首页 优秀范文 金属材料论文

金属材料论文赏析八篇

发布时间:2022-03-07 01:34:36

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的金属材料论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

金属材料论文

第1篇

为21世纪化工行业培养合格的金属材料工程专业人才,自2006年以来,沈阳化工大学金属材料工程专业对教学内容、课程设置、课程体系进行了统筹规划和整体安排。经过几年的改革和实践,建立了具有化工行业特点及金属材料工程专业特色、科学合理的教学内容与课程体系。一方面,课程设置与专业特色相契合,再结合沈阳化工大学的化工特色,针对化工单元设备的主要加工方法,如压力加工、焊接、机械加工及化工单元设备的腐蚀问题,对课程设置、课程体系统筹规划、整体安排,构建具有化工行业特色及金属材料工程专业特点、科学合理的新的课程教学体系。强化金属塑性加工原理、焊接冶金学、焊接工艺与设备、金属腐蚀与防护、金属热处理和材料无损检测等主要专业课程。在课程教学中,结合金属材料工程专业的特色,不断进行教学内容与教学方法的改革。采用将教学内容与工程实际、工程法规、工程问题、典型产品相结合,尤其与化工生产和化工设备制造过程相结合的案例教学。典型课程如,金属塑性加工原理、焊接工艺与设备及腐蚀与防护等都是以化工单元设备生产过程为背景的案例教学方法,着力打造精品课程,形成部分专业课程特色教材,加强金属工程材料专业本科学生能力和素质的培养,对其他课程的教学起到了示范作用,推动了教学改革的深入进行,提高了教学质量。另一方面,以强化工程实践能力、工程设计能力与工程创新能力为核心,实践内容贯穿培养过程的始终。首先,增加课程实验,尤其是综合性和设计性实验,然后开展灵活多样的实习实践,在原有的金工实习、认识实习、生产实习、毕业实习的基础上,增加个性化实习。开放办学、校企合作,结合学生的兴趣爱好、就业方向、教师的科研课题以及就业单位的培训等等,分别送学生到企业去学习实践。为方便学生到企业实习,我校先后建立了与沈阳铸锻工业有限公司、沈阳金杯广振汽车部件有限公司、沈阳来金汽车零部件有限公司、富奥辽宁汽车弹簧有限公司、抚顺机械设备制造有限公司等十余家企业合作的实习基地。通过加强实习基地与相关企事业单位的共建和合作,利用其设施、设备等条件开展实践教学,同时也帮助学生了解金属材料及其相关材料的科技发展动态,以及相关前沿技术和行业需求,培养分析和解决生产中的实际问题、从事科学研究和实际工作的初步能力。

二、建立创新教育机制,培养学生创新能力

鼓励学生在教师指导下积极开展多样化的科技创新活动[5]。如参加指导教师的课题研究,申报并参加大学生创新创业训练计划项目,参加全国及辽宁省“挑战杯”大学生课外学术科技作品竞赛、全国及辽宁省普通高等学校本科大学生机械创新设计大赛、全国大学生英语竞赛、全国大学生数学建模竞赛等。通过组织各种类型、各种形式和不同层次的课外活动,将各类工程实践活动、创新实践训练、学科竞赛活动、学术前沿讲座、社会实践、公益活动等课外活动作为第二课堂课程模块纳入到课程体系中统一实施和管理。从2006年开始,我们以学校“6S”,即ST(科技训练)、SC(系列竞赛)、SP(社会实践)、SW(社会工作)、SL(系列讲座)、SA(特色活动)为指导,以“挑战杯”“机械设计竞赛”活动为契机,以课外教学环节为突破口,开展了多项大学生课外竞赛活动。近年来,金属材料工程专业参赛学生项目获机械创新设计大赛国家二等奖一项;“挑战杯”大学生课外学术科技作品竞赛国家三等奖一项;全国大学生英语竞赛二等奖、三等奖各一项;辽宁省级奖项几十项。通过创新竞赛的开展,活跃了创新教育的氛围,为金属材料工程专业学生的个性发展提供了平台,为学生毕业后从事科学研究活动奠定了一定的基础。此外,金属材料工程专业对学生实行实验室全天开放,先进的科研设备和仪器用于学生科研训练,促进了学生创新能力的提高。

三、结论

第2篇

ALD技术的基本过程是将气相前驱体脉冲交替地通入反应腔,在沉积基底上发生表面化学吸附反应,进而形成薄膜。它并非是一个连续的工艺过程,而是由一系列的半反应组成。它的每一个单位循环通常分为四步,如图1[6]所示:首先,向反应腔通入前驱体A蒸气脉冲,在暴露的衬底表面发生化学吸附反应;然后,通入清洗气体(通常为惰性气体,如高纯氮气或氩气),将未被吸附的前驱体A蒸气及反应副产物带出反应腔;接着通入前驱体B蒸气脉冲,与表面吸附的A发生表面化学反应;最后再次通入清洗气体,将多余的B蒸气及反应副产物带出反应腔。图1中L为前驱体配位基。理论上每进行一个循环,基底表面沉积一层单原子层(monolayer,ML)。对于ALD的经典反应,即三甲基铝和水反应生成Al2O3的反应,其每个循环过程包含了两个半反应。每个半反应都是自终止的,包括吸附、化学反应和解吸附等过程,具有自限制和互补性的特点。生长速度通常为每循环0.1nm。因此,控制循环次数就可简单精确地控制膜厚。可见,表面自限制反应是ALD的生长基础。理想的ALD工艺一般存在ALD工作窗口,在此窗口内,生长速度恒定,对工艺参数的变化,如前驱体流量、脉冲时间和沉积温度等不敏感,沉积的薄膜具有大面积的均匀性和优异的三维贴合性。随着微电子芯片单元尺寸不断减小,器件中的深宽比不断增加,所使用材料的厚度降低至几个纳米。ALD之所以受到微电子工业和纳米材料制备领域的青睐,与它独特的生长原理和特点密不可分,特别适合复杂三维形态表面的纳米薄膜沉积,尤其是深孔洞的填隙生长,图2[7]所示为采用ALD方法在高深宽比结构内部均匀沉积的金属钌膜[7]。ALD虽然是一种崭新的材料制备技术,但经过近十几年的快速发展,在传统的热ALD基础上,发展出等离子体增强ALD(plasmaenhancedatomiclayerdeposition,PEALD)、空间ALD、分子层沉积和电化学ALD等多种新形式[6]。其中,PEALD获得了广泛的关注和应用。PEALD是一种能量增强辅助的ALD,在生长中引入等离子体取代了普通的反应剂,提高了反应剂活性,从而能够降低沉积温度,拓宽前驱体和生长薄膜材料种类,提高生长速度,改进薄膜性能[8]。对于沉积金属薄膜而言,PEALD无疑提供了更多的可能性,极大拓宽了金属材料生长种类。

