首页 优秀范文 通信设备论文

通信设备论文赏析八篇

发布时间:2023-02-15 18:15:52

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的通信设备论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

通信设备论文

第1篇

1.计划P:明确目标及措施、制定行动计划,即根据维修规程的周期制定生产作业计划,并明确作业标准,用检修工艺文件指导和规范作业行为等。

2.实施D:组织落实作业计划,对人员、材料、工器具、仪器仪表、方法、环境等要素,利用有效的管理手段进行组织、分配、指挥和协调,努力达成作业目标,并记录执行结果。

3.评估C:核查执行结果与计划、目标是否偏离。检查问题是出现在计划目标上,还是出现在人员、材料、工器具、仪器仪表、方法、环境上。

4.改进A:将经验和教训制定成标准,形成规范制度,包括完善和修订维修规程、检修工艺文件及管理制度等。

2预防性维护质量管理实施

管理制度化和技术标准化是保障质量管理良性循环的推动力,通信设备检修工作分为4个阶段。

2.1计划阶段

技术标准是衡量检修工作实施效果和执行效率的基准,明确技术标准是计划阶段的主要任务。通信设备检修技术标准分为作业标准和故障修处理指南二类。作业标准又分为维修规程和检修工艺二部分,是设备维护的依据,也是开展精细化控制的重点。

2.1.1维修规程

维修规程的精细管理主要是对维修标准的细化设定和经验积累。工艺标准关注维修标准的效力,技术规范注重经验、教训的总结。建议重点关注以下方面。

1.工艺标准的设定方面,一要全面分析对维护质量产生影响的因素,将维修规程设置为维修等级、周期、内容、方法和标准等五个部分,并对运营线路上所有通信设备实现覆盖,即所有通信设备都纳入维修规程的约束范围;二要针对不同的设备或不同型号的设备,分别建立规程,实现规程与设备的对应。

2.各设备指标及维修标准的制定方面,应遵循国家标准为最高准则、行业标准次之、地铁企业标准和设备出厂标准再次之的原则。依照检修作业要求和行业做法,将设备维修分为日常检修、二级保养、小修、中修和大修等5个等级。结合设备运行关键要素、设备年度整体评估结果、故障特点及环境因素,设置检修内容和标准。维修内容涵盖设备功能、性能指标、清洁度要求、备件更换等要求。

3.细化行为约束方面,将维修技术要点和操作要点加以提炼,形成技术规范概要;每项维修内容都有对应的维修方法指导,从技术层面保证维修内容执行的有效性。随着现场经验的积累和技术的发展,通过改进环节,不断完善和补充技术规范和维修方法。

2.1.2检修工艺

维修规程作为检修作业标准,在统一检修方式、规范作业一致性等方面发挥了重要作用,但单纯的以维修规程作为作业标准的检修体制,逐渐显露出其在维修过程监管、检修方法指导等方面的薄弱。为此,在维修规程的基础上,增加检修工艺规范,即检修工艺卡,作为与维修规程配套的检修执行文件。制定检修工艺卡应以图文并茂的方式,规范、引导员工完成检修作业的每一步操作,使每一位检修人员都能对检修作业的全过程有一个清晰的认识。因此,检修工艺卡的编制,应关注工艺描述的直观性和准确性,减少检修人员对检修指标理解上的歧义;而且将成本控制理念融入到检修作业中,使检修作业真正做到质量可控、成本可控。检修工艺卡主要体现在以下几个方面。

1.详细描述检修步骤和方法。

根据维修规程中的内容要求,逐项描述检修的步骤、使用的工具和仪器、操作方法、判断标准及注意事项等。力求完整、清晰地表述用什么方法、怎样做、达到怎样的结果,并把维修规程中技术规范类的内容要求,融会贯通于每一步操作说明中。

2.使用大量的图片加以说明。

检修工艺卡在编制时尽量使用大量的图片进行描述,使很多较难理解的参数,以图片说明的方式直观化地呈现出来,使员工做到一目了然。

3.增加检修过程中的经验性提示。

这一点尤为重要,检修操作不可能做到完全的量化管理,针对外观平整检查等无法具体量化的检验项目和一些检修过程中可能出现的偏差项,采取经验描述和重点提示的方式,加强对检修人员的指导。

4.将成本控制纳入检修作业管理。

结合作业的技术要求和执行经验,合理评估员工的投入,建议以中级工的执行能力来核定作业的标准工时和材料的消耗量,最终将人员配置要求、工时消耗和材料消耗等成本控制因素,细化到每一项检修作业中。

2.2实施阶段

这一阶段主要关注以下2个方面:第一,采取有效的管理手段,调配各级资源,保障检修作业正常开展;第二,严格按照设备检修工艺的要求,开展针对特定设备的维修作业,做好过程信息的收集,完成检修测试记录表中内容的填写。因此,实施阶段精细管理的工作重点建议放在检修记录表格的细化管理上。在制定表格时,应重点抓住以下几个细节。

1.将维修规程中涉及的设备检修参数全部列入表格中,并将表格记录顺序与维修规程中的维修内容顺序相对,为检修人员提供完整的检修要求提示。

2.标注每一个检修内容可量化的标准说明,便于检修人员判断检修结果是否正确。

3.对过程数据的收集,不仅体现在检修后,还包括检修前的数据,做好对比。

4.需周期更换的部件,标明上次操作日期和应进行下一次操作的日期,以示提醒。

5.以备注的形式,记录检修过程中发现的问题和处理情况,用以提示完善。

2.3评估阶段

评估阶段的精细管理重点在于检查计划是否按要求执行,效果如何,并把结果收集记录下来,分析汇总成经验和教训。建议从以下几个方面着手落实。

1.全面检查作业执行的效果,包括对目标设定的合理性、管理手段的有效性等进行细化评估,如人员、材料、物资的调配及供应能力,环境、方法的匹配度等。

2.审核执行过程的异常性,不仅仅局限对操作过程是否正确的审视,还要检查检修作业的各类成本支出是否与真实需求存在偏离,如:人员配置是否合理,工时和材料消耗是否正常等。

3.整理偏离和建议系统化,在归纳、分析的基础上对收集到的偏离进行系统梳理,以合理化建议或技术质量问题记录表的形式记录,并按流程跟踪处理,直至完成闭环处理。

4.重视对偏离项的再确认工作,对偏离和建议的调查、取证工作,应由专业组成员(技术人员和技师)完成,以辨清真伪。在这一阶段,尤其要关注对评估流程的管理,前期收集的问题和建议的处理、反馈,完成经验、教训的闭环处理,并鼓励问题的发掘和技术创新。

2.4改进阶段

本阶段主要工作应是解决存在的问题,工作重点在于修订标准、梳理流程。将标准修订事项细化到技术标准、管理制度的各个要素和执行环节,组织专业组成员对纠偏措施逐项落实,强化标准修订的权威性,提高与现场作业要求的符合度。改进工作应以2种方式开展。

