发布时间:2023-02-18 14:01:13
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的混凝土裂缝论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
论文摘要:混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程因施工过程中产生的裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命等。因而防止楼板开裂已经成为大家共同关心的课题,本文试从施工的角度出发,探讨楼板裂缝产生的原因以及防治措施。
一、楼板裂缝的开展大多有以下几种情况
(一)裂缝在板面沿楼板支座边300mm范围内平行于支座开展,甚至板的四周都出现裂缝并且连续;
(二)在板角处裂缝与相邻两支座成45度角展开;
(三)与施工井架位置相接的楼板常出现裂缝。
这些裂缝大多在工程竣工后一段时间才被发现,往往这时楼板还几乎没有使用荷载。有时裂缝宽度在水泥沙浆找平层表面被放大了,实际上在混凝土楼板的裂缝宽度大多在0.3mm以下,裂缝的深度在15mm左右。
二、楼板裂缝的原因主要有以下几种
(一)干缩裂缝
混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、骨料的性质和用量、外加剂的用量等有关。硬化混凝土在约束条件下的干缩是楼板产生裂缝的一个比较常见的原因。水泥的水化或混凝土中水分的蒸发会引起混凝土干缩。此外,楼板混凝土的收缩也受到结构的另一部分(如混凝土梁、柱)的约束而引起拉应力,拉应力超过混凝土抗拉强度时混凝土将会产生裂缝,并且能够在比开裂应力小得多的应力作用下扩展延伸。
(二)塑性收缩裂缝
塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。
(三)支撑沉陷裂缝
新浇混凝土楼板容易在模板、支撑变形的情况下产生裂缝。由于支撑的刚度不足或梁板支撑刚度差异较大,在荷载作用下变形沉陷,施工期间的过度震动使支撑刚度变异部位多次瞬间相对位移以及过早拆模等等都可能使混凝土在发展足够强度以支撑其自身重量之前产生裂缝。沉陷变形也是混凝土楼板裂缝开展的另一个常见原因。
(四)温度裂缝
混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力,当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝。
(五)化学反应引起的裂缝
碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。
就施工因素来说,楼板的模板、支撑变形或沉陷,混凝土的制作和捣实工艺等许多方面的施工质量问题以及缺乏养护都会增加产生裂缝或引致裂缝发展的可能性。因此,裂缝的发生和延伸开展与混凝土内在的特性和多种施工因素可能同时存在某种关系。也就是说,同一条裂缝的开展往往由多个原因所造成。
三、针对裂缝产生的原因,在施工因素方面采取相应措施,以减少楼板裂缝的产生。为此,在混凝土施工中,在工序和工艺方面应当注意下列几个问题
(一)严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量,混凝土应使用设计允许的最小水泥用量和能满足和易性要求的最小用水量,设备允许情况下,不要用过大的塌落度。使用各种外加剂时要注意,尽量不要选用增加混凝土干缩的外加剂;选择合适的水泥品种,使混凝土收缩减少,凝固时间合适;混凝土内砂石水泥的级配力求最优。(二)浇筑混凝土之前,将模板浇水均匀湿透。
(三)模板及其支撑系统要有足够的刚度,且支撑牢固,并使地基受力均匀。楼板模板支撑的间距要适宜,使楼板模板刚度与梁模板刚度不至于相差太大。在与施工井架相接的或施工运输频繁经过的楼板模板中适当加强模板支撑系统。
(四)了解预拌混凝土的级配情况,对某些级配的混凝土,不要过度振捣楼板混凝土,过度的振捣会使混凝土产生离析和泌水,使混凝土楼板表面形成水泥含量较多的沙浆层和水泥浆层,容易产生干缩裂缝。由于一般楼板的厚度不大,使用平板振动器匀速拖过一次就可使楼板的混凝土成型密实。要在混凝土沉淀收缩基本完成后才开始楼板的最终抹面。
(五)在楼板的混凝土施工完成后,要等楼板混凝土有一定的强度后才进行下一道工序的施工。在混凝土终凝初期应避免施工荷载对楼板产生较大的震动。特别是与施工井架相接的楼板,其混凝土施工完成是最后的,而上施工荷载受震动是最早和最频繁的。有些施工单位为了抢工期,在楼板混凝土捣制完成后第二天就上人上材料进行下一道工序施工,往往导致这位置的楼板多处产生裂缝。
(六)施工期间不要过早拆除楼板的模板支架,且要注意拆模的先后次序。必要时可在拆除模板后在适当位置上安装回头顶。施工机具和材料不要集中堆放在一块楼板上,避免造成较大的荷载使还未达到强度的混凝土楼板产生裂缝。
(七)了解预拌混凝土的收缩曲线,加强混凝土养护,保持混凝土楼板表面湿润。在常温下养护不少于两周,特别是在混凝土终凝初期,要严格按要求进行浇水养护。养护期后,在施工期间特别干燥的时候也应进行浇水养护。
四、裂缝的处理
修补前需要对楼板裂缝进行检测与研究以确定裂缝部位、开裂程度和裂缝产生的原因等。根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法等。
五、结束语
楼板裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土楼板裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
参考文献:
[1]钢筋混凝土结构设计规范.中国建筑工业出版社,1999.2.
