的时隙多。

1.3MSTP传输技术

MSTP依托于SDH平台,可基于SDH多种线路速率实现,包括l55Mb/s、622Mb/S、2.5Gb/s和10Gb/s等。一方面,MSTP保留了SDH固有的交叉能力和传统的PDH业务接口与低速SDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网二层交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。

1.4RTKGPS网络传输技术

随着GPS无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离RTK作业的需要。而网络RTK技术则是利用网络来取代UHF电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。

通用分组无线业务GPRS,是在GSM系统上发展出来的一种新的分组数据承载业务,GSM是一种使用拨号方式连接的电路交换数据传送方式。GPRS利用现有通信网的设备,通过在GSM网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。

1.5WDM传输技术

WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和0XC,WDM(或DWDM)是基于光层上的复用,它和SDH在电层上的复用有着很大的区别。同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM(或DWDM)可以进行较长距离的光传输而不需要光中继。

二、接入网技术

随着通信技术的快速发展,人们对铁路通信技术提出了更高的要求,铁路部门必须采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,发挥铁路通信网在国民经济中的社会效益和经济效益。接入网技术是铁路通信中一项关键技术,由于原有用户铜缆接入的普遍性和现在光纤技术的发展,接入网建设就必须考虑通信网络的现状与发展,这就决定了接入网技术的多样化。接入网从接入方式上可分为有线接入和无线接入。

2.1有线接入技术

(1)高速率数字用户环路技术。

通过2-3对双绞线双向对称传送基群数字速率信号,传送距离为3km-5km,上行速率与下行速率相等。通过回波抵消技术实现在一对双绞线上全双工传输,通过特定的编码和调制方式提高传输质量,用多线对并行传输,以降低每对双绞线上的传输速率,增加无中继传输距离。

(2)非对称数字用户环路技术。

它的上行速率和下行速率不相等,下行速率可高达(9-10)Mbit/s,上行速率只有数十或数百kbit/s,此技术适用于视频点播VOD系统;其高速下行信道可向家庭用户提供多路的数字图像信号及低速语音信号,而上行信道用于传送用户控制信号。ADSL的优势在于它几乎不需要对现有的对1双绞线作任何改动就可获得高传输速率。

(3)混合光纤同轴电缆接入技术。

它是基于有线电视系统CATV发展起来的。在有线电视中心与地区中心、地区中心与光节点之间采用光纤连接,光节点与用户设备之间采用同轴电缆连接。其主要是使用副载波调制,将CATV原有的单向传输系统改造成双向传输系统。HFC可以充分利用现有的CATV网络,进行少量投资,就可形成一个支持多种业务的宽带综合业务网。

(4)光纤用户环路技术。

以光纤为主要传输媒介,根据光纤向用户延伸的距离,可以分为FTTC(光纤到路边),FTTB(光纤到大楼),FTTH(光纤到家)等。FTTB是用户接入信息高速公路的最终理想目标,但根据现有通信发展的实际,FTTC、FTTB与铜缆相结合的用户接入,虽然是有过渡性质的折衷方案,但价格相对经济,并且在时机成熟时易扩展到FTTH,所以是现实并且可行的。

2.2无线接入技术

无线接入网是在接入网中部分或全部引人无线传输媒介,为用户提供固定终端业务和移动终端业务。无线接入可分为固定接入和移动接入两大类。其基本结构由控制器、基站和用户终端设备构成。应用技术主要包括微波1点多址技术、蜂窝技术和微蜂窝技术等。无线接人由于其灵活方便易于建设,目前已得到极大的重视。

集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体,通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户,最大限度地利用系统资源和频率资源,降低系统内呼损,提高服务质量。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。

三、结语

铁路通信网是保证行车安全、提高运输效率的有力工具,我国铁路引入现代通信技术还不久,对铁路通信工程建设还需要一段时间对其了解、分析和试验,对其中所要注意的问题,特别是技术问题要认真对待,只有这样才能为铁路通信现代化作出贡献。

参考文献:

梁培超.浅析铁路通信工程应用接入网技术[J].科技资讯,2008.