1.临时性改进。

采用通知或会议纪要等形式,临时的解决方案或措施,及时地开展现场指导,这一方式突出对问题的快速应变能力。

2.稳固性改进。

周期性或出现重大修改事项时的标准修订是对标准的本质性修改,技术标准的完善需要经过专家组的决策论证,管理制度的完善必须建立在相关单位联合审议的基础上。

3结束语

第2篇

关键词:设备故障;集中监控;故障告警;声光告警

随着计算机与通信技术的快速发展,机房数量也在骤增。机房主要用来放置计算机系统或通信网络的核心设备,为了保证设备正常运行,机房装有许多配套设备,这些配套设备必须24小时监控,任何一种异常情况都必须得到及时有效地处理。否则,将对机房中各系统的正常工作带来严重危害,后果不堪设想。设备的生产厂家众多,有华为、西门子、摩托罗拉、中兴等,为保证整个通信网络,特别是机房设备安全稳定运行,现有设备厂家依据设备故障对系统影响程度提供不同级别的告警信号,以提醒机房监控人员及时通过系统维护终端进行软维护或以不同方式(电话、短讯等)通知相关维护人员处理。机房采用24小时专人值班,由于设备分散在不同机房,为了确保整个通讯网络系统安全运行,防止事故的发生,移动通信机房需要对不同专业设备的故障告警进行集中声光告警监视监控。

一、移动通信机房设备故障告警特点

目前许多机房的管理人员采用24小时专人值班,定时巡查机房环境设备,这样不仅加重了管理人员的负担,而且更多的时候,不能及时排除故障,对事故发生的时间及责任也无科学的管理。尤其目前国内普遍缺乏机房环境设备的专业管理人员,在许多地方的机房不得不安排软件人员或者不太懂机房设备管理甚至根本不懂机房设备维护的人员值班,这对机房的安全运行无疑又是一个不利因素。采用集中告警监视监控系统使得机房监控人员能够更及时的发现网络故障,及时处理故障,保证设备处于最佳运行状态,使其运行服务质量能够满足用户的需求。

移动通信机房设备故障集中监控系统将所有设备维护终端集中在一个统一平台输出告警,所有不同设备的故障集中产生声光告警,该系统使得监控人员只需要在同一平台处理日常告警。对于网络监控人员工作有以下有利方面:有利于网络监控人员作为第一责任人在7×24小时值班时,对安装在本地区内的话务网、传输网、数据网及所有相关设备的运行状况实时监控,对本地区动环监控的站点实时监控,特别是将交换网元、BSC网元以及传输网设备的监控作为重点,实时查看上述各网元上的各类告警信息,特别注意话务网、传输网设备上告警的关联性,并通知相关人员负责故障的受理和处理。有利于监控值班人员实时监测移动通信网网路、设备运行情况,对发现的故障进行预处理、派单,监督相关专业维护人员及时处理各种故障,并跟踪、处理过程和结果。发现重大故障立即通知相关专业管理、支撑部门和向上级领导汇报。

二、移动通信机房设备故障集中监控系统特点

2.1集中告警信号的采集

告警是设备故障集中监控系统的一个重要功能。本系统采取从网管终端发出的告警信号端子提取信号进行处理,有指示灯两端输出的电压量和机内声卡输出的语音数据。故障发生后,系统会根据故障的优先级别将故障放入不同的队列进行处理。系统首先从高优先级队列获取报警信息,进行报警。网络监控人员根据告警级别在10分钟内先分析判断、定位,确定故障发生的大致区域和基本性质后,通知相关人员进行处理,有效压缩故障历时。

2.2中央集中控管,提供良好的管理并提高效率

本系统将服务器集中控管,所有服务器的状态一目了然,监控人员可以透过因特网在远程方便地进行设备管理,并且在每个服务器端,也能由维护人员进行管理维护。

2.3支持各类智能设备的接入

机房设备种类多、生产厂家多,通信协议各不相同。因此,为提高系统的兼容性,整个系统分为通信层、规约层、业务逻辑层分别进行设计,各层之间相互不影响。可以根据需要进行通信方式的扩充、通信规约的扩充。系统新增设备终端,增加相应模块就能接入到该系统进行集中监控。

三、移动通信机房设备故障集中监控系统设计与实现

3.1系统结构概述

方案设计充分考虑移动机房的实际要求,整个监控系统采用逐个设备汇接的结构,将所有设备故障终端接入到KM0216服务器进行集中监控,如图1所示。在设计中充分考虑系统的稳定性、兼容性、系统所有设备的性价比、及其系统今后扩展、扩充需要。

监控站用来实现各种上层应用以及系统配置,监控人员只需要在设备故障集中监控系统处理日常告警,管理人员可以通过近端或设备故障集中监控系统进行数据管理、安全管理、配置管理、报表管理。移动通信机房设备故障集中监控系统选用一台AltusenKM0216MatrixKVMSwitch,来进行所有服务器的管理工作。选用USB的CPU端模块KA9120及CE250网络线来将服务器的键盘及鼠标连接到KM0432上。在视讯方面,用VS-82A将视讯一分为二,一方面传送给本地的显示器,另一方面透过KM0216与CPU端/控制端模块传送给远程的投影机,使得每台服务器都能保留原有的键盘、鼠标、显示器,不影响在本地的正常使用;同时,也能透过KM0216进行切换管理。在投影机一端,我们透过一台4埠KVM切换器CS-9134来选择三个KA9222控制端模块,以控制每个投影机的内容来源,以满足方案要求,也就是从网管主机中选择应显示某一台主机的视讯。此外,还配备了一个IP远程控管装置CN-6000,以实现透过因特网来控制网管主机的需求。

3.2系统功能概述

本系统将设备故障集中监控系统分为五大功能,分别为集中实时监视功能、集中实时声光告警功能、集中循环监视功能,用户管理功能,远程管理功能。

3.2.1集中实时监视功能

实时监控系统通过各维护终端将当前被监视设备的运行参数集中采集,实时显示在监控电脑屏幕上,监控人员通过该系统依据设备故障对系统影响程度提供不同级别的告警信号,以提醒机房监控人员及时通过系统维护终端进行软维护或以不同方式(电话、短讯等)通知相关维护人员处理。

3.2.2集中实时声光告警功能

该系统从网管终端发出的告警信号端子提取信号进行处理,将所有设备故障告警在同一集中声光告警箱产生实时告警。监控人员报警发生后,一般按以下步骤来进行处理:①通知。首要的是将报警信息告知给相关人员。②确认。表明已经知道报警的发生,正在处理。但此时报警仍然存在,没有消失。③消除。经过处理,故障消失,设备恢复正常,报警也随之消失。