[2]鞠丽艳.混凝土裂缝抑制措施的研究进展.混凝土,2002.5.
[3]郭仕万,肖欣,赵和平.混凝土施工中的裂缝控制.山西水利科技,2000.11.
大体积混凝上常见的质量问题就是混凝上结构产生裂缝。开裂主要与水化热、温差、混凝土收缩等因素有关,是由于混凝土的变形受到约束而产生的。如果没有约束,则混凝土可以自由伸缩,就不会出现裂缝。与约束有关的因素如下[1]:
(1)水化热与约束:大体积混凝土在浇筑振捣以后,水泥开始产生大量的水化热,由于混凝上表面散热的影响,混凝土中心温度向表面递减,由温度的不同导致混凝土内外变形不统一,中心混凝土与边缘混凝土变形不一致,因而产生温度应力。由所受约束的不相同而导致产生温度应力大小也不相同。当混凝土抗拉应力不能抵抗温度应力的作用时,结构就会产生裂缝。
(2)地基和老混凝土与约束:当混凝土浇筑在比较坚硬的基岩或老混凝土上时,混凝土浇注初期的水化热升温,产生膨胀,受到岩石或老混凝土的约束,将产生较小的压应力。而当混凝土温度继续下降时,由于基岩或老混凝土对温降引起的收缩变形约束的结果,混凝土块内将出现较大的拉应力,但混凝土块由最高温度降至施工期准稳定温度场,需要经历很长的时间。在这种约束当中,比较危险的情况是:当基础块混凝土,在早龄期遇到气温骤降,在混凝土块表层,首先出现表面裂缝,而在后期混凝土块继续降温过程中产生的拉应力,使表面裂缝不断向纵深发展,因而形成破坏性的深层裂缝和贯穿性裂缝。
(3)温差与约束:在施工期间,外界气温的突然下降会引起混凝土开裂。因为,外界气温下降越多,则内外温差越大,温差越大,温度应力就越大。更本质地说,由于温差大,外部混凝土与中心混凝土的变形差变得更大,变形差越大,结构所承受的变形应力越大,当应力差出现负值时,则会出现裂缝。
(4)混凝土收缩与约束:混凝土的收缩,也是产生裂缝的重要原因。由于对混凝土各项性能的特殊要求,实际所需拌合水比水泥水化所需的水要多得多。拌合水中只有约20%的水是水泥水化所必须的,其余的都要被蒸发掉。水分蒸发之后,引起混凝土收缩,当收缩受到约束时,则产生收缩应力,当收缩应力大于当时混凝上的抗拉应力时,则裂缝随之产生。
2.大体积混凝土施工中的裂缝控制对策
大体积混凝土的温度裂缝问题给许多工程带来了一系列的挑战,因此,需要在总结前人经验的基础上继续深入研究。如何防止大体积混凝土的温度裂缝,需要找到其产生的原因和影响因素,找到恰当的对策,采取恰当的措施,做到尽量避免和减少。
2.1合理分缝分块
在大体积混凝土施工过程中,为了有效降低大体积混凝土的内外温差,常采用分块浇筑。分块浇筑又可分为分层浇筑法和分段跳仓浇筑法两种。分层浇筑法目前有全面分层法、分段分层法、斜面分层法3种浇注方案。在时间允许的条件下,可将大体积混凝土结构采用分层多次浇注,施工层之间按施工缝处理,即薄层浇筑技术,它可以使混凝土内部的水化热得以充分地散发,应该注意的是分层浇筑的间歇时间。
2.2降低浇筑温度
要降低混凝土的最高温度和温差,比较直接的措施是降低浇筑温度,但其实施必须拥有一定的条件才能实现,在特大型工程中可能才用得到。降低浇筑温度的具体措施包括[4]:(1)降低原材料温度,如做好水泥散热、骨料浇水冷却和预冷等;(2)采用冷却拌和水与加冰拌和;(3)浇筑前预冷混凝土;(4)减少运输途中的热量倒灌,包括减小运输距离,采用特制的保温罐车,用保温材料包裹混凝土泵送管道等。在大体积混凝土的施工中比较实用的措施是做好水泥散热工作、对骨料浇水冷却、采用冷却拌和水和减小运输距离等。
2.3合理安排施工进度
施工进度对人体积混凝土的温度的变化影响非常明显。特别应该注意的是分次、分层浇筑的间歇时间。在分次当中,若间歇时间过长,则会延长施工工期,另一方面也会使老混凝土对新浇混凝土产生较大的约束,从而在上下层混凝土结合面产生难以发现的垂直裂缝。若间歇时间过短,则正处于下层混凝土升温阶段,表面温度较高,这时覆盖上层混凝土,就会明显地不利于下层混凝土的散热,同时也容易导致上层混凝土升温,就有可能超过混凝土要求的最高温升,从而加大混凝土产生裂缝的可能性[5]。因此,选择上层混凝上覆盖的适宜时间应是在下层混凝土温度己降到一定值时,即上层混凝土温升倒加到下层后,下层混凝土温度回升值不大于原混凝土最高温升。