第4篇

结合铁路基础设施健康监测的特点,从硬件和软件两个方面设计数据采集子系统;首先,分析振动传感器的选用原则和输出信号的特点,在此基础上进行数据采集系统的硬件设计;然后,提出利用软件进行数据采集的模拟,详细论述各个模拟模块的建立过程;最后利用所属方法建立用于铁路基础设施检测的数据采集子系统,系统的建立为铁路基础设施监测理论研究提供了方法,为同类型数据采集系统设计提供参考。

关键词:

铁路基础设施;监测;振动传感器;数据采集

0.引言

进入21世纪以来,我国铁路建设发展迅猛,取得了良好的经济与社会效益。随着铁路运输速度的迅速提升,再加上其相对方便舒适的环境和价格上的优势,势必能吸引越来越多的人选择铁路作为他们旅行的交通工具,然而,伴随着铁路运输的飞速发展给人们带来的交通上的快捷与方便,车体与铁轨的振动故障对公共财产及人身安全构成了前所未有的威胁。伴随着我国铁路立体跨越式的迅猛发展,轮轨间激扰力与激扰频率随着车辆行驶速度的不断提高,逐渐增大,变宽,结果会造成电机等吊挂设备和车内设备的高频高幅振动,引起车体设备振动能量的急速加剧。如果超过了铁路各设备所允许的振动强度范围,未来的工作性能指标及使用寿命将会受到过大的动态载荷和噪声的严重影响,情况越发严重会导致零部件的早期失效。当前大量事实表明,在长期作用的情况下,铁路振动故障可能会导致货物破损,轨道破坏,列车脱轨等危险情况。为确保铁路“安全、经济、快捷、舒适”的特点和优势,铁路建设要不断发展完善其各项功能,才能在越发激烈的市场竞争中取得优势,因此,各国都加强了对铁路振动的检测及分析,也增加了对其的投入力度。今年我国对铁路振动检测领域的人力物力投入有明显增加,并且研究范围扩展到众多方面。以往铁路振动检测系统只配备在一些重要单位或者要害部门,而在2000年以后,各个铁路站段及各个振动检测站点基本都已经涉及发展应用到。铁路振动检测系统的重要性越来越被人们所认可,近些年又不断完善各项相应的标准和规范。为了保证铁路的运输安全、高效舒适的科学发展及以人为本的发展要求,确保铁路的优势和特点,如何准确检测高速铁路的振动并判断故障是摆在铁路工作者面前不容缓的实际问题。

1.数据采集系统设计方案

本论文用于铁路基础设施监测的振动传感器数据采集系统主要由下位机系统和上位机节点两个大的部分组成。系统设计方案的结构框图下位机系统里包含了振动传感器数据采集模块、IIC实时数据传输模块、微处理器模块和电源模块五个单元。振动传感器把接收到的振动信号数字化,通过IIC数字传输方式,将数据发送给微处理器STM32F103ZET6。微处理器作为控制单元,用于接收振动传感器数据并进行数据处理分析计算,通过RS-232串口通信,运用MAX3232电平转换芯片及CH340RS-232串口转USB芯片,实现了XYZ三轴振动数值发送到上位机进行控制显示。因为目前个人电脑上已很少有串口,所以我们使用RS-232串口转USB口芯片CH340G,数据可以从USB口进入PC上位机。由于每一个节点的检测范围有限,使用多个这样的节点共同检测则可以扩大系统的监测范围,提高系统的整体工作性能。整个铁路振动检测系统是由多个下位机节点互相协作共同完成系统功能的。