3.2.3集中循环监视功能

该系统对所有维护终端都能够通过2台投影屏幕来循环监视,设置自动轮流显示所接维护终端,每个终端可设置停留时间(3s~60s);还可以用手动选择,当手动选择后,画面停止在选择的维护终端,直到再次选择自动显示按键。

3.2.4用户管理功能

本系统将管理权限分为三级:SuperAdministrator、Administrator、以及User,各级管理人员的管理范围和权限不同。

3.2.5远程管理功能

本系统提供远程管理功能,维护人员既能通过该系统进行数据管理、安全管理、配置管理、报表管理,又能在本地维护终端对设备进行相应的操作维护。

四、系统实际应用效果

4.1应用效果

该系统的上线运行将永州分公司所有设备维护终端都集中在一个平台输出,如图2所示,所有设备维护终端都显示在本系统,选择数字键或者ENTER就进入相应终端进行监控监视。该系统使得监控人员彻底改变传统分散式监控模式,集中在同一个系统对所有维护终端进行监视监控。

4.2成果效益

该系统对所有设备告警进行集中监视,根据告警的级别产生相应的告警声音,以提示监控人员立即上报故障情况。如图3所示,一旦设备出现告警,相应设备指示灯闪烁,以声音提示监控人员立即对故障进行处理。

YZHLR01设备维护终端为例介绍成果效益,对该设备的数据进行基础维护,一旦设备出现重大故障立即通知相关管理者。

五、结语

本文所设计的移动设备故障集中监控系统已在永州分公司上线试运行,效果良好。目前,集中监控系统正在向分布式和网络化方向发展,人们不断对远程监控的简便性、实时性、可靠性提出更高的要求,因此,必须要灵活、及时地把最新的技术应用到监控系统中,才能使集中监控系统不断地发展,保障移动通信机房的安全运行,不断地满足通信业发展的需求。

参考文献:

朱玉锦,张勇.调度自动化机房监控系统的设计与实现[J].信息与技术化,2007,(5):100-102.

张天开,张晶明.机房环境监控网络系统的设计及应用[J].自动化仪表.2002,23(8):52-54.

赵彬.高校机房监控系统的设计与实现[J].科技信息.2008(1):64.

杨红和.公共计算机机房管理和维护初探[J].漳州师范学院学报(自然科学版).2005(2):65-68.

第3篇

状态检修是以状态评价为前提,并结合设备分析诊断结果等因素加以考虑,然后做出时间及项目安排的一种主动检修方式。传统的检修方法只能反映检修时设备的状态,比较片面。而状态检修则是对整个过程的监测。某供电公司根据状态检修方式设计的信息通信设备系统状态检修流程图,如图1所示,包括了基本信息、巡视数据、在线监测系统等诸多内容,与传统的检修方式比自然更加科学,但同时也带来了新的问题,例如如何有效处理海量数据、如何将处理后得到的设备数据用于状态评价服务等。为解决这两个关键点,在此建立相适应的数据处理模型和评价模型,并对其可行性加以验证。假设状态检修周期是一个月,计算周期是一天。

2数据处理模型分析

针对不同的设备,评价标准也各有差异。为全面反映设备的运行状态,评价标准中含有多项指标,均有专家系统为其打出的分值。在此将指标主要分为两大类,一是连续变化型,二是开关型。

2.1面积法

先将周期内采集的所有数据转换为面积数据,将其作为评价模型的输入。此方法主要用于连续变化型指标的处理。通过在线监测系统将监测数据生成统计曲线,可反映指在特定阶段内的运行状况;而后挑选设备的一个指标,将其评价标准与相应的统计曲线置于同一个坐标系中,以方便观察分析。评价标准会将曲线划分为两部分,只考虑能够表示设备超标运行的异常面积。面积越大、异常时间越久,表明设备超标越严重,则评价时给的分数就低;相反,超标越轻,得分越多。可根据实际运行的异常面积在最大异常面积占的比重衡量设备指标的异常程度。通常需要考虑两种情况,即当某一指标有且只有一条评判标准线和某一指标有多条评判标准线。此外,设备在实际工作时,随着时间的变动,电力系统负荷也在起伏变动。这必然会影响到信息通信系统中的数据流量,所以就同一个指标而言,在其不同的运行阶段,应制定相适应的标准。标准变化的幅值与时间区间可参考电力系统负荷曲线、系统运行经验以及各通信设备运行特点而具体确定。须注意的是,在求面积时,还应观察设备指标是否长时间运行在规定的最高告警线上方。并根据实际情况设计一个合理的值,一旦超过此值,必须提出紧急告警,并予以相应的处理。

2.2统计方法

适用于开关型指标。该方法具有离散性,所以不适宜采用曲线模型处理,可借助概率统计的方法加以处理。即将周期内采集的数据信息转换为概率,作为评价模型的输入。同时规定采集结果为真时,其值为1,否则为0。该方法有两个步骤,先求取参考值,然后确定处理结果。

3评价模型

3.1阈值型评分模型

主要适用于给定正常运行边界或者是极限运行范围的指标,其中,i表示设定的指标运行边界或者是指标极限运行条件;ki(i=0,1)表示设备每种状态下的应扣除的分数。

3.2曲线型评分模型

主要适用在指标偏离基准越大扣分越多的情况。本文选择指数函数作为评分模型,基本模式如下:y=ax-1该模型输入x为连续变化型数据处理的结果S或者是开关型指标最后为0的状态量的个数。在实际计算中,指标类型不同,确定底数a的方式也不同。4.3逻辑与型评分模型主要适用于某一指标由若干状态共同决定的情况,其基本模型如下:x=x1∩x2∩…xi∩…∩xn其中,布尔值1代表状态良好;布尔值0表示故障;xi代表评分对象中第i个状态的布尔值;ki(i=0,1)代表建议设备每种状态下的应扣除分数。最终评分方法则分为三个步骤,先筛选,确保筛选后的数据包含有分值和时间;再判断,最后加以处理。

4模型可行性的验证

采用的是自2012年05月20日到2012年06月20日的CPU利用率数据。已知评价标准为设备CPU平均利用率高于60%的部分越限越多扣越多,严重故障警戒为90%,该指标满分5分。经过对所有指标模型的实际校验,本文提出模型均符合现有实际系统,能够满足信息和通信系统状态检修的基本要求。但必须经过长期实际运行检验,不断修正参数和完善模型,最终才能达到更加符合实际、更加精确的评价效果。

5结语

第4篇

[关键词]不良库存通信设备制造业

库存管理是供应链管理的重点,库存对企业的生产计划、营销策略、资金利用、服务水平等方面有重要影响。从通信设备制造企业的实际来看,不良库存(呆滞、呆死库存)已经成为影响甚至制约企业发展的重要原因,本文将从该行业的特点入手,分析并提出对不良库存的改进策略。