2原子层沉积金属及其反应生长机理

由以上ALD基本反应原理可以看出,典型的ALD反应过程近似是一种置换反应,比如沉积金属氧化物、硫化物和氮化物等,最常见的方法就是金属前驱体与其对应的氢化物(H2O,H2S和NH3)反应,金属前驱体与这些反应助剂交换它们的配体,从而获得相应的化合物。对于沉积纯金属而言,需要的则是还原金属态,移除与金属原子连接的配合基。因此,探究金属前驱体及相应反应助剂的选择、金属前驱体在已沉积表面的吸附情况、反应初始循环的化学过程等,了解和掌握原子层沉积金属的反应生长原理,就变得十分关键。而在ALD生长过程中引入原位表征与监控方法,无疑是一种有效的手段,可收集获取与表面化学反应、生长速度、化学价态和光学特性等相关的重要信息。目前原位探测手段主要包括:傅里叶变换红外光谱仪(Fouriertransforminfraredspec-troscopy,FTIR),能够实时观测每个半反应后的表面基团,为具体的表面吸附及化学反应提供有力的证据;石英晶振仪(quartzcrystalmicroba-lance,QCM),可分析每个脉冲结束后表面的质量变化,吸附时质量的增加,副产物移除时质量的减少,还能一定程度地反映出化学反应中热量变化情况;四极质谱仪(quadrupolemassspectroscopy,QMS),能够探测脉冲过程中反应腔内的物质组成,分析反应产物及反应进行状态。另外还可配备原位光电子能谱仪,对生长过程中表面的化学组成和价态进行表征,原位椭偏仪对沉积薄膜厚度和光学特性进行测量。下面结合原位监控手段,就ALD沉积贵金属、过渡金属和活泼金属的反应机理和特点分别进行介绍。

2.1贵金属在ALD生长中,贵金属一般是利用贵金属有机化合物和氧气进行反应生成。因为与形成化合物相比,以铂为代表的贵金属更容易生成稳定的金属单质。氧气作为其中一个反应物将增强这种趋势,金属前驱体的有机配体被氧化,两个半反应过程中均有燃烧产物CO2和H2O放出,使ALD生长贵金属的反应就像是氧气燃烧掉了金属的烃基,故命名为燃烧反应。这类贵金属的反应主要发生在常用于非均相催化的第八族贵金属中,其机理目前已经有较为详尽和确切的研究[9],图3[9]显示了ALD沉积金属铂和铱过程中原位QCM和QMS监测的结果。使用的金属有机前驱体分别是甲基环戊二烯三甲基铂和乙酰丙酮铱。图3(a)和(d)为QCM随铂/氧/铂/氧的脉冲变化而探测到的厚度变化,图中Δm0表示铂前驱体吸附在衬底表面后带来的厚度增长,Δm1表示经氧气脉冲反应,该循环沉积铂或铱的净增长厚度。图3(b)和(e)为QMS探测到质荷比为15的物质,即CH3的信号强度,其脉冲信号分别对应铂源和铱源脉冲。图3(c)和(f)为QMS探测到质荷比为44的物质,即CO2的信号强度,其脉冲信号对应氧气脉冲。CH3与CO2是ALD过程中最主要的两种含碳气态副产物。图3中t为时间,d为沉积厚度。铂前驱体脉冲时QMS观测到CH4,说明铂前驱体发生配位基互换,吸附到羟基等衬底活性氧表面。同时QCM显示出铂前驱体脉冲时质量增加,氧气脉冲时则略微减小,综合考虑到没有探测出CO,只有CO2,CH4和H2O三种气相产物,可以认为发生的是完全燃烧反应。铂前驱体脉冲和氧气脉冲过程中都有CO2和H2O放出,这是因为氧气脉冲后有部分氧气残留吸附在浅层表面,从而在下一个金属前驱体脉冲时直接氧化少量有机配体,大部分有机配体留至再下一个氧气脉冲通入时燃烧掉。贵金属非常抗氧化,但分子氧可以在它们表面可逆吸附和解离,铱、铂和钌尤其如此,使氧化、燃烧其配体可以高效进行。由此,贵金属ALD过程中自终止半反应,并非是由于表面羟基给配体加上了氢,而是在表面铂等金属催化下,配体发生了脱氢[10]。式(3)中,铂前驱体配体置换吸附在表面,部分配体与表面吸附氧发生燃烧反应;式(4)中,氧气脉冲烧掉剩余配体,在铂表面又留下含氧基,包含催化和表面化学的作用,以此形成循环反应。图3(d)[9]是ALD沉积铱反应中原位监测结果,可以看出其生长过程与铂非常近似。在其他一些研究中,钌和铑的ALD沉积也被证实与此反应机制相符。值得注意的是,氧化物表面ALD沉积贵金属总是会有一个较长的成核孕育期,因为金属与氧化物表面是不浸润的,多相催化的相关研究已经指出,金属在氧化物表面倾向于形成团簇[14]。而成核孕育期因为要移除键合在氧化物表面的金属配体有一定困难,加之氧化物表面的贵金属原子有发生扩散和聚集的倾向,从而形成分立的金属颗粒。因此沉积贵金属的初期总是先形成分散的金属岛,然后再逐渐长大,金属颗粒彼此连接形成连续薄膜[11]。图4[15]为ALD沉积Pt不同反应循环次数影响Pt纳米晶形成的透射电镜TEM照片,非常形象地展示了这个过程。影响成核的因素十分复杂,成核情况与衬底表面亲水性、电负性、表面组成和粗糙度都有一定关联。其中,所沉积的金属与衬底的润湿性是非常关键的因素,因此,衬底表面的基团种类十分重要。如衬底基团的亲水性会给ALD带来活性反应位,因此表面亲水性的羟基越多,成核越快。在浸润性好、成核快的衬底上,金属膜层才更容易长薄长均匀[16]。在不同的应用中,对金属成核还是成膜的要求会有所不同,如金属纳米晶存储器中,就希望获得高密度均匀分布的金属纳米晶。因此,实际ALD生长应用中,还需要结合具体需要进行分析调控。