2.系统硬件设计

2.1系统硬件设计思想

本论文的铁路振动检测系统是由振动传感器数据采集模块,IIC实时数据传输模块,微处理器模块以及RS-232有线通信模块和电源模块组成。振动传感器数据采集模块对铁路振动的振动数据信号进行实时采集,将采集到的数据数字化,并通过IIC实时数据传输方式与单片机处理器通信,接着单片机处理器模块将采集的数据进行数据处理分析,通过有线通信模块上传到上位机进行实时显示及存储,为铁路振动故障的判断提供合理依据。微处理器中有数据处理分析算法的设计,完成对采集到的实时振动信号进行数据处理分析,判断当前得到的振动数据是否在铁路设备所能产生的振动范围之内并对数据进行干扰点剔除,去直流及多项式趋势项和平滑处理,计算出与自然坐标系夹角的角度,使整个铁路振动检测系统的性能与数据准确性得到大幅度提高,很大程度上降低了系统的错误上报率。

2.2系统介绍

系统硬件部分可以分为五个部分:振动传感器数据采集模块、IIC实时数据传输模块、微处理器模块、RS-232有线通信模块和电源模块。数据采集模块:由单片机处理器模块发出相应的控制指令配置振动传感器的控制寄存器,内部控制寄存器来决定信号的采集速度、通信方式、数据输出格式与带宽,振动传感器根据内部控制寄存器的值按要求采集振动信号。实时数据传输模块:振动传感器采集的实时数据通过IIC传输方式,将数据发送给处理器,为之后的数据处理分析奠定了基础。微处理器模块:主要工作是通过系统软件控制数据采集模块完成振动数据信号的采集,并对数据进行处理分析,然后控制RS-232有线通信模块将处理完成的数据上传至PC上位机进行显示及存储。该模块是振动传感器数据采集模块和RS-232有线通信模块进行联系的核心部分。RS-232有线通信模块:将微处理器模块处理完毕的数据,通过RS-232串口通信的方式传递给上位机,上位机会自动显示及存储数据,供振动故障的判断使用。电源模块:通过该模块,将5V外部直流电源转换成系统所使用的3.3V电源。

结论

本论文设计了一套铁路振动检测系统,该系统采用下位机整体检测模块PC上位机整体控制数据流向,并对上传的检测数据进行显示保存。从与传统检测方法的比较来看,它能够更加高效、深入、细致的对铁路振动信号进行检测、处理分析及显示存储,并为铁路振动故障的判断提供可靠依据。

作者:鲁楠 唐岚 廖若冰 朱加豪 单位:西华大学汽车与交通学院 西华大学西华学院

参考文献

[1]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009(1):129-130.

[2]段合朋.铁道车辆振动特性及平稳性研究[D].成都:西南交通大学,2010.

[3]柴东明.铁路实用微型振动测试仪研究[J].设备管理与维修,1994(11):18-21.

第5篇

【关键词】 铁路 通信 技术 客运专线

一、引言

铁路通信系统就想火车的大脑,由他去操控整个火车到底什么时候停车,什么时候开车等等,该系统给铁路提供了一个很稳定的传输的通道;同时列车员用无线对讲机讲话,它在整个铁路的运作当中的作用可想而知,免去了很多不必要的麻烦,提高了效率。列车之间也需要通讯技术作为保障,我们经常坐火车的时候看到两个火车进行相错或者是临时停车,这就是利用无线的通讯技术进行实现的。