2.5养护措施
目前,大体积混凝土常用的养护方法是保温隔热法。其中在严寒地区可采用托克托古尔法。采用的表面保温材料包括:保温被、不吸水的泡沫塑料板、聚苯乙烯泡沫塑料板、草袋、砂层保温及喷涂保温层等。在尽量减少混凝上内部温升的前提下,大体积混凝土的养护是一项关键的工作,必须切实做好。养护的主要目的是保持适宜的温度和湿度条件,混凝土的保温措施常常也起到保湿的效果,因此兼收两方面的效果。
综上所述,在大体积混凝土的施工中,采取综合措施进行温度控制与裂缝控制,能提高施工效率、提高混凝土的施工质量,减小劳动力的消耗、降低劳动强度、节省工效、加快施工进度、降低工程造价、具有较高的实用性和经济效益。
参考文献:
[1]蔡正咏,混凝上性能,北京:中国建筑工业出版社,1981.
[2]陈谭生,通过控制大体积混凝土的内外约束限制其开裂,现代道桥技术新进展,2003年.
[3]公路桥涵设计规范,北京:人民交通出版社,1995年
[4]霍凯成,大体积混凝土温控与防裂技术研究,武汉理工大学,硕士论文,2004年
[5]阮静叶等,大跨径箱梁混凝土的水化热温度研究,中国上木工程学会及结构工程学会第十四届年会论文集,2006年
论文摘要:混凝土桥梁裂缝是目前摆在养护管理者面前的一种新的难题,本文结合特克斯公路段管养的S316线86+00-K134+000路段的桥梁状况,分析混凝土裂缝产生的原因与影响因素,通过去年在实际工作中引进了一种新材料、新工艺“壁可”注入法应用对混凝土裂缝进行处治修复,其产生的整体效果较好。就此浅谈一些自己的认识。
前言:随着经济发展,公路建设取得突飞猛进的发展,在桥梁建造和使用过程中,因裂缝而影响工程质量甚至导致桥梁垮塌的报道屡见不鲜。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。如果采取一定的技术措施,加强施工质量管理的力度,混凝土开裂是可以克服和控制的。通过近几年桥涵养护管理工作的实际经验,对混凝土裂缝本文初步分析了混凝土桥梁裂缝产生的原因,浅谈一些自己的看法。
1荷载引起的裂缝原因
1.1设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
1.2施工阶段,不加限制地堆放施工机具、材料;不了解预制结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
1.3使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。在超载车辆日益增加的今天,对设计荷载较低的桥梁就会造成板底裂缝。比如,S316线K103+620哈拉布拉中桥,由于超载车辆外荷载作用,造成桥板产生了裂缝。
2温度变化引起的裂缝
引起温度变化主要因素有:
2.1日照:桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。
2.2水化热:出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。
3收缩引起的裂缝
3.1塑性收缩:在施工过程中、混凝土浇筑后4-5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。
3.2缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。
3.3自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
4地基础变形引起的裂缝
地质勘察精度不够、试验资料不准;地基地质差异太大;结构荷载差异太大;结构基础类型差别大;水毁对桥梁基础的冲刷;地基冻胀;桥梁建成以后,原有地基条件变化。
5施工材料质量引起的裂缝
混凝土主要由水泥、砂、集料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,是导致结构出现裂缝的原因。
5.1水泥