一、通信设备制造企业库存状况特点

通信设备可分为构建通信基础设施网络的网络端设备和最终客户用于接收通信服务的终端设备。本文研究对象为前者,即网络端设备(以下简称网络设备)。

网络设备在其产品形态、市场需求、生产、研发等方面有以下的一些特点:

1.产品形态一般为同一设备个体中具备可支持不同业务的多种业务模块,业务模块种类可根据不同客户需求在此设备主控模块允许范围内增减,并且相同的业务模块常常可适应多种不同型号机型的主控模块,所以网络设备更多的以半成品即业务模块的形态进行研发、生产、储存和表达客户需求。可批量生产的固化有特定业务功能的产品仅占少数。

2.市场需求一般可分为电信级需求、企业级需求和个人需求。本文主要讨论前两种需求。相比企业级需求而言,电信运营商提出的电信级需求更加大量也更加连续,此外,由电信运营商成熟业务带来的网络设备需求更加稳定,而新业务和特殊业务导致的设备需求更加多变。一般大中型通信设备制造企业均在不同程度上参与电信级市场和企业级市场的竞争,从而导致企业所面对的市场需求较为复杂。

3.生产任务一般分制造任务和装配调试任务。制造任务以半成品为对象,制造完成后或者立刻进行装配调试,或者入库存放。当客户实际订单来到后,由装配调试任务进行半成品的挑拣并最终产出可发往客户的成品。

4.在研发管理上,网络设备往往以整机机型作为研发目标,但在技术支撑上,不同的整机研发可能共用相同或相似的技术平台,这样做的好处不但可以使技术积累的优势得以充分利用,而且各种物料甚至半成品均可因共用而降低研发成本。

由于网络设备具有上述特点,并且在激烈的市场竞争中,各个企业均将快速响应客户需求作为拉动供应链运作的核心点,所以在一般的通信设备制造企业中,其库存结构往往有如下特点:

(1)一般采用PTO(按订单捡料Picktoorder)模式和安全库存策略指导生产,即在外部客户订单和内部安全库存订单的指导下进行捡料、制造、装配和调试(其中安全库存订单一般不进行装配和调试),而不做预先的成品库存准备。

(2)在全球化合作的今天,即使国际上知名的大型通信设备制造企业也需要在全球范围内进行生产合作,并且网络设备技术复杂、器件繁多,这就导致网络设备生产所需原材料品种多且供货周期差异极大(可在数日到数月不等),而客户要求成品到货期限一般都较短(数日到数周),所以通信设备制造企业一般会对常用的半成品和原材料进行一定量的库存准备。

(3)由于大中型通信设备制造企业的产品种类往往成百上千种,且研发成本很高,所以其研发机构需设置单独的库存来满足研发需求,从而导致在企业内部存在生产库存和研发库存两个库存系统,且这两个系统之间互通性不强。

(4)客户需求复杂多变,尤其是新业务需求和特殊业务需求在需求量、需求时间、需求确定性等方面均存在较大风险,在牛鞭效应下,通信设备制造企业往往因此产生较大的呆滞库存,除此以外,即使成熟业务需求也不能保证不发生波动,所以不良库存成为行业内的通病。

二、通信设备制造业不良库存的改进策略

传统的单一库存管理模式中,各节点企业的库存管理各自为政,渠道商、产品制造商、原材料供应商都有自己的库存和自己的库存策略,且互相封闭、不通信息,企业无法利用整个供应链上的资源。渠道商仅仅将顾客的订货信息反馈给制造商,并不预测和传达顾客的需求预测,同时也不知道上游制造商的库存量和库存策略,供应链上游的制造商与供应商之间也是如此,为了规避无法预测的市场风险,每个企业不得不保留大量的库存,从而导致整个供应链库存成本的高昂。这样的库存管理模式随着激烈的市场竞争、全球协作和产业规模化的发展显现严重的不足,从而推动其向基于整个供应链的库存管理方向进行演化。

通信设备制造业的库存管理也经历了以上的过程,并且仍然处在从基于企业库存管理向基于供应链库存管理变化的阶段。核心企业仍然以自备库存应对市场不确定性为重要甚至是主要的策略,但也积极的寻求与供应链上相关企业的合作,分担风险。通信设备制造业面对的供应链极其复杂,呈现全球化、网络化形态,节点企业成千上万,难以同步协调所有企业的信息共享和意见统一,本文结合行业特点及目前较为成熟的基于供应链的库存管理理论,如供应商管理库存VMI(VendorManagedInventory)、联合库存管理JMI(JointedManagingInventory)以及协同规划、预测和补给CPFR(CollaborativePlanningForecasting&Replenishment)等,对改进通信设备制造业库存管理以降低不良库存提出以下建议:1.供货期短、低端、标准化程度高的产品的渠道商库存由供应商管理。低端产品一般可批量生产,并经过渠道商进行销售,如果一些低端产品供货期较短,则供应商就具备对这些产品快速补货能力,在此前提下,由供应商管理渠道商的库存,并在多家渠道商之间实现库存调配,从而能同时降低各方库存成本。

2.重要产品的库存管理以核心企业为主联合决策。大中型通信设备制造企业的所有产品系列中,重要产品的销售额和供应成本一般都在企业中占很大的比重。这些重要产品或是支持客户的成熟业务、或是产品制造商主推的产品、又或是为了争夺重要市场而准备的产品等,总之,相比其他产品而言,保证这些重要产品的及时供应显得更加重要和紧迫,此外,由于这些重要产品的备货量一般较大,一旦出现决策失误,给企业带来的损失也较大。所以在制定这些重要产品的库存策略时,应由核心企业为主,使供应链上下游相关企业共同参与、联合决策,在信息共享的基础上,充分评估缺货或呆滞的风险,在对成本分担原则协商一致的情况下,确定各环节的库存量和调配方式。

这样的联合决策体现了战略供应商联盟的新型合作关系,可有效解决供应链系统中由于各节点独立库存运作导致的需求扭曲现象,提高供应链的同步化。

3.共同参与重点市场的分析和预测。对某个市场的预测和分析涉及的不是单一产品,而是多种产品共同满足市场总需求,且所需产品种类和数量存在不确定性,供应链上下游的原材料供应商、网络设备制造商、渠道商甚至最终大客户共同参与重点市场的分析和预测有助于各方达成共识,使各企业的生产计划和需求计划基于同一销售预测报告,从而在相同的指导下安排各自的内部运作。这样可从全局的观点出发,各方制定统一的管理目标以及方案实施办法,以库存管理为核心,兼顾供应链上的其它方面的管理,因此在更高的层面实现伙伴间更广泛深入的合作,不再局限于对具体产品的协作。