二、铁路通信网

铁路传送网分为长途(干、局线)传送网、本地传送网及本地接入网。在铁路的客运专线当中,一般就分成了两个大的部分,一个就是有线的网络控制,另外一个就是无线的网络控制系统,同时由14个通讯的子系统组成这个客运专线的通讯系统。1、传导与信号接收系统:在我们平时见到的铁路运输当中,需要各个部门或者说具体到个人都有一个对讲机,进行实时的语音交流,或者说传导图片小视频等等,这些都需要搭载一个专门的平台进行上述的操作。铁路在通讯的过程当中的接收都寄托在了传导的接入层当中,通过这个曾与外界进行相连接,同时也可以把用户的需要通过网络节点的形式进行接收,这样免去了一些不需要的麻烦。2、电话交换系统:主要用到的就是技术方面进行的交换,OLT跟ONU这两种技术,跟铁路上的电话交换网之间相连接,为他们提供语音这项大的服务,再细分一下的话就是各个铁路公司之间的通话或者各个部门之间的通话,再小一点就是具体到每一个车厢的列车员之间的通话。3、数据网系统:在铁路当中的数据网络就是IP地址是他们铁路当中的固定地址,其他的外人进不去他们的IP地址,用这个综合网络最为一个基A的平台去承接整个铁路系统每天艰巨的工作任务,为的就是在有条不紊的情况下保证把每一位乘客安安全全的送到目的地,这是他们的职责,在职责的背后有这么一个强大的网络承载体去作为支撑铁路上24小时的信息通讯。4、专用移动通讯系统:主要用到的技术就是GSM-R,这个看似很平常的系统却是组成部分不少,里面拥有核心网设备、无线网络作为支持、还设有无线终端的系统元器件。5、调度通信设备:这一个子系统算是一个核心的部分了,调度在铁路当中是一个敏感词,火车的正常运行全靠调度室进行安排,该子系统主要是运用星形的网络配置进行连接,使得到各个点的距离都需相等,传输的速度的误差降低到最小值。客运专线用数字调度主、分系统设备,组建数字调度通信,并与无线核心网MSC设备互联,实现有线调度和移动终端通信。6、综合性的视频监控系统:在这个子系统当中,运用是十分的广泛,在各个行业都需要进行视频的监控问题,尤其在公路的道路交通和铁路的客运专线当中运用是十分广泛的也是非常重要的。在这个地方,监控铁路运输状况的不仅仅是铁路运营专线公司,只要与他们挂钩有牵扯的部门都系要进行实时的监控,及时的发现问题并且第一时间去解决问题。

三、SDH技术介绍

作为通信基础承载网,数字传输网在铁路通信网中发挥着至关重要的作用,没有传输承载网,任何铁路业务系统的搭建都无从谈起。沿线各传输节点组成铁路接入网承载CTC、数字调度、TDCS、5T等众多关系铁路行车安全的通信与信息系统。因此确保数字传输的系统畅通、运行可靠。同步现在仍然是世界的一个主流技术,同步数字处理技术在当今的通讯业仍然占有一壁江山,拥有一个很高的评价。对于这个技术他自己有很清晰的逻辑思路、信息结构等级分的相当明确、接收的信号口也是很完善、帧节的结构组成统一有序,传输的信号稳定误差小,电路结构简单易懂,同时网管的结构完善,优点可以碾压很多相同系统的其他元器件。

四、铁路通信网的发展趋势

伴随着网络技术的发展要求越来越高,在铁路的运营专线当中要求的大的宽带的应用也是越来越多,不要说铁路这种大的公司,就是家庭网络现在基本也都说20兆或者50兆的带宽了,两年之前还是2兆或者5兆的带宽,所以说技术日新月异,在铁路的通信系统当中,像我们说的IP地址、MIS系统、监控系统以及调度系统都会运用越来越频繁。在这里面还有如下的几个特点:1、在铁路当中还是用的光纤通讯,传输速度快,效率高;2、这个虽然都是用到了光纤传输,但是它的结构是相当复杂的,在我国对于这一方面的研究还没有那么成熟和先进,这就给我们提出了难题。3、铁路系统所敷设光缆通常需承载很多不同的传输系统,应尽量节约光纤通信系统所占用的光纤芯数。4、为满足整个铁路部门目前和将来的所有通信需求,需要做到话音、视频和数据多网融合。

总结:本篇论文就是浅谈了一下我们铁路运营专线当中通讯网络在里面起到的作用,传输的网络其实主要是分成三个大的部分:骨干层,交汇层和接收层三个部分,每一个部分都不是孤立存在,里面之间的联系的相互交织在一起,形成了一个整体的网络框架。

参 考 文 献

[1]于佳亮,于天泽.铁路通信网概论[M],北京:人民邮电出版社,2009.