(1)水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。
(2)当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。
5.2砂、石、集料
砂石的粒径、级配、杂质含量。
砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。
5.3拌和水及外加剂。拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用含碱的外加剂,可能对碱骨料反应有影响。
6施工工艺质量引起的裂缝
在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:
6.1混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。
6.2混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。
6.3混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。
6.4混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。
6.5混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。采用分段现浇时,先将混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。
6.6施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
6.7施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。S316线K103+620、K109+360、K110+100等处桥梁、墩台、台帽等处出现裂缝较多。7混凝土桥梁裂缝处治方法—“壁可注入法”
第一步表面处理
用纲丝刷沿裂缝表面清理宽约5cm范围;用刷子丙酮或清水清除裂缝表面的浮尘并晾干。
第二步粘结注入座和密封裂缝
(1)配置封口胶按配合比(101#号的主挤、硬化挤的重量比为7:3)配料拌和均匀。
(2)布设注入座用抹灰刀将少许封口胶抹在注入座底面的四周,将注入孔对正裂缝中心轻微挤压,并用封口胶将注入座包覆,沿裂缝的走向每隔30-40cm布设一个注入座,裂缝分岔处也应布设注入座。
(3)封闭裂缝用工具抹灰刀将封口胶沿裂缝的走向5cm宽的范围封闭,封口胶厚度为2mm左右,尽量一次性完成。
第三步封口胶的固化
封闭完成后,让封口胶自然固化,固化时间:在正常温度下(6小间-12小间)
第四步注入灌注胶
(1)可配置封口胶按配合比(主剂、硬化剂的重量比为2:1)配料拌和均匀。
(2)注胶将注入器的连接端牢固地安装在注入座上,将灌注胶装入注入泵黄油枪内,将黄油枪倒置,打开伐门推动活塞排除系统中的空气。将它连接
到注入器的注入端,推动黄油枪的活塞,开始注入。
第五步灌注胶的固化
让灌注胶自行固化,固化时间:大约24小时,与温度有关。
第六步“壁可注入法”的特点
(1)灌注胶具有超低粘度性、渗透力强、粘结力强、具有较高强度。
(2)可恢复混凝土构件的强度,恢复受损构件的承载力。
(3)利用注入器“橡胶管”膨胀后产生恒压力,将胶液自动注入到裂缝深处,持续的低压能避免产生气阻,保证修补质量。
(4)施工工艺简便,易操作使用,节省人工,安全环保。
第七步“壁可注入法”使用效果
2007年6月特克斯公路段通过使用“壁可注入法”对管辖路段的S316线路段,25座桥梁构件,墩台、梁板底、的纵横超限值的裂缝,经过现场使用效果良好。截止目前为止未出现开裂,扩张现象。
结论:公路建设是一项基本建设,只要我们在设计、施工工艺、材料选择以及后期的养护过程中能够充分考虑各种因素的影响,还是完全可以避免的,危害结构的裂缝的产生。
参考文献
[1]《公路桥涵施工技术规范》(JTJ041-2000).
[2]《公路桥涵设计规范》(JTJ025-86).