2.2过渡金属不同于抗氧化的贵金属,ALD沉积其他金属都需要选择合适的还原剂。常见的还原剂如氢气、氨气及其等离子体,都已被用于ALD沉积过渡金属的反应中。目前ALD生长过渡金属的反应机制,主要分为三类:氢还原反应、氧化物还原和氟硅烷消去反应。由于铜互连在微电子工业中的重要性,因此最初在ALD中利用氢还原反应生长的金属是铜,铜很难黏附在SiO2表面,由于在其上成核密度较低,导致膜层表面粗糙度较大,均方根RMS值为6nm。若先行ALD沉积其他金属籽晶层钴、铬和钌等,铜膜粗糙度就会有明显改善,在ALD生长的钴膜上,铜膜的RMS值减少到2nm,晶粒粒径也会明显变小[17]。另外高温制备微电子器件时,铜还会扩散到SiO2或Si衬底内,因此在铜和Si之间需要一个超薄的阻挡层,热稳定性好又具有高黏附力,厚度还应小于5nm。ALD沉积的金属薄膜钌和钨可作为铜互连的扩散阻挡层。金属铜理想情况应该在100℃以下沉积,低温限制了表面迁移率,使金属原子在膜层很薄时最大限度减少晶核团聚成岛状的趋势,膜层长厚时就更为平整光滑。但由于许多铜前驱体活性较低,通常都需用200℃以上的高温沉积或需用等离子体源来增强反应活性[18]。目前ALD沉积铜的前驱体和还原剂种类很多,生长条件也各不相同。以[Cu(sBu-amd)]2的脒基配体与硅衬底的反应为例,由红外光谱探测分析可知,铜前驱体通入后,配体受热激发与表面羟基发生加氢反应,桥接结构置换为单配位基Si-Cu-O键结构。随后氢气脉冲通入还原,铜失去了脒基配体,同时有一部分硅氧键恢复,意味着铜原子得以扩散并聚集成为结晶的纳米颗粒。因为铜与硅氧衬底的键断裂,从而部分恢复了原始表面的反应位,使配位基置换反应得以继续进行。然而检测也发现有明显的CuO和COOH残留,CuO可能来自沉积后非原位探测造成的空气氧化或者是Cu与COOH的键合,说明即使在氢气作用下发生了还原反应,仍没能完全还原全部配体[19]。除此之外,沉积铜还可以采用其他还原剂,比如铜前驱体先与甲酸反应生成二价铜甲酸盐,再由联氨还原成铜,此反应能在120℃的低温下沉积,生长窗口为100~160℃,得到的膜层纯度高、电阻率低,表面粗糙度仅为3.5nm[20]。该沉积过程中铜符合ALD自限制生长模式,存在一个ALD工作窗口,如图5[20]所示。图5中,vGPC为每个循环的生长速率,tp为脉冲时间,θ为温度。ALD沉积铜还有其他的间接方法,即先沉积金属氧化物或氮化物,再通入还原剂将其还原为金属态。前面提到铜很难吸附在微电子相关特定结构的任何表面,采用这样先氧化的办法,还可以改善表面吸附性。异丙醇、福尔马林、氢气和甲酸等都可以充当还原剂,文献[]中还提到这种方法降低了膜层的粗糙度。同样采用先氧化后还原方法ALD沉积的金属还有镍。在ALD沉积金属氧化物的过程中,有机金属前驱体与表面的氧化物或金属—OH基团发生反应。如可以利用乙酰丙酮镍和臭氧反应得到氧化镍膜层,再用氢气还原得到金属镍膜[24]。但是也有研究指出,这样还原得到的Ni结构略微有所缺陷,膜层内有小孔。如果直接沉积金属镍,一般的还原条件均难以满足,需要的沉积温度较高,沉积速度也非常缓慢。氢还原反应适用的金属还包括过渡金属钴。一般来说,对于金属前驱体,亲水的羟基终端比疏水的氢终端活性更高,前驱体更易发生吸附,也就更适合做ALD初始反应的表面。但钴的常用前驱体tBu-AllylCo(CO)3的表现却完全相反,它在—OH终端的SiO2表面完全没有吸附,而对—H终端的Si衬底则表现出强烈的活性。这里,Co前驱体不是在吸附到—H终端Si衬底表面的同时就失去一个配体,它首先桥接在Si—H之间形成Si—Co键,再被这个表面氢除掉一个丙烯基,如图6[19]所示。羟基终端不能形成这样的机制,所以该前驱体与Si衬底氢终端吸附结合的活性反而更强,这一机制也保证了钴膜的高纯度[25]。另外一些关于前驱体修饰的研究,还注意到中性配位体的益处。羰基就可作为中性配位体,连的羰基越多,金属可用的电子密度越小,金属-羰基键就越弱,可以增强前驱体的挥发性。羰基配体的最典型的实例就是八羰基二钴前驱体,用氨等离子体还原,制备金属钴。这类利用氨等离子体还原的反应机理目前还不是很清楚,但是通过观察反应副产物,表明ALD沉积这些过渡金属时,氨解反应具有一定的作用。除此之外,还有一类还原反应是利用主族元素氢化物作还原剂,这类氟硅烷消去反应的过程通常是σ键置换、氧化加成/还原消除反应,适用于金属钨和钼的ALD沉积。用硅烷或者硼烷还原金属氟化物,能得到标准的半反应式沉积[26]。但是钨和钼两种元素在具体的反应上还是有所不同,乙硅烷输入时钼质量有所损失而钨有所增长,较高温度下钼的沉积速度会相应增加,这可以认为是由前驱体的热分解所致。此外,如果温度过高或硅烷曝光过多将可能导致硅烷嵌入Si—H键出现Si的CVD反应,而且此类反应的机理对其他金属元素不能通用,比如钽若用此种反应就会形成硅化物薄膜。