第6篇

关键词:BIM技术;铁路;通信工程;应用

【中图分类号】U231.3【文献标识码】A【文章编号】1674-3733(2020)21-0221-01

引言:将BIM技术用于铁路通信工程中,采用三维数字技术获得工程信息,工程设计效果通过模拟的方式立体展示,工程人员据此从技术角度分析通信工程,对设计不断完善,工程保质保量完成,并提高了工程效率[1]。可见,应用BIM技术对于铁路通信工程建设的顺利展开具有重要的意义。

1BIM技术在铁路通信工程中所发挥的作用

1.1BIM技术的应用提高工程设计质量

铁路通信工程中发挥BIM技术的作用,就是将三维模型建立起来,所有的工程结构以及相关功能信息都纳入到模型中,构建空间关系。在模型中对这些信息参数化,在修改设计内容的时候,通过参数调整的方式就可以实现。在铁路通信工程设计中应用三维模型完善设计图纸,不需要重复绘制,在三维图形上直接修改即可[2]。当进入到施工阶段、运行维护阶段的时候,三维模型信息发挥指导作用,各个单位之间的合作也以三维模型信息展开,提高了合作效率。

1.2BIM技术将各项工程信息建立关联性

铁路通信工程中应用BIM技术,在项目的各个阶段都可以应用三维模型,随之全新的工程建设理念树立起来,对于传统工程设计中所存在的不足之处能够有效规避。处于施工阶段,由于三维模型的直观性和透视性特点,可以让施工人员对设计内容直观了解,准确掌握设计信息并展开施工。由于应用BIM技术所构建的三维模型是建立项目信息的基础上的,当铁路通信工程进入到不同阶段的时候,如果不同的单位提出的需求有所不同,在设计图的修改中,只要将三维模型的参数予以调整即可,修改效率高,操作简单,避免产生信息不一致的问题,可以保证质量,避免发生安全事故。在应用BIM技术设计工程图纸的时候,采用建立三维模型的方式,其中所涵盖的信息包括与铁路通信工程有关的结构信息,其中还包括几何尺寸方面的信息,保证工程项目信息完整性[3]。在三维模型中涵盖与工程项目相关的各种信息,这些信息属于不同的对象,虽然不同对象之间是存在独立性的,但是处于三维模型中,相互之间建立了关联性,可以互相识别,通过对某个组成部分的信息进行修改,就可以对整个的工程结构变化情况全面掌握。所有的三维信息都是模型空间的组成部分,相互之间都是密切关联的。

2BIM技术在铁路通信工程中的应用

铁路通信工程中应用BIM技术,主要体现为工程设计中BIM技术的应用和建立通信专业族库两个方面。具体如下。

2.1铁路通信工程设计中BIM技术的应用

铁路通信工程建设中会产生大量的信息,而且信息的种类非常多,都有各自的特点,涉及到地理学方面以及几何学等等,这些信息都与BIM技术存在关联性,所有,应用BIM技术可以将其优势充分发挥出来,使得整个的工程设计效果直观展示,立体化呈现。铁路通信工程设计中应用BIM技术,由于设计的程序多,内容繁琐,操作的时候需要严格按照流程进行。

具体的工作中,需要选定族样板;定义三维模型的参照平面,设定好原点;创建几何图形之后,向前期设计的族文件中传入项目文件,调整机房布置情况,保证其合理性,通信机柜要放在合适的位置,在几何形体上标注好,使用文字对标准详细描述;将图纸创建出来,对视图合理公布值;最后制作设备明细表[4]。

2.2将通信专业族库建立起来

第7篇

关键词:冶金企业,铁路运输,自动化管理,信息系统

 