4.生产库存系统与研发库存系统之间信息互通和资源调配。生产库存系统针对的是定型产品的生产供应,而研发库存系统针对的是不成熟产品的试验需求,二者在库存量、库存种类、库存时间等方面的要求都不同,所以不宜将其合并。但这两个库存系统存储的原材料、半成品和成品仍有一定的重合度,在实现信息互通的情况下,可对这部分双方都有的库存进行统一规划和利用,降低库存成本,而且在市场紧急需求时,可将研发库存作为备用调配源来使用。超级秘书网

5.信息系统向上下游企业延伸。大中型核心企业一般都有MRP(物料需求计划materialrequirementsplanning)系统或ERP(企业资源计划EnterpriseResourcePlanning)系统等信息系统承载供应链运作中的信息流。随着信息技术和通信网络的发展,以及协作意识的增强,一些实力较强的行业内领先企业已经着手实施内部信息系统的外延,即将自身的信息系统延伸到上下游合作伙伴或与合作伙伴的已有信息系统连接,从而在不泄露企业秘密的情况下,各方实时快速的掌握必要的数据信息,使供应链的资源协调处在相同的信息覆盖下,保证步调一致。

参考文献:

第5篇

关键词:通信电源;设备管理;设备维护;阀控式蓄电池

通信电源的基本任务是向通信设备提供不间断的、符合质量要求的电能。它作为通信网的“血脉”,是确保通信畅通的必要条件。要保证现代化通信网全程全网的畅通并做到高可靠、低电磁干扰,低功耗通信电源系统是基础。

一、加强通信电源管理的专业化

随着通信网装备水平的逐步提高,电源也同样处在大量引进新设备、淘汰旧设备的时期,同时为配合维护体制全专业、大配套的改革,用了许多新的维护手段,出台了许多新的维护管理办法。所以在通信网的各级管理层次及建设、维护方面都应该有独立的电源专业管理机构和人员。因为通信电源不仅是一个专业,而且是一个包括多种系统和学科的大专业,由其他专业的人员来兼管电源专业是不科学的,也是不专业的。因此,要管理和维护好现代化通信网,电源专业同其专业一样存在着维护人员素质、水平亟待提高的问题。要解决这一问题可以采取以下一些措施:

加强日常及定期管理,根据新设备、新技术的采用及新的网络体系结构重新制定和完善各项规章制度。

在新建工程时,要从工程设计、方案会审、工程实施到验收竣工各个阶段积极参与和把关。继续搞好技术练兵,加大培训力度。引进电源专业的高素质人才。

二、加强通信电源安全可靠运行的管理与维护

通信电源安全可靠运行是由多种因素和环节所决定的,它与设备质量、工程勘察与设计、运行方式选择、建设管理、运行维护管理等各环节相关。其中对于设备选择、方案设计、工程管理等环节尤其要加强重视和管理。一个先天不足的通信电源系统将造成通信安全的巨大风险和后期人力、物力、财力的巨大重复投入。

2.1动力电源

动力电源设备是所有通信设备运行的动力之源,其运行状态直接影响到通信业务能否有效提供。在日常设备运行中,常存在高压电源单引入、逆变电源不稳定、UPS应用不当等问题,为此应做好以下工作:

机房的高压宜采用双回路供电,即两路不同的变电站输入,以确保供电不间断。对于给机房通信设备供电的交直流电源列头柜,也应采用双路供电,以保障业务设备用电安全。

逆变电源与整流电源应采用一体化设备,以保障安全供电,易于监控,同时可减少设备投资,降低维护工作量。目前,一些通信机房为部分设备提供220V交流电时,采用2KVA~6KVA的UPS(另带有220V蓄电池组)供电,单机工作不可靠,成本高。建议使用逆变且与整流功能一体化的电源设备,其结构为:在整流电源机架的空余子框中插入1KVA~1.5KVA逆变模块,1个子框一般插3~4个,逆变模块均流输出,实现N+1容量冗余,这样不会因某个模块出现故障而影响正常供电。逆变模块的运行监控由整流电源的监控模块统一实现,从而可节省机房空间。由于共用原有的-48V蓄电池组,省去了UPS必须另带其他型号电池组的费用(以16个单体65AH电池为一组,约需1.5万元)及其维护,并减少了动力环境监控系统的协议转换节点(约需0.4万元),6KVA的逆变器(4个1.5KVA模块)比同容量UPS少2万元,因此1个机房就可减少建设投资及运行维护成本约4万元,同时可大幅度减少维护工作量,设备运行也更安全可靠。同时建议在机房新建通信项目时,不应另购小的UPS/逆变器,而应使用机房原有的大UPS交流电源,以保障设备用电可靠,减少故障环节。

2.2蓄电池

蓄电池作为直流(直流系统)或交流(UPS系统)不间断供电的保证,在整个系统中最为关键。电池不但在交流系统或整流器出现问题时保证不间断供电,而且还要在市电正常转换时提供保证。如果电池丧失容量,即使对前端的交流高低压系统、整流系统等配置管理得再好,在一次正常的市电转换中,都可能造成失电而引致通信故障。因此,应把蓄电池的维护管理作为一项重点工作来抓。目前阀控式密封蓄电池以其体积小、电压稳定、无污染、重量轻、放电性能高、维护量小等特点,而成为通信电源系统的首选电池。但在实际使用中,达不到理论预期寿命的比比皆是。

2.2.1影响阀控式蓄电池使用寿命的主要因素

阀控式蓄电池全浮充正常使用寿命在10年以上,理论上可到20年,但在实际使用中,影响阀控式蓄电池使用寿命的因素很多,主要有:

环境温度。环境温度过高对蓄电池使用寿命的影响很大。温度升高时,蓄电池的极板腐蚀将加剧,同时将消耗更多的水,从而使电池寿命缩短。蓄电池在25℃的环境下可获得较长的寿命,长期运行温度若升高10℃,使用寿命约降低一半。

过度充电。长期过充电状态下,正极因析氧反应,水被消耗,H+增加,从而导致正极附近酸度增加,板栅腐蚀加速,使板栅变薄加速电池的腐蚀,使电池容量降低;同时因水损耗加剧,将使蓄电池有干涸的危险,从而影响蓄电池寿命。

过度放电。蓄电池过度放电主要发生在交流电源停电后,蓄电池长时间为负载供电。当蓄电池被过度放电到其电压过低甚至为零时,会导致电池内部有大量的硫酸铅被吸附到蓄电池的阴极表面,在电池的阴极造成“硫酸盐化”。硫酸铅是一种绝缘体,它的形成必将对蓄电池的充、放电性能产生很大的负面影响,因此在阴极上形成的硫酸盐越多,蓄电池的内阻越大,电池的充、放电性能就越差,蓄电池的使用寿命就越短。