2.3活泼金属正电性金属包括铝、钛、铁、银和钽等。以银为例,由于它的化合物都是+1价,只有一个配合基键合的金属离子很难发生吸附,所以需要一些电中性的加合物配位基,通过它们的置换,辅助金属阳离子吸附到衬底。不过这种配位基的键合往往很弱,ALD成功沉积银的报告中使用的银前驱体是(hfac)Ag(1,5-COD)[29],其中COD即为上述辅助银离子吸附的中性配体。当COD被置换,实验观察到吸附在衬底的银有足够的表面迁移率和寿命,能在随后的高纯氮气清洗的步骤时沿衬底表面扩散并成核。在下一步丙醇的脉冲过程中,由于醇类的催化氧化析氢作用,多余的hfac配体得以移除,从而得到沉积的金属银。图8[30]是ALD在沟槽结构衬底上沉积银薄膜的扫描电镜照片,这里使用的前驱体是Ag(O2CtBu)(PEt3)[30]。然而文献[31]中也指出,由此得到的膜层生长速度缓慢,薄膜质量不甚理想,没有一般金属薄膜有光泽,看起来偏暗,同时电阻率也很高。其他的如铝,三甲基铝在200℃下自然分解的产物应该是Al4C3,这时如果提供氢气气氛,或者借助等离子体、光子等提供额外的能量,理论上有可能形成金属铝。然而目前的研究工作还非常粗略,而且反应要求沉积气氛压力低、还原气体纯度高,才能保证Al在沉积过程中不被氧化。这些活泼金属具有广阔应用前景,这不仅是由于其优异的导电性能,还在于其有可能在铜互连中用于黏附层和阻挡层,更是由于近来倍受关注的银表面等离激元的性质。但它们都较难还原或难与碳氮氧结合成较强的化学键,其常见的前驱体在热ALD中需要的生长温度太高,一般适用的衬底和结构都不足以承受如此高温,所以基本都需要使用氢等离子体以降低反应活化能。但是即便如此,利用等离子体沉积得到的活泼金属膜层一般都很薄,并且一旦暴露于空气中就极易氧化,一般需要原位沉积保护层防止氧化,所以总体来说获得的活泼金属薄膜的金属性都不强。目前ALD反应沉积活泼金属,只有少量沉积成功的报告和一些很初步的工艺探索,实验结果大多还不尽如人意,因此,其ALD沉积反应路径和机理尚有待于继续开拓和探究。

3原子层沉积金属面临的挑战

在上述已经成功沉积的金属中,最好的镍、钴膜层和仅有的锰、钛薄膜都是利用PEALD沉积的,可见PEALD在沉积金属薄膜中的重要地位。但是,PEALD对微电子器件的制备并非完美无缺,等离子体的高活性可能对某些应用所需的特殊衬底造成损伤,又因为等离子体极易在表面复合,从而不宜沉积高深宽比的衬底。总而言之,ALD沉积过渡金属普遍面临的难题是用来还原金属前驱体的反应物的还原性不够强。之前提到的主族元素氢化物是比较有潜力的反应机制,如硼烷中B—H键能够将氢转移到金属原子上,生成过渡金属氢化物,而这些氢化物大多不稳定。另一种可能的途径是寻找一些电子输运能力强的反应物,如二茂钴Co(C5H5)2,升华温度很低且有足够的电化学势来还原一些过渡金属离子。若要付诸实践,这些方法还需进一步检验,保证副产物都是气态且不会有其他杂质沉积[31]。除上述金属之外,金也是很重要的金属,不仅在于它的高导电率,还在于其特殊的催化和光学性质。而金的沉积对ALD技术来说,目前还是个挑战。与银相同,金的化合物也都是+1价,金配合物的热稳定性都不高。现在也有各种激活方法,比如激光活化、离子体增强、电子或离子束辅助等,但至今为止,还没有一种反应模式能够成功应用于ALD沉积金属金中。至于其他碱金属、碱土金属和稀土金属,其沉积难度更是有过之而无不及。但这些元素的应用需求也很有限,局限在有机发光二极管和锂电池中。而元素周期表右侧那些主族金属,目前也尚未见ALD沉积的报道。从电负性和还原性的角度来看,这些主族金属与第四周期的过渡金属相似,应该比那些活泼金属容易沉积。对ALD来说,沉积尽管同样富于挑战,但也并非不可能,还需要更深入与广泛的研究来丰富ALD沉积金属的种类。表1总结了目前为止ALD沉积金属的主要种类与反应类型,并附列了代表性文献。