0.引言

钢铁市场的竞争日益激烈,冶金企业面临巨大的机遇和挑战,各企业大显神通弥补不足,提高效益。其中冶金企业现行的铁路运输管理模式已不能满足生产要求,为了提高生产的可靠性、安全性、高效性,在对目前铁路运输管理系统运作模式、职能划分以及基层作业详细调查研究的基础上开发了铁路运输综合自动化管理信息系统。该系统建成以后可以大大地提高铁路运输管理的现代化水平和工作效率,将为公司领导的决策提供真实可靠、全面快捷的信息,生产作业更加流畅。

1.系统总体构成

铁路运输综合自动化管理信息系统涉及铁路运输的各个方面,能及时、准确地为各运输调度指挥管理部门提供现代化的调度指挥管理手段及平台。该系统由生产指挥控制中心网、运输部中心网及车站设备构成。

2.职能管理部门的系统划分

针对宣化钢铁公司具体情况,运输部中心主要负责协调各作业区之间的运输调度和管理,并协同路局准确统计路局车辆在工厂作业区、成品作业区、西车务作业区以及炼铁作业区发生的交接、调入、待卸、卸车、空停待装、装车、交出等八个主要业务活动和解冻、维修两个辅助业务活动的滞留时间及业务活动的时间间隔;准确统计路局车、自备车装/卸运量、停时以及班组运量、停时、运送时间;实现在厂车总数、车种、品名、交接时间,各作业区路局车总数、车种、品名、交接时间、站场股道占用情况,当日内到达、发出车数、车种、品名、收货单位、发货单位的查询;通过网络查询车辆挂钩计划的编制和执行情况、股道详细信息及车辆详细信息;还可通过调度监督系统掌握厂内铁路全线列车的运行情况。论文参考网。

生产指挥中心主要负责下达月、周、日的运输计划,实现运输的应急管理,协调运输调度指挥,实时掌握厂内车的位置和状态,查询和统计各种运输调度信息。

车站设备主要完成各种作业基础信息的录入,调度计划的输入、发送,调度监督、微机联锁、机车信号信息的采集等功能。论文参考网。

3.系统功能简介

3.1货车实时跟踪管理系统

该系统利用计算机及其网络通信技术,以车站为基础信息源点,收集、处理和交换车流信息,由计算机网络向各级车号、调度提供日常计划和调度指挥所需的各种货车资料。一方面提高各岗位生产人员的工作效率,另一方面使运输组织人员能及时准确地掌握车流和货流,组织有计划装车、卸车和排空车,从而保证均衡运输和良性循环,提高运输生产的能力和效益。通过该系统可实现对整个运输系统中的机车、车辆、原料和产品的位置及状态的实时跟踪和管理,同时自动生成各级查询和统计报表,为各级调度人员和运输部领导进行生产指挥提供实时准确的数据。

3.2运输调度管理信息系统

运输调度管理信息子系统是提高运输效率、实现厂内铁路运输自动化指挥、集中管理、集中监视、集中控制的必不可少的系统。通过该系统可直接指挥行车,实时掌握列车运行状况、信号设备显示状态,完成运输计划的编制、调整及调度命令的生成和下达等功能,并进行信息汇总、处理;可对列车的运行进行实时监视并具有历史查询功能;还可为调度指挥管理人员提供管辖范围内信号设备状态及列车运行状况。

3.3调度命令无线传送系统

一般情况下,调度作业指令的传输是通过调度手写调度计划,再用人工的方式将调车计划单交给调车人员和机车上的司机。这种方式严重限制了机车的作业范围、导致了机车作业的不连续性,降低了机车的作业效率,给生产运输带来了极大的不变。为此我们可以安装使用调车计划无线传输系统,即在各站设立调度命令无线传送控制中心,并在每台机车上加装机车信息台,地面控制中心接收铁路货物车辆实时跟踪管理信息系统的调度作业指令,通过无线方式发送到机车信息台上,机车信息台通过液晶显示器显示调度作业计划单并通过打印机打印出来,作为机车作业的依据,同时机车信息台还将机车的作业完成情况及时反馈给地面控制中心和铁路货物车辆实时跟踪管理信息系统。这种方式可以大大提高机车的作业效率。