2.2.2阀控式蓄电池的正确使用和维护

蓄电池应放置在通风、干燥、远离热源处和不易产生火花的地方,安全距离为0.5m以上。在环境温度为25℃~0℃内,每下降1℃,其放电容量约下降1%,所以电池宜在15℃~20℃环境中工作。

要使蓄电池有较长的使用寿命,应使用性能良好的自动稳压限流充电设备。当负载在正常范围内变化时,充电设备应达到±2%的稳压精度,才能满足电池说明书中所规定的要求。浮充使用的蓄电池非工作期间不要停止浮充。

必须严格遵守蓄电池放电后,再充电时的恒流限压充电恒压充电浮充电的充电规律,条件允许的最好使用高频开关电源型充电装置,以便随时对蓄电池进行智能管理。

新安装或大修后的阀控式蓄电池组,应进行全核对性放电实验,以后每隔2~3年进行一次核对性放电实验,运行了6年的阀控式蓄电池,每年作一次核对性放电实验。若经过3次核对性放充电,蓄电池组容量均达不到额定容量的80%以上,可认为此组阀控式蓄电池寿命终止,应予以更换。

结语

虽然通信电源不是通信网的主流设备,但它却是整个通信网中最重要、最关键的设备。必须看到,通信电源是整个通信网的能量保证,它的作用是整体性和全局性的。在日常维护工作中,要引起足够的重视,明确工作重点,抓住工作重心,确保重点系统的安全运行,减少因电源引起的通信故障,降低故障的影响程度,从而确保通信网的安全畅通。

参考文献:

第6篇

【关键词】互联网技术电力保护通信系统设计

随着电力工业及互联网技术的迅速发展,电力企业对线路的保护也提出了越来越高的要求。通信系统作为高频保护的一种重要的组成部分被要求具有更高的可依赖性、安全性及快捷性。同时,通信技术越来越发达,特别是光纤通信的日益普及为数字保护通信系统的发展提供了强有力的动力。

一、电力保护通信系统的概述

随着人力资本成本的不断提高,电力系统变电所逐步开展和普及无人值班的运作方式。所以传输各类信息的远动通道便成为了解和控制变电所运行状况的唯一窗口。因此,通道的建设、保持及维护成了工作的重点及难点。一般来说,远动通道分为接收变电所各类信息的“上行”通道和下发各类控制信息的“下行”通道这两种通道。上行通道一般可以直接通过主站显示屏的画面查看其运行情况,而对传输遥控命令的下行通道,至今所有的调度自动化系统、厂站端的RTU或变电站综合自动化装置均不具备对下行通道的检测功能,这严重影响着整个电力系统的运行安全[1]。基于此为了提高电力系统运行的安全性,对线路保护提出了更高的要求。而作为线路保护重要组成部分的远方保护信号设备的安全性、可靠性及快速性必须要可以保证。

二、电力保护通信系统的运用现状及趋势分析

2.1电力保护通信系统的运用现状分析

目前,我国电力保护通信系统的运用主要集中在一些大型的电力企业中,而对于小型的发电企业则很少使用,造成这种现象的原因是多方面的。首先,对于一些小型的电力企业来说采用电力保护通信系统的必要性比较弱。其次,系统的运行对人才与资金的要求比较高,小型电力企业不具有具备专业知识的系统建设及维护的专业技术人员。就目前我国电网中运行的远方保护信号设备而言,大部分的电力企业采用的都是模拟系统,这个系统主要包括使用电力线为载体的保护专用收发信机和电力线音频复用通信系统两个部分[2]。

2.2电力保护通信系统的运用趋势分析

随着互联网技术的不断发展,数字保护通信系统必然代表保护信号设备的发展方向。原因主要体现在以下几个方面。第一,数字保护通信系统符合全球数字化的潮流,第二,数字系统抗干扰的能力强,第三,数字设备可靠性比较高,调试和维护非常方便,从长远来看,可以降低使用成本。第四,数字设备可以提供良好的人机界面。

三、复用式数字保护通信系统的设计分析

通过上面的分析可以看出复用式数字保护通信系统必然代表保护信号设备成为未来的发展方向。在电网改造中SDH、ATM等新的光纤通信技术在电力系统通信中都得到了普遍应用,这无疑可以看出复用式数字保护通信系统的运用潜力[3],同时电网改造也给复用式数字保护通信系统的运用提供了前所未有的发展机遇。现在高电压等级的变电站的保护信号通信设备首选是数字保护通信设备,而且实现的方式主要是将保护信号复用到SDH通信设备的时隙中,利用SDH设备的快速自愈性能进一步提高保护信号通信的可靠性[4]。基于此论文对复用式数字保护通信系统进行一个系统的设计。为了提高系统的整体性能,这套系统设计方案采用了特别的纠错编码解码方案,同时结合采用一些比较先进的技术设备,比如高速CPU、CPLD和流行的Windows人机界面等。这些都可以很大程度上提高设备的可靠性,使调试、维护和使用过程更加方便安全。复用式数字保护通信系统以具有自愈功能的SDH环状网为核心,提供行政电话、调度电话、远动数据和保护命令的全方位接入和传输。

四、结语

通过论文的分析可以看出数字保护通信系统必然代表保护信号设备的发展方向,这种数字保护通信系统不仅可以提高系统的整体性能,还可以提供行政电话、调度电话、远动数据和保护命令的全方位接入和传输,在实际运用中值得推广。最后,希望论文的研究为相关工作者及研究人员提供一些参考与借鉴价值。

参考文献

[1]吴玲燕.广域保护通信系统可靠性及其路由选择研究[D].重庆:重庆大学,2011

第7篇

【Abstract】Along with the development of China's aerospace industry, the reliability of avionics communication equipment in the aerospace industry has attracted more and more attention from the relevant departments, the paper first introduces the significance of avionics communication equipment reliability design, and then analyzes the main influence factors of avionics communication equipment’s reliability, and finally puts forward specific measures to ensure aviation electronic communication equipment reliability design.