4结语

第3篇

(一)碳族元素在周期表中的位置

ⅢAⅣAⅤAⅥAⅦA

BCNOF

AlSiPSCl

GaGeAsSeBr

InSnSbTeI

TlPbBiPoAt

(二)碳碳元素及其单质的性质变化规律

元素名称元素符号原子半径

(nm)主要

化合价单质的性质

颜色、状态密度

(g·cm—3)熔点

(℃)沸点

(℃)

碳C0.077+2,+4金刚石:无色固体

石墨:

灰黑色固体3.51

2.253550

3652

—3697

(升华)4827

4827

硅Si0.117+2,+4晶体硅:灰黑色固体2.32—2.3414102355

锗Ge0.122+2,+4银灰色固体5.35937.42830

锡Sn0.141+2,+4银白色固体7.28231.92260

铅Pb0.175+2,+4蓝白色固体11.34327.51740

碳族元素化合价主要有+4和+2,C、Si、Ge、Sn的+4价化合物是稳定的,而Pb的+2价化合物是稳定的。

例PbO2有强氧化性

阅读下列材料,回答有关的问题

锡、铅两种元素的主要化合价+2价和+4价,其中+2价锡元素和+4价铅元素的化合物均是不稳定的,+2价锡离子有强还原性,+4价铅元素的化合物有强氧化性。例如Sn2+还原性比Fe2+还原性强。PbO2的氧化性比Cl2氧化性强。

(1)写出下列反应的化学方程式

①氯气跟锡共热__________;②氯气跟铅共热__________;③二氧化铅跟浓盐酸共热__________;

(2)能说明Sn2+还原性比Fe2+还原性强的离子方程式______________。

答案:

(1)

(2)

二.碳族非金属氧化物比较

COCO2SiO2

类别

酸性

氧化还原性强还原性弱氧化性弱氧化性

毒性有毒无毒无毒

反应实例:

酸性:H2CO3>H2SiO3

与碱反应:CO2+2OH—=CO32—+H2OCO2+H2O+CO32—=2HCO3—CO2+OH—=HCO3—

思考:CO2通入NaOH溶液中生成的盐是什么?

SiO2+2NaOH=Na2SiO3+H2O

思考:盛放碱液的试剂瓶为什么不能用玻璃塞?

氧化还原性

三、Na2CO3与NaHCO3的比较

Na2CO3NaHCO3

俗称纯碱(苏打)小苏打

溶解性易溶易溶

溶液度Na2CO3>NaHCO3

稳定性稳定不稳定

与酸反应出CO2速率慢(分二步)

CO32—+H=HCO3—

HCO3—+H+=H2O+CO2快(一步)

HCO3—+H+=H2O+CO2

相互转化

方程式如下:

Na2CO3+H2O+CO2=2NaHCO3

NaHCO3+NaOH=Na2CO3+H2O

四、知识网络

(一)碳及其化合物

(二)硅及其化合物

五.硅酸盐工业

水泥玻璃陶瓷

原料黏土(CaCO3)纯碱、石灰石、石英黏土

第4篇

金属层状复合材料是由多层金属复合而成的,其通过将多层金属板经过叠压而形成,相对于颗粒增强复合材料,层状复合材料的制造工艺相对简单,同时能够达到工业应用的要求,随着科技的进步,金属层状复合材料已经由原来的双层发展到现今的多层金属材料复合,同时在制造的过程中,对于不同层板之间层板组分的合理选择以及选用相应的加工工艺,能够生产出符合工业特性要求的金属层状复合材料。通过使用金属层状复合材料能够有效地减少对于贵金属材料的使用,以较少的材料投入达到改善材料特性的目的,对于降低生产成本以及减少资源的浪费有着非常重要的意义。

2金属层状复合材料的生产工艺

2.1金属层状复合材料生产中的固-固相复合法

金属层状复合材料中的固-固相复合法是一种在上世纪30年代就发展起来的加工工艺,其主要原理是将两种或多种已经成型的板材通过叠加或者是轧制的方法使其能够形成多层复合的方式,从而使这种复合板材能够达到所需的性能要求。其中,复合板材所采用的轧制方法主要有热轧和冷轧两种,采用轧制的方法生产的复合板材具有生产成本较低、生产迅速以及成本板材的精度较高等优点,通过与现有的钢铁生产工艺及生产装备相结合能够实现大规模的生产,利用轧制法可复合的金属种类很多,但轧制复合往往需要进行表面处理和退火强化处理等工艺,板型控制困难,轧件易边裂,易形成脆性金属化合物,且道次轧制变形量大,需要大功率的轧机。