该系统由中心局域网和基层网两层网络组成。其中基层网由微机监测系统构成,是面向用户的开放性设计的系统,使安装、调试、使用、维护更加方便、简捷。

3.4智能计算机联锁系统

我们现在正在使用智能型计算机联锁系统,它是模块化系统,采用了双机热备的冗余结构以保证其具有很高的可靠性和可用性,实践证明该设备安全、可靠、实用。该系统具备有进路的选排、锁闭、解锁以及信号操作、道岔操作、特殊操作等联锁功能。操作和显示均通过电气联锁上位机实现,同时可根据需要,给车站值班员配置若干台监视器,以达到安全行车的重要目的。

4.结束语

铁路运输综合自动化管理信息系统是为了适应铁路运输发展需要而开发的,完全实现了运输管理的自动化。论文参考网。如果完全投入使用,将会彻底改变了传统落后的管理模式,取得了良好的经济效益,该系统对于我公司的铁路运输管理将有极大的使用价值,将给我们带来巨大的效益。目前,我们虽然只使用了部分的无线传送系统和计算机联锁系统,但是运输效率却取得了质的飞跃。相信未来,我们的无线平调系统将更加完善,铁路物流将更加顺畅。

参考文献

[1]平调无线调车系统.

[2]微机联锁系统技术.

[3]网络系统的集成管理.概念、体系及其应用.

第8篇

(一)传导瞬变和高频干扰

1.由于雷击、断路器操作和短路故障等引起的浪涌和高频瞬变电压或电流通过变(配)电所二次侧进入远动终端设备,对设备正常运行产生干扰,严重还可损坏电路。2.由电磁继电器的通断引起的瞬变干扰,电压幅值高,时间短、重复率高,相当于一连串脉冲群。3.铁路电力供电中,特别是现代高速铁路对电力要求都比较高,一般都是几路电源供电,母线投切转换比较频繁,振荡波出现的次数较多。

(二)场的干扰

1.正常情况下的稳态磁场和短路事故时的暂态磁场两种,特别是短路事故时的磁场对显示器等影响比较大。2.由于断路器的操作或短路事故、雷击等引起的脉冲磁场。3.变电所中的隔离开关和高压柜手车在操作时产生的阻尼振荡瞬变过程,也产生一定的磁场。4.无线通信、对讲机等辐射电磁场对远动终端会产生一定的干扰,铁路中继站通常会和通信站在一处,通信发射塔对中继站电力远动终端设备的干扰比较大。

(三)对通信线路的干扰

1.铁路变电所远动终端的数据由串口通信经双绞线进入车站通信站,再经过转换成光信号沿铁通专用通信光缆送至电力远动调度中心,遥信和遥控数据在变电所到通信站的过程走的是电信号,由于变电所高低压进出线缆很多,远动终端受的干扰比较大。2.中继站一般距铁路都比较近,列车通过时的振动对远动终端设备有一定的干扰。

(四)继电器本身原因

继电器本身可能由于某种原因一次性未合到位而产生干扰的振动信号,或负荷开关、断路器、隔离开关等二次侧产生振动信号。

二、干扰对电力远动系统的影响

无论交流电源供电还是直流供电,电源与干扰源之间耦合通道都相对较多,很容易影响到远动终端设备,包括要害的CPU;模拟量输入受干扰,可能会造成采样数据的错误,影响精度和计量的准确性,还可能会引起微机保护误动、损坏远动终端设备和微机保护部分元器件;开关量输入、输出通道受干扰,可能会导致微机和远动终端判断错误,远动调试终端数据错误远动终端CPU受干扰会导致CPU工作不正常,无法正常工作,还可能会导致远动终端程序受到破坏。