【关键词】大型桥梁建设也日益增多大体积混凝土在桥梁结构中被普遍采用
【正文】
当前,大型桥梁建设也日益增多,大体积混凝土在桥梁结构中被普遍采用。大体积混凝土如果施工处理不当,极易产生裂缝,控制裂缝对桥梁结构的耐久性具有非常重要的意义。
在大体积混凝土中,温度应力及温度控制具有重要意义。这主要是由于两方面的原因。首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
1裂缝的原因
混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力。但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。
2温度应力的分析
根据温度应力的形成过程可分为以下三个阶段:
(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。
(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。
(3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。
根据温度应力引起的原因可分为两类:
(1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。
(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。
这两种温度应力往往和混凝土的干缩所引起的应力共同作用。
要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。
3温度的控制和防止裂缝的措施
为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。
控制温度的措施如下:
(1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;
(2)拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;
(3)热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;
(4)在混凝土中埋设水管,通入冷水降温;
(5)规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;
(6)施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施;
改善约束条件的措施是:
(1)合理地分缝分块;
(2)避免基础过大起伏;
(3)合理的安排施工工序,避免过大的高差和侧面长期暴露;
此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2..因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。
为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,笔者在实践中总结出其主要作用为:
(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在六十年代就已被国际上所确认。
(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。
(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。
(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。
(5)提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。
(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。
(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。
(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。
(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩.
许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。
4混凝土的早期养护