2.2金属层状复合材料生产中的爆炸复合法

此种方法的主要原理是通过使用炸药作为主要的能源,从而将多种金属材料复合焊接成一体的加工工艺,采用此种加工工艺的优点是生产出来的板材具有很高的产品适应性且保留了复合材料原料的一些特性,同时生产的板材结合界面的结合强度较高,能够使得其在后续的加工过程中保持较为良好的加工特性,同时对于金属层状复合材料的大小以及形状等都具有很强的可调性且对生产设备要求较低,缺点是生产过程中会产生巨大的噪音从而不利于生产的连续进行。

2.3金属层状复合材料生产中的爆炸-轧制复合法

此种方法结合了固-固生产法中的轧制法以及爆炸法中的一些优点,通过使用此种方法可以使得金属层状复合材料板能够生产的尺寸更大、厚度更薄、长度更长以及更细的复合金属材料,从而使得金属材料的性能克服了单一工艺中所存在的一些问题。

2.4金属层状复合材料生产中的扩散焊接法

金属层状复合材料经过多年的发展,已经具有多种生产工艺及加工技术,扩散焊接是一种对在金属层状复合材料的复合加工中常用的技术,其能够进行多同种或不同种材料进行复合。在加热到母材熔点0.5~0.7的温度时,在尽量使母材不出现变形的程度下加压,使母材紧密接触,利用界面出现的原子扩散而实现结合的方法。

2.5金属层状复合材料生产中的液-固相复合法

此种方法的原理是将一种(液相)的金属材料通过多种不同的方式均匀的浇铸在其他一种固态金属材料的表面,并依靠两种金属材料表面之间所产生的一定的反应来使两者之间出现结合,并在液态金属凝固后对其进行压力加工。

2.5.1直接浇铸复合法

直接浇铸复合法的制造工艺如下:首先需要将两块在内侧涂抹有剥离剂的钢板进行相应的叠合,并将两块钢板四周进行焊接后放入盛有金属液的铸模中,待到周围的液态金属凝固后进行一定的轧制,轧制完成后将焊接的钢板四周的焊缝去掉,从而可以得到分离后的两块液固复合板,在进行金属层状复合材料板的生产过程中如果做好对于加工温度的把控可以使得复合材料板具有较高的复合强度。此种方法操作方便、由于无需使用过多的机械设备以及其他附加工艺,因此,其加工成本较低,可以应用从而进行批量化生产,不足之处是由于需要将固态的金属板放置于高温下的液态液中待其凝固,在这一过程中,由于两者金属材料熔点的不同会使得高温的液态金属会对固态金属的表面造成一定程度的熔损,从而会对生产出来的金属层状复合材料板的质量造成一定的影响。双流铸造法又被称为双浇法,其主要是通过使用两种液态金属同时开始进行铸造,其主要利用的是两种合金之间的熔点差,通过将低熔点的合金首先浇注在一种特殊的扁模具中,而后通过将模具内的抽板进行一定的提升,其后再将高熔点的合金浇注在抽板提升后所留下的空位中,从而得到所需要的复合金属材料,使用此种方法需要做好时机的把控,特别是在金属液的浇注速度方面更是需要注意,从而使两层金属界面结合良好且界面稳定是比较严格的。

2.5.2钎焊法

钎焊法的主要原理是通过利用浸润的液态金属相凝固使两种金属焊合一起的技术方法。此种方法的加工工艺简单、操作方便,能够方便、快捷的完成异种金属之间的结合,其缺点是在钎焊结合部位的硬度不高,从而使得复合材料板出现小孔、夹渣、偏析等缺陷。

3金属层状复合材料中的表面工程技术

电镀主要是通过溶液中所含有的金属离子在导电的情况下聚集到电极中的阴极中并均匀的覆盖在阴极的表面使其形成能够与基体牢固相结合的镀覆层的过程。经过多年的发展,电镀已经成为了现今工业生产中的重要组成部分。除了电镀外,在材料表面工程处理中还具有刷镀、化学镀以及热喷涂、化学气相沉积法、物理气相沉积等多种表面处理技术,以上这些技术都各有优缺点,应当根据金属材料表面的特性需要适合的技术。

4金属层状符合材料的发展展望

随着科技的进步以及越来越多的新技术被应用于材料生产工艺中,现今,在金属层状复合材料的生产过程中主要有电磁成型复合、自蔓延高温合成焊接技术、激光熔覆技术、超声波焊接技术以及喷射沉积复合技术等。采用以上这些技术能够使得金属复合材料性能更高以及生产更为简单方便。

5结束语

第5篇

关键词:

《金属材料学》是材料科学与工程专业无机材料方向学生的一门专业选修课。通过教学使学生掌握金属材料基础理论方面的初步知识,并具有合理选用金属材料、正确选定热处理工艺方法、妥善安排工艺路线的初步能力,以完善学生的专业知识结构。作者通过一个学期的教学实践,积累了一定的经验,获得了不少的体会。

本课程内容主要分为三部分:金属材料基础理论方面的基本知识;新型金属材料及其新进展(新型金属及其合金材料、新型金属及其合金材料的制备方法)。课程要求掌握金属材料基础理论方面的初步知识,了解材料的成分、内部组织、热处理工艺与性能之间的内在规律。

本课程的特点是理论性叙述多,计算内容少,同时与其它课程如材料科学基础、热处理、材料力学性能、材料分析技术等课程紧密相关。在理论教学过程中,要重点突出。以不同金属材料的成分(合金化)、工艺、组织结构、性能与应用为主线讲解,对课程内容进行整合。注重教学方法及教学手段的改进,注重培养学生分析问题和解决问题的能力。具体做法如下:

1、理论教学过程中强调抓主线,始终以材料科学研究的五大要素成分、组织、工艺、性能与应用为主线讲解,使学生在看似抽象、复杂、枯燥的内容中寻找到其内在、本质的规律。

2、采用启发式、互动式的教学法,针对不同的课程内容,采取多种形式的启发式、互动式的教学,课堂讨论、提问,学生自学等方式,充分调动学生学习的主动性和积极性。

3、采用项目教学法,让学生分成若干学习小组,对书中的某些章节分成一个个小项目,进行个人自学(做笔记)、小组讨论与备课,同时各组自己制作多媒体课件,由小组长或小组推荐人上台讲课,讲完后其它同学和教师共同提问,由该学习小组同学做答,考察其各方面情况;最后由主讲老师对本知识章节进行课程总结,对同学的表现进行评估。

4、结合认识实习到工厂参观,使课程的相关内容具体化,讲述目前国内钢铁企业的一些生产线,将现代钢铁企业生产型板材的生产流程演示给同学,使同学能够将生产流程中的钢铁冶炼、精炼、连铸、控制轧制与控制冷却、校直、热处理等与材料学科中的成分、工艺、组织、产品性能及应用相结合。

5、利用学校提供的多媒体教学设备,制作多媒体教学软件进行教学。运用多媒体,给学生提供了丰富的感性认识,也使课堂教学目的完成、教学难点的突破更省时、更省力、更有效。但多媒体教学也不是万能的,它既有它的优点也有它的缺点。根据教学目的和学生的实际,采用合适的多媒体与板书结合的方式,构建问题情境,设计符合学生自学规律的教学过程,安排必要的练习,指导学生独立地进行探索,以逐步提高他们的自学能力。比如在讲述合金相图的时候,利用多媒体图片,可以很直观的表示合金凝固的相变过程,这对于促进学生的理解很有好处,能获得较好的教学效果。

6、改进成绩评定方法,分数是学生的命根,怎样对学生进行考核是教学环节的重要一环,如果采取传统的闭卷考试的方式,学生必然要对所学内容死记硬背,考完以后就忘得一干二净,这样的考核不利于培养学生系统学习课程,又没有培养学生理论联系实际的自觉性, 针对这些弊病, 考核方法采取小论文和答辩的形式,要求学生根据课程内容查阅相关文献,经过重新组织,以小论文的方式阐述自己学习该课程后的心得体会,并进行课堂答辩,以此考察学生的学习热情、学习积极性及学习主动性。

总之,只要教师和学生共同努力, 在教学过程师生互动,改变传统的满堂灌的教学方法,充分调动学生的积极性,培养学生发现问题、分析问题和解决问题的能力,在教学过程中注意培养学生的自学能力,用新颖的教学方式和前沿的知识引导他们自觉去探求新的知识, 增强他们学习的兴趣,一定可以将《金属材料学》这门课程,变成具有吸引力的课程。

参考文献:

[1] 刘智恩. 材料科学基础(第2版). 西北工业大学出版社 2003

[2]崔忠圻. 金属学与热处理原理. 哈尔滨工业大学出版社  1998

[3] 王笑天. 金属材料学. 机械工业出版社 1993

[4][日]金子秀夫. 新型合金材料. 宇航出版社 1989

第6篇

关键词:金属腐蚀与防护;教学改革;毕业论文

作者简介:冯佃臣(1977-),男,内蒙古乌兰察布人,内蒙古科技大学材料与冶金学院,讲师;宋义全(1963-),男,河北抚宁人,内蒙古科技大学材料与冶金学院,教授。(内蒙古 包头 014010)

基金项目:本文系内蒙古科技大学校内基金项目资助(项目编号:JY2009003)的研究成果。

中图分类号:G642.3     文献标识码:A     文章编号:1007-0079(2011)11-0128-01

一、“金属腐蚀与防护”课程概况

金属材料作为社会经济发展的必需品被各行各业大量使用,而金属材料在绝大多数情况下与腐蚀性环境介质接触就会发生腐蚀,因此,金属的腐蚀与防护是一个重要的学科门类。

在化学、石油、造纸等工业中,金属腐蚀造成设备的跑、冒、滴、漏会导致大量有毒物质的泄漏,污染环境,危害人民的健康。因此,研究与解决材料的腐蚀问题与防止环境污染、保护人民的健康息息相关。金属的腐蚀甚至会带来灾难性的后果。在油气田的开发中,从油水井管道和储罐以及各种工艺设备都会遭受严重的腐蚀,造成巨大的经济损失。1966年某天然气井的套管发生硫化物应力腐蚀开裂,引发井喷和特大爆炸,造成人员伤亡,日产百万立方米的高产气井报废。1971年某天然气管线发生腐蚀断裂,产生爆炸,直接经济损失达7000万元。1997年某化工厂 18个乙烯原料储罐由于硫化物腐蚀引起大火,停产半年,直接损失达2亿多元,间接损失巨大。1985年日本的一架波音747客机,由于应力腐蚀断裂而坠毁,导致500余人丧生。

腐蚀破坏所造成的直接经济损失也是十分惊人的。每年由于腐蚀可损失大约10~20%的金属。2003年世界的钢产量达到9.625亿吨,中国的钢产量高达2.2亿吨,美国的钢产量为0.914亿吨。按下限计算,世界每年腐蚀掉的钢大于美国的钢产量;中国一年就有2200万吨钢被腐蚀掉,相当于腐蚀掉一个大型钢铁企业的年产量。通过普及腐蚀与防护知识,推广应用先进的防腐蚀技术,可挽回经济损失30%~40%。因此研究腐蚀规律、解决腐蚀破坏已成为国民经济中迫切需要解决的重大问题。所以许多高校的工科专业开设了“金属腐蚀与防护”课程。