三、抗干扰设计分析

(一)屏蔽措施

1.高压设备与远动终端输入、输出采用有铠装(屏蔽层)的电缆,电缆钢铠两端接地,这样可以在很大程度上减小耦合感应电压。2.在选择变电所和中继站电力设备时尽量选设有专门屏蔽层的互感器,也有利于防止高频干扰进入远动终端设备内部。3.在远动终端设备的输入端子上对地接一耐高压的小电容,可以有效抑制外部高频干扰。

(二)系统接地设计

1.一次系统接地主要是为了防雷、中性点接地、保护设备,合适的接地系统可以有效的保障设备安全运行,对于断路器柜接地处要增加接地扁铁和接地极的数量,设备接地处增加增加接地网络互接线,降低接地网中瞬变电位差,提高对二次设备的电磁兼容,减少对远动终端的干扰。2.二次系统接地分为安全接地和工作接地,安全接地主要是为了避免工作人员因设备绝缘损坏或绝缘降低时,遭受触电危险和保证设备安全,将设备外壳接地,接地线采用多股铜软线,导电性好、接地牢固可靠,安全接地网可以和一次设备的接地网相连;工作接地是为了给电子设备、微机控制系统和保护装置一个电位基准,保证其可靠运行,防止地环流干扰。

3.由于高低压柜本身都是多都是采用镀锌薄钢板材料,本身也有屏蔽作用,将高低高柜都可靠接地。4.远动终端微机电源地和数字地不与机壳外壳相连,这样可以减小电源线同机壳之间的分布电容,提高抗共模干扰的能力,可明显提高电力远动监控系统的安全性、可靠性。

(三)采取良好的隔离措施

1.为避免远动终端自身电源干扰采取隔离变压器,电源高频噪声主要是通过变压器初、次级寄生电容耦合,隔离变压器初级和次级之间由屏蔽层隔离,分布电容小,可提高抗共模干扰的能力。2.电力远动监控系统开关量的输入主要断路器、隔离开关、负荷开关的辅助触点和电力调压器分接头位置等,开关量的输出主要是对断路器、负荷开关和电力调压器分接头的控制。3.信号电缆尽量避开电力电缆,在印刷远动终端的电路板布线时注意避免互感。4.采用光电耦合隔离,光电耦合器的输入阻抗很小,而干扰源内阻大,且输入/输出回路之间分布电容极小,绝缘电阻很大,因此回路一侧的干扰很难通过光耦送到另一侧去,能有效地防止干扰从过程通道进入主CPU。

(四)滤波器的设计

1.采用低通滤波去高次谐波。2.采用双端对称输入来抑制共模干扰,软件采用离散的采集方式,并选用相应的数字滤波技术。

(五)分散独立功能块供电,每个功能块均设单独的电压过载保护,不会因某块稳压电源故障而使整个系统破坏,也减少了公共阻抗的相互耦合及公共电源的耦合,大大提高供电的可靠性。

(六)数据采集抗干扰设计

1.在信息量采集时,取消专门的变送器屏柜,将变送器部分封装在RTU内,减少中间环节,这样可以减少变送器部分输出的弱电流电路的长度。2.遥信由于合闸一次不到位或由于二次侧振动而产生的误遥信干扰信号,并且还会产生尖脉冲信号,也可能对遥信回路产生干扰误遥信号。

(七)过程通道抗干扰设计

(八)印刷电路板设计。在印刷电路板设计中尽量将数字电路地和模拟地电路地分开;电源输入端跨接10~100μF的电解电容。

(九)控制状态位的干扰设计

(十)程序运行失常的抗干扰设计

(十一)单片机软件的抗干扰设计

(十二)对于终端至通信站的数字通信电缆加穿钢管,特别是穿越其他电力电缆时,避免和其他电力电缆等同沟敷设并保持一定的交叉距离。

(十三)对于特殊的变(配)电所或区间信号站的环境

(十四)提高远动信息传输的可靠性,在电力调度中心和远动终端之间建立出错重发技术直到住处确认信息为止。