实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。
从温度应力观点出发,保温应达到下述要求:
1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。
2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。
3)防止老混凝土过冷,以减少新老混凝土间的约束。
混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。
适宜的温湿度条件是相互关联的。混凝上的保温措施常常也有保湿的效果。
从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。
1.1干缩性裂缝病害干缩性裂缝病害常见于水利工程混凝土结构养护后期,或在混凝土浇筑完毕后的一段时间内。通常情况下,是由水泥浆中的大量水分蒸发而引起的。由于混凝土结构内、外水分出现了不同程度的蒸发,因此导致其结构发生变化。同时,由于水工混凝土结构长期受到自然环境的影响,因此表面水分快速流失。在该种条件下,其表面变形量非常大,而内部变形量却非常小,这种不同步变形使得混凝土结构内部受到约束,进而产生拉应力,形成干缩性裂缝。
1.2塑性收缩裂缝病害所谓“塑性收缩裂缝病害”,主要是指混凝土结构在凝结前,因其表面出现了严重的快速失水而产生的裂缝。通常情况下,该种裂缝容易在较为干热或大风天气条件下形成,裂缝中间宽、两端细、长短不一,且互不连贯。该种裂缝短则在20~30cm之间,长可达2~3m,宽度一般为l~5mm。之所以会产生该种类型的裂缝,主要原因是混凝土终凝之前的强度不达标,或者在混凝土终凝前强度相对较小时,高温、大风天气使其表面出现了快速失水现象,导致混凝土的强度下降,出现裂缝。
1.3沉陷性裂缝病害沉陷裂缝病害产生的主要原因是结构地基土质出现了不均匀或松软现象以及回填土不实等。这些都可能会使地基出现不均匀沉降现象。如果模板支撑间距相对较大,支撑底部出现了松动现象,也可能会造成沉陷性裂缝病害。尤其在寒冷的冬季,模板通常支撑在冻土之上,冻土融化后可能就会出现不均匀沉降现象,进而导致混凝土裂缝病害的产生。该种裂缝通常是深进、贯穿性的,一般情况下,走向与沉陷状况之间存在较为密切的关系——沿地面垂直方向发展,尤其是较大的沉陷裂缝,往往会出现错位现象。地基土质存在严重的不均匀问题,或土体浸水、回填过程中土层压实度不够,都有可能会造成支撑混凝土的地基出现严重沉陷。模板自身强度难以支撑混凝土结构的重量,也可能会导致土体出现严重下沉。
1.4化学反应性裂缝病害除以上物理学病害外,还存在着一些化学反应性裂缝病害,比如碱骨料反应性病害、钢筋锈蚀性裂缝病害等。这些都是钢筋混凝土结构中较为普遍的裂缝病害问题。混凝土拌和后会产生碱性离子,其与部分活性骨料发生化学反应后,会吸收其中的大量水分而增大体积,导致混凝土酥松、膨胀,最终形成裂缝。化学反应性裂缝病害通常发生在混凝土结构应用期间。一旦出现该种病害,则很难进行有效的补救。
2裂缝病害防治的有效策略
2.1加强对施工材料质量的控制混凝土原材料的质量波动情况对裂缝病害有非常大的影响。比如,石子颗粒含量的不断变化会对混凝土级配产生很大的影响,甚至会影响混凝土的黏度;同时,骨料含水量会影响到水灰比产。因此,为保证混凝土的质量,必须严格控制混凝土构成原材料的质量,比如砂石、水泥等,使其达到设计要求。对于标号相同的水泥,当其活性出现变化时,应及时采取有针对性的措施调整构成比例,使混凝土质量达到标准要求。
2.2混凝土配制方法要科学在混凝土配制过程中,应当严格按照科学标准和要求,对各种构成材料的实际用量进行调整。因为通常情况下,试验室给出的配合比往往与实际配合比存在一定的差异:试验室中的各级骨料都不含有超径颗粒;而施工中各级骨料中会含有一定量超标的颗粒,含水量严重超出饱和面干状态。基于此,在混凝土配制过程中,应当按照实际测量情况,对实际中所需骨料超含量、砂石表面含水率进行严格控制。只有保证其配制方法的科学性,才能确保施工质量。
2.3改善水工混凝土施工工艺采用分层分段法进行浇筑,对混凝土施工中的水化热散失非常有利,而且还可以有效减小内外温差,减少裂缝病害发生的概率。优化配筋,以免应力过于集中,并强化其抵抗温度应力的能力,尤其是孔洞四周、变断面和转角位置的配筋,可能会产生集中应力。针对这一问题,建议在孔洞周围增配适量的斜向钢筋或钢筋网片,并对变截面进行局部处理,确保截面能够有效地过渡。在此过程中,还可以适当地增配一些抗裂钢筋,以防产生裂缝。从实践中我们可以看到,对于那些平面尺寸相对较大的大体积混凝土结构,可通过设置后浇带的方式减小外约束力和温度应力影响。