【关键词】航空;设备;可靠性;技术

【Keywords】aviation; equipment; reliability; technology

【中图分类号】V243.1 【文献标志码】A 【文章编号】1673-1069(2017)04-0141-02

1 引言

随着我国整体科学技术的不断发展,以及近年来在航天事业上的巨大发展,在航天产业中具备极大影响的电子通信设备其可靠性越发的受到人们的重视。目前众多的电子通信生产企业在其生产理念上,已经逐渐建立起了以切实检验手段来进行产品质量保障的体系,可靠性、质量已经成为设备使用者的最重要的关注点。在此背景下,论文围绕航空电子通信设备的可靠性,分三部分展开了细致的分析探讨,旨在提供一些该方面的理论参考,以下是具体内容。

2 航空电子通信设备可靠性设计的重要意义

2.1 是通信电子设备使用寿命的直接影响因素

首先基于航空事业其本身的特点,往往使用的周期很长,这也就要求航空电子设备具备很长的使用周期。而电子通信设备的可靠性设计便是电子通信设备使用寿命的最直接影响因素。从整体上观察,电子通信设备的设计、安装以及使用和后期的维修过程,可靠性都参与其中,因此也可以说目前在通信电子设备设计上可靠性已经成为一个设计的重点所在。

2.2 是信息时代人们对电子通信设备的基本需求

随着我国科学技术的整体抬头,目前市场上的电子通信设备也越发的多元化和多样化。而随着通信电子设备数量的增多,在航空事业方面对通信电子设备的选择要求也就相应提升,除了要求通信电子设备满足基本的通信功能之外,在使用感受以及可靠性等方面,也提出了更多的要求,因此航空通信电子设备的可靠性设计是时代背景下的一个客观要求。

3 航空电子通信设备可靠性的主要影响因素

3.1 制造技术及制造条件的影响

在航空电子通信设备可靠性方面的影响因素,首先便是生产航空电子通信设备的制造技术以及制造的条件。就目前的航空电子通信设备发展趋势进行观察,便捷化、智能化以及多功能化是未来的发展趋势,而要实现这一趋势就必须在航空电子通信设备的生产环节,保障一个良好完整的生产体系。目前存在着一部分生产厂家,在生产中并不具备完备的生产的条件,进而难以保障航空电子通信设备的生产质量,在可靠性方面就会存在一定不确定性。

3.2 恶劣天气的影响

因为航空电子通信设备的使用往往位于外界,而地球的环境十分多变,在太空更是会受到诸多的宇宙因素影响。雷电天气、雨雪天气等都会对航空电子通信设备产生一定干扰和破坏,影响设备的正常工作状态,而这些因素便会对航空电子通信设备的可靠性产生一定的影响。

3.3 外界电磁的影响

航空电子通信设备在使用原理上,电磁波是其最为主要的一环,但是在航空电子通信设备使用时常常会受到一些外界电磁的影响。地球本身就是一个巨大的磁场,而这些电磁场中的电磁波所产生的辐射,便会对航空电子通信设备的正常工作产生一定的影响,进而对航空电子通信设备的可靠性造成了影响。

4 保障航空子通信设备的可靠性措施

4.1 不断优化、简化电子线路

不断进行航空电子通信设备电子线路的优化和简化,便可以极大化的减少外界磁场对航空电子通信设备可靠性的影响。而在航空电子通信设备可靠性设计时,必须在满足基本的航空电子通信设备功能以及质量的基础上,通过不断地进行技术创新,实现制造流程的优化,从而达到航空电子通信设备电子线路的简化和优化,具体而言可以从以下几个方面入手:①在元器件的使用通道设计上,可以设计为几个元器件共同使用一个通道,进而实现线路通道的减少[1];②在元器件的使用数量上,可在保障基本功能之上,通过技术创新,尽可能减少对元器件的使用数量;③在设备组成上,尽可能使用软件对硬件进行代替;④对于设备中的一些模拟电路可使用数字电路进行代替。但在整体的线路简化、优化的过程中必须注意,不能为了最大化的简化路线,而导致元器件在使用过程中出现集成电路板被过载烧坏的现象,更不能将一些成熟性不足的技术和设计方案使用到航空电子通信设备电子线路的优化和简化中。

4.2 深化低耗功率设计

目前在航空电子通信设备可靠性提升设计方面,低耗功率设计已经得到了一定的应用,但是从整体上进行观察,低耗功率设计还有很大的进一步深化空间,因此在提升航空电子通信设备可靠性方面,可以进一步对低耗功率设计进行深化。从航空电子通信设备性能上进行观察,航空电子通信设备正逐渐朝着高密度化以及微型化的方向发展,而这一趋势直接导致了航空电子通信设备中元器件数量的增多以及集成电路在能耗方面的提升,进而在航空电子通信设备的使用过程中持续发热的现象越发凸显,而这一问题就可能会导致,航空电子通信设备使用可靠性受到影响。因此在目前已有的低耗功率设计基础上,还需要进一步深化低耗功率设计,保护航空电子通信设备电路安全,也提升航空电子通信设备的可靠性[2]。

4.3 依托维修性设计提升设备可靠性

除了设计制造环节提升航空电子通信设备可靠性之外,面对航空电子通信设备机械化工作环境和恶劣天气导致的航空电子通信设备损坏,还需要通过维修性设计,在航空电子通信设备的后期使用上提升其可靠性。具体而言,航空电子通信设备的制作人员必须保障航空电子通信设备在故障出现后的检查和拆卸十分方便;此外对于航空电子通信设备的一些元器件必须是可以在市场上买到的,不能大量使用一些不再生产和使用的元器件。

5 结语

综上所述,随着我国航天事业的整体抬头,以及通信电子设备的不断多元化和多样化,人们逐渐对通信电子设备的可靠性提出了新的要求,而通信电子设备的可靠性设计本身,也直接对通信电子设备的使用寿命产生影响,也是时代背景下的一种必然要求。航空电子通信设备可靠性方面,制造技术及制造条件、机械化工作环境、恶劣天气、外界电磁都会对其产生影响,基于这些影响因素以及结合航空电子通信设备的特殊性,不断优化、简化电子线路、深化低耗功率设计、依托于维修性设计提升设备可靠性是切实有效保障航空子通信设备可靠性的具体措施,值得相关企业充分合理地参考使用。

【参考文献】

第8篇

关键字:CBTC系统;故障;应对策略

中图分类号:U226.8+1 文献标识码:A 文章编号:

0引言

由西门子公司研制的移动闭塞列车控制系统(CBTC),是以无线传输为基础,主要包括ATO(自动列车驾驶)、ATP(自动列车防护)、ATS(自动列车监督)以及CI(正线计算机联锁)等子系统。CBTC系统目前在伦敦、温哥华、香港、深圳、南京等多个城市的轨道交通线路上得到应用,本文对城市轨道交通CBTC系统故障归类及其设计应对策略做了简要的介绍。

1. 移动闭塞列车控制系统(CBTC)简介

1.1移动闭塞列车控制系统的结构和功能

CBTC系统包括地面子系统、ATS子系统、数据通信子系统以及车载子系统。CBTC地面/轨旁设备是由一个设置在控制中心或轨旁的基于处理器的系统;ATS子系统用于实现列车运行调整,ATS的自动/人工设置进路,列车的显示、跟踪和识别等;设置在中心、轨旁及车上的数据通信子系统能够实现地面与列车、地面与地面以及车载设备内部的数据通信;车载子系统包括测速和定位传感器以及智能控制器。移动闭塞列车控制系统是新一代的ATC系统,它的功能与系统配置有关,其基本功能如下:计算功能、定位功能、构成闭塞功能、车地双向通信功能、提供线路参数和运行状态功能、远程诊断和监测功能以及记录功能。

1.2移动闭塞列车控制系统工作原理

移动闭塞列车控制系统(CBTC) 的线路取消了物理层次上的分区划分,而是由一定数量的单元组成移动闭塞的分区。CBTC系统通过车载设备和轨旁设备不间断的双向通信,轨旁控制器接收到列车传来的标识、位置、方向和速度的信息,并计算、确定出列车的安全行车间隔,再将先行列车位置、移动授权等相关信息传递给列车,使列车能以较小的间隔和较高的速度行驶,保证了列车前后的安全距离,从而达到控制列车运行的目的。

2. 移动闭塞列车控制系统故障应对策略

2.1应对ATS设备故障

ATS子系统的功能主要有以下几种:OCC (控制中心) HMI(人机界面)、ARS(自动排列进路)、TMT(列车跟踪监督)、TTS(时刻表)和ATR(列车自动调整)等。

ATS子系统主要故障有:(1)通信中断故障,TRC(列车排路计算机)和安装在某联锁站的TTP(时刻表处理器)组成ATS系统,如果控制中心和系统的双通信通道同时发生故障,ATS将会失去作用,运营控制由本地ATS系统接管。(2)控制中心服务器故障,控制中心服务器主要包括:HMI(人机界面)、前端处理器FEP(与外部子系统的通信接口)、ADM(中心数据存储机)以及COM服务器(主要作用是汇集及处理系统的动态数据)。主用和备用热备冗余是由COM服务器提供的,在主用COM服务器发生故障的情况下,备用COM服务器自动启动,同时主用和备用ADM服务器都有报表数据存储。前端处理器FEP按冗余方式配置,在每个联锁站和控制中心实现系统及控制中心的通信功能,如图1所示。

图1 ADM、COM服务器提供主\备热备冗余、FEP采用双通道通信

2.2应对轨旁设备故障

轨旁设备由ATP(自动列车防护系统)和SICAS(联锁系统设备)组成。WCU (轨旁控制计算机)是ATP的主要设备,SICAS的主要设备是PC、ECC、SOM、POM、INOM和室外信号机、转辙机、计轴设备。

轨旁设备的主要设备故障有:(1)WCU (轨旁控制计算机)故障,由于三取二冗余设计应用在WCU和通信通道上,单个通道故障对列车运行没有影响,但是如果两个通道都出现故障,可以将列车切换到人工驾驶RM模式,运行到下一个车站之后,采用站间闭塞模式运行。(2)SICAS系统故障,SICAS系统故障分为室内和室外设备故障。室内设备的硬件故障解决,是由采用三取二冗余配置的PC、ECC和通信通道来实现的,如果单个接口模块出现问题,系统在通过板件重启、维修替换之后可以正常运行。室外设备故障,室外信号机在CBTC正常模式下是灭灯的,所以系统在信号机出现故障时,只发出报警信号,不影响列车的正常运行。通过抢修和加道岔钩锁器等措施可以解决转辙机故障。通过计轴预复位等操作可以解决计轴设备的故障。

2.3应对车-地通信设备故障

车-地通信设备包括车载通信设备和轨旁通信设备。TU(无线单元)和车载天线组成车载通信设备,CSR、NMS、AP和应答器单元共同组成轨旁通信设备。

车-地通信设备故障主要有:(1)车载通信设备故障,出现车载通信设备硬件故障时,可以通过车载天线采用双侧车头布置,单侧车头收发数据用2根天线来解决。(2)轨旁通信设备故障,单一服务器故障不会影响采用双机配置的轨旁通信设备,列车能够正常运行。但是列车会在单一应答器出现故障时出现定位不准确的问题。

2.4应对车载设备故障

HMI(人机界面)、ATO(列车自动驾驶)和ATP(列车自动防护)共同组成了车载设备,列车自动驾驶的模式有:列车自动驾驶AM、ATP监督人工驾驶SM和限制人工驾驶RM模式;列车自动控制级别是联锁控制级、点式列车控制ITC级和连续列车控制CTC级三种。车载设备的冗余配置可以解决单个单元的车载故障,如果人机界面出现问题,在ATO模式下列车仍能自动运行;如果列车自动驾驶系统出现问题,在SM模式下列车仍能自动运行;如果列车自动防护系统出现问题,在人工驾驶RM模式下切除车载ATP,司机在调度员指挥下驾驶列车。

3. 移动闭塞列车控制系统运营中的信号故障处理

在对CBTC系统故障应对策略充分理解的基础上,本文对南京地铁2号线在运营中出现的信号系统故障以及采取的故障处理进行简要的介绍。(1)ATP故障。3132车在2010年11月7日金马路站出现ATP故障,信号人员接到通知后,第一时间到达故障车,司机在ATP出现故障后,切除ATP系统采用人工驾驶RM模式运行列车,但列车速度在人工驾驶RM模式被限制,容易造成晚点。采取合理高效的ATP系统重启,故障影响时间大大缩短,使列车的运营效率得到提高。(2)无线故障。4546车在11月20日孝陵卫至钟灵街区间出现无线丢失的故障,但是在列车出站后,设备重新恢复正常,车载无线单元的检测芯片是无线丢失的主要原因,重启无线单元或无线单元重新检测到无线信号后,系统重新恢复正常。(3)G0901、G1001受干扰。G0901、G1001两区段在6月11日受不明脉冲信号干扰,分析得出受干扰的原因是工务专业在G0901、G1001区段线路检查作业时,小推车经过了计轴磁头CH0901/1001,在对这两个区域进行了复位操作后,设备恢复正常。

4.结语

基于通信的移动闭塞列车控制系统(CBTC)是列车控制系统技术的发展方向。本文通过讨论城市轨道交通CBTC系统故障归类及其设计应对策略,发现目前故障主要集中于车载通信设备,认清楚问题的所在之后,通过维护人员跟踪检查、分析,在排除无线信号受干扰的基础上,更换部分列车车载通信单元,从而解决这一问题。

参考文献

[1] 肖彦博. 谈城轨交通CBTC系统故障归类及其设计应对策略[J]. 现代城市轨道交通, 2011(3) : 12-14.

[2] 凌祝军. CBTC系统中的联锁技术研究[J]. 铁道通信信号. 2009,45( 9) 12-14.

[3] 刘会明. CBTC系统工程设计中需注意的几个问题[J]. 铁路通信信号工程技术. 2006,3( 3) 33-35.

[4] 李红侠. 城市轨道交通移动闭塞系统ATC系统的运用分析[J]. 城市轨道交通研究, 2004(3) : 51-53.