2.4做好施工质量控制和养护工作在水利工程项目建设过程中,混凝土各构件或整体结构出现裂缝是最为常见的一种施工质量问题,对此,要加强对施工材料、半成品和成品的质量控制。对水工建筑、整个结构构造进行严格检查,加强对水工建筑工程项目施工中各工艺环节的控制,比如水泥、混凝土的用量、水灰之比和含砂率等。对砂石含泥量进行严格控制,以免施工时利用过量粉砂。混凝土浇筑完成后,应当尽早洒水、保养。混凝土施工质量在很大程度上取决于设计、监理和施工人员之间的相互协作。一般而言,出了要防止外观麻面、蜂窝甚至裂缝等病害的出现外,还要确保混凝土自身的强度能够达标。在水工建筑施工过程中,如果混凝土自身的强度不达标,监理人员必须要将已建的不合格部分拆毁,重新施工,以免造成更为严重的影响。可见,每位质量负责人都要注意预防混凝土施工质量缺陷问题,及早发现施工过程中可能出现的问题和不足,以免延误补救时机。
3结束语
混凝土的后期养护不合理也是造成混凝土裂缝的重要原因[2]。通常在混凝土浇筑完成后,它自身所含有的水分就可以落实水泥水化的需求。但是,由于后期的养护工作不够到位,混凝土表面水分散失过快,致使混凝土发生变形的问题,从而导致裂缝的产生。与此同时,混凝土在露天的室外施工过程中,遭受到强烈的风吹日晒,使得混凝土表面的水分蒸发过快,再加上混凝土在早期的抗拉能力不强,无法有效抵抗因收缩而引起拉应力,进而导致混凝土出现裂缝。所以,在水利工程建设施工的过程中,要积极加强对混凝土浇筑后的养护,这能够有效控制混凝土的裂缝问题。
2.水利施工中的混凝土裂缝控制措施
2.1根据当地的气温情况,调节混凝土的施工条件
在水利工程建设当中,混凝土的施工要积极根据当地的气温变化,调节混凝土的施工条件。与此同时,也要积极依据混凝土自身所存在的特性,充分考虑施工过程中的实际情况,制定合适的施工方案,控制混凝土的裂缝问题,提高混凝土的质量。在甘肃地区,由于地处我国西北,夏季气温炎热干燥,昼夜温差较大;而冬季由于受西北风的影响,气温特别低,这给当地的混凝土施工制作带来非常严重环境气候困扰。例如,在混凝土浇筑时,常常会发生混凝土模版变形等问题,水利施工建设单位要积极安排专门的混凝土施工看护人员对模版进行看护,及时了解和发现混凝土模板的情况,当混凝土出现变形和位移现象时,要立即停止缓凝土的浇筑,并对模板进行修理和恢复。在夏天高温的季节,混凝土施工的浇筑入模温度应控制在25℃以下;而在冬季,由于甘肃地区气温特别低,在混凝土施工的过程中,要充分注意混凝土施工过程中的保温。在混凝土浇筑时,入模的温度不能低于10℃。因此,在当地的混凝土施工制作过程中,要积极根据施工现场的环境气温,合理调节混凝土的施工条件,这样才能够有效控制混凝土的裂缝现象,保证水利施工当中的混凝土质量。
2.2混凝土材料的选择和配比
混凝土的质量与混凝土施工材料的选择有着非常重要的关系,其材料使用的正确与否,直接关系到整个水利工程的施工建设安全。所以,在水利工程混凝土的施工制作中,要加强对混凝土掺杂料以及水泥的管理,保证混凝土制作材料的质量。由于在混凝土制作过程中,水泥的水化反映,会释放出大量的热量,造成混凝土内外温差的增大,从而使得混凝土产生裂缝。所以,在混凝土制作中,要合理地选择水化热量较低的水泥。除此之外,还可以在混凝土的制作中,尽可能地减少单位水泥的使用量,水泥的强度等级要与混凝土强度的等级保持相同,不要选用强度过高或者硬性的水泥。在混凝土骨料的选择中,也要严格按照国家相关的骨料使用的相关标准,选择合适的骨料。与此同时,也要保证混凝土原材料的配比符合国家的混凝土制作的标准。另外,增强混凝土的抗压性能够有效减少混凝土裂缝的产生。因此,混凝土施工制作人员可以通过加强对混凝土的振捣,增加混凝土的密实度,从而控制混凝土裂缝的产生,提高混凝土的质量。
2.3积极开展混凝土养护工作
混凝土的后期养护工作,对控制混凝土裂缝的产生有着非常重大的意义[3]。所以,施工单位要在混凝土的养护工作中,使混凝土的内外温度保持平衡,以免因混凝土内外温差过大而导致裂缝产生。与此同时,也要对混凝土进行浇水,保持缓凝土表面的湿度,以免因混凝土表面水分蒸发过快导致的干缩变形。此外,由于混凝土水泥水化热会产生大量的热量。因此,在养护的过程中,也要让混凝土内部热量得到充分的散发,保证混凝土的耐久度。通过保湿和保温的有效养护措施,能够有效保证混凝土内外温度的稳定,从而使得水利施工中的混凝土裂缝能够得到有效控制。
3.结语
关键词:大面积混凝土结构裂缝控制技术
1工程概况
广东奥林匹克体育场是九运会的主会场,设固定观众座位8万席,总建筑面积达14.56万m2,规模巨大,造型新颖,质量标准高,施工难度大,工期短,由广东建工集团总承包施工,本工程(包括场外环境及附属结构)高性能混凝土用量达13万m3。本工程面积巨大的环状结构看台楼层采用现浇混凝土结构,由于其特殊功能要求,花瓣形看台面积达4.25万m。,属超大面积钢筋混凝土结构。看台下各楼层面积分别为:首层3.79万m。,2层2.84万m2,3层1.52万m。,4层1.4万nfl。,5层1.24万m2。看台楼层沿径向设计有6道永久性伸缩缝,其间距超长,约为90m。地下室底板面积近2.5万m。,浇筑混凝土量达1.87万m3,虽然其厚度仅为600mm,但分布其中的众多大承台和底板合在一起浇筑施工,合并后的最大厚度达1.7m,亦属大体积混凝土施工。底板设计有7条后浇带,分为8大块,最大一块面积达4100m。,底板宽约36m,长约120m,底板后浇带间距超长。超长、超大面积及大体积混凝土是本工程结构的重要特色之一,其裂缝控制也就成为工程施工的重点与难点。
2采用高性能混凝土施工技术
本工程混凝土最大输送距离达300m,最大输送高度为60m,为满足泵送混凝土和体育场复杂特殊造型的施工要求,我们大量采用了高性能混凝土施工技术。在体育场北区配置了l台意大利进口的大型现代化搅拌站,产量为90m’/h;南区配置了自动上料和自动称量系统的混凝土搅拌站2座,产量为30~50m3/h。针对本工程的需要,配制高性能混凝土时为了优选原材料和配合比,我们应用“双掺”技术,除提高混凝土的可泵性外,还有意识地预先通过试验确定低收缩率的混凝土配合比,同时减少水泥用量,降低混凝土的水化热和改善其收缩性能。
2.1优选原材料
选用优质的原材料,如底板施工中采用连续级配骨料,增大混凝土的密实度。严格控制混凝土出机和人泵坍落度,随不同施工阶段的设计要求与天气变化情况跟踪调整配合比,详见表1。
2.2采用“双掺技术
在本工程施工中,地下室底板使用KFDN-SP8外加剂,看台楼层等混凝土结构根据具体情况,选用HPM一2高效缓凝减水剂、FE—C2外加剂等,这些高效外加剂具有高减水率和良好的保塑性能。掺外加剂混凝土与基准混凝土的减水效应比较如图1所示。
根据本工程的具体情况,我们分别选用黄埔电厂、广州发电厂等的I级或Ⅱ级粉煤灰,采用粉煤灰这种活性的水硬性材料代替部分水泥,补充泵送混凝土中的细骨料,提高混凝土的抗渗性、耐久性和流动性,并改善其可泵性和降低水化热,从而提高混凝土的后期强度。
2.3配合比选择
混凝土的配合比决定了混凝土的强度、抗渗性、和易性、坍落度、水泥用量、水化热大小、初凝和终凝时间以及混凝土收缩率等性能指标。根据结构的不同特点和设计要求、气候条件,掺人粉煤灰的影响以及施工现场的生产管理状况,采用不同技术指标,由实验室试配确定。
(1)地下室底板施工阶段根据现场条件,对底板混凝土提出以下指标:①坍落度12—14cm;②初凝时间6—8h;③掺加高效减水剂,超量掺加I级粉煤灰,减少水泥用量,降低水化热;④通过试验选定收缩率较小的配合比。为了确保混凝土具有高性能,我们提前对混凝土配合比进行了大量反复多次的试验,取得十几组试配数据,测试了不同配合比混凝土的收缩率及收缩与龄期的关系,并采用钢环试验方法测试混凝土的长期收缩情况。测定混凝土收缩率后,有意识地模拟浇筑一块混凝土试件进行试验,测试其温度变化和收缩率,确定了表2的配合比,其收缩率为0.12%0,且在14d后基本上不再收缩。实践证明,本配合比是成功的,用I级粉煤灰代替部分水泥,大大减少了水泥用量和降低了水化热,在确定了收缩率较小的配比后,据此收缩率确定底板分块的最大长度为45m,相邻块之间混凝土浇筑的时间间隔为14d。
(2)看台楼层选择不同的水泥和多种外加剂进行配合比试验研究,对外加剂的适应性进行对比试验,得出针对不同阶段和不同施工部位的优化配合比。北区采用深圳产FE—C2外加剂掺量为1.6%,黄埔电厂的Ⅱ级粉煤灰掺量为22%,既满足了混凝土的强度要求,又具有良好的可泵性和经济性。南区采用HPM一2高效缓凝减水剂和黄埔电厂的Ⅱ级粉煤灰得出的配合比,即:水泥:混合材:砂:石:水:外加剂=l:0.23:2.17:3.20:0.53:0.016,水泥、砂、石、水、粉煤灰、外加剂用量分别为332,722,1063,176,77,5.28~m3,水胶比0.44%,含砂率40.4%,坍落度145mm,质量密度2370kg//m3,初凝n,-Jl''''~q5—8h,终凝时间8—10h。
3合理增加施工缝数量以改善约束条件在超大面积现浇底板、看台和楼层中,通过合理增加施工缝数量,降低了约束应力,减少了混凝土收缩,取得良好的效果。
免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。