“金属腐蚀与防护”是金属材料工程专业学生的一门专业选修课。主要介绍金属腐蚀与防护方面的基础知识,掌握有关金属腐蚀与防护的基本理论和基础知识,重点是电化学腐蚀的原理,以拓宽金属材料专业学生的专业面,并使学生能够在该领域从事基本的应用与研究工作。要求学生了解几种常见的局部腐蚀的形式以及自然环境中的几个腐蚀种类,了解各种环境腐蚀发生的影响因素及其防护措施。本科程为一门理论性与实用性并重的专业课,要求学生既要掌握扎实的理论基础,又有较强的分析问题、解决问题的实践能力,以适应社会的需求。

二、教学改革

之前本课程只是作为一门选修课,在课堂上以板书教学为主,学生以笔试的方式完成期末考核。近年来,材料研究课题有很多牵涉到材料的腐蚀方面的研究内容,本科生和硕士生的毕业论文工作又和指导教师的研究课题密切相关。有许多本科生毕业论文就是金属腐蚀与防护相关的课题。但大多数学生对材料腐蚀的实验方法了解甚少,甚至有时茫然不知所措,直接影响到了学生毕业论文的完成进度和完成质量。据统计,内蒙古科技大学材料与冶金学院(以下简称“我院”)2006年和2010年本科生毕业论文工作过程中,涉及到腐蚀实验的学生占毕业生总数的20~30%,因而,使学生能较熟练地掌握材料的腐蚀研究实验方法和研究体系势在必行。

一直以来,我院材料工程和材料成型专业学生由于受较传统的教学体制的影响,对材料的组织与性能方面等传统实验方法学习和实践环节较多,而对其他实验方法如电化学腐蚀等实验和研究方法的学习和掌握较少甚至是空白。目前,由于国家对材料环境腐蚀的不断重视,[1-2]特别是在国防现代化方面的投入和研究力度的加大,材料在自然环境中或特定腐蚀环境条件下的腐蚀特性和腐蚀规律的研究日益增多,[3-4]因而要求材料专业的学生应对材料的腐蚀的实验方法进行学习,掌握材料腐蚀研究方法的实验体系,以能应对和满足今后工作和学习的进一步需求。

1.多媒体教学和传统板书巧妙配合提高课堂效率

随着教学辅助手段日益发展,“金属腐蚀与防护”课程教学现在大量采用多媒体与板书相结合的教学形式。多媒体教学的特点是能够显示丰富的色彩、能容纳大量的信息,可节约大量的课堂时间,教学直观、易懂,能让教学内容形声化、表现手法多样化,对学生的感官进行多路刺激,便于开展情境教学。例如,在介绍全面腐蚀和局部腐蚀时,可以利用图片很容易说明每种腐蚀的形貌特点。

“尺有所短,寸有所长”,多媒体教学具有传统教学所不具备的优势,但也不能完全替代板书。多媒体教学携带的信息量大,给学生留下的思考时间就相对减少,学生没有递进式的思考和探究,往往跟不上教师的进度和思路,在讲述基础内容时板书的教学效果将更加明显。例如,在讲述腐蚀电化学原理一章中阴阳极的腐蚀反应方程式时,可以充分利用板书将腐蚀过程的反应方程依次列出,在重难点处可以进一步在黑板上进行扩展,学生看着黑板听着教师的讲解或描述,把思路集中在教学内容上,教师在黑板上表达清楚,有血有肉,有理有据,在下面听的学生不断思考,在对话交流的过程中让学生感受到教师和学生的互动,这样才能随时迸发出思想的火花,发现值得探究的现象,产生引入深思的问题。

2.增设网络课件,延伸教学体系

不管课堂教学如何内容丰富,但时效性很强。无论课堂组织多么优秀,学生也不可能在90分钟内一直全神贯注听讲。为了便于学生及其他相近专业学生自主学习,为了做到资源共享,课题组还开发了“金属腐蚀与防护”网络课件,把课件放在教学网络平台上,把教学大纲、课程重点难点、课后练习、提高练习等放在网上。学生随时可以学习,学生有问题可以在网上留言提问,教师及时回复,这样就方便了学生的学习。

3.增加实验教学培养学生独立思考自主创新能力

由于“材料腐蚀与防护”是一门专业特色课程,与科研方向密切相关,其实验课程的教学重点是培养学生发现问题,分析问题和解决问题的能力,提高学生的动手能力,为将来毕业论文的科研工作以及毕业后的工作提供基本方法、基本技能和科学思维的保障。针对材料专业学生的特点和培养目标,以及近年来毕业论文的需求,课题组教师精心设计了实验体系。一是基础验证性实验,重点培养学生基本技能,巩固基本理论知识。二是以任务为目标,提出设计性实验课题引导学生完成知识的综合和提高,加深对腐蚀防护的理解。三是开辟综合性开放性实验室,提高学生综合分析和设计实战经验。学生在开放实验室里可以自主查阅资料设计实验,指导教师予以指导。

我院在本课程的教学体系中增加了4学时的实验课,这4学时的实验课是在实验室完成。学生亲手做实验,教师全程跟踪指导。把实验也作为学生本门课程结课的考核内容。

本课程的教学目标是传授材料腐蚀与保护实验方法和实验技能,锻炼学生的动手能力,培养学生良好的实验习惯和科学的思维方法。材料腐蚀与保护实验侧重于实验技能的强化和提高训练,必须要求学生严格按照实验步骤及操作规程执行,掌握基本的实验技能,熟悉常用实验仪器的使用方法,利用这些技能和方法解决科研问题。[5]这就为后续的毕业论文的完成打下了良好的基础。

第7篇

【关键词】金属材料;力学;性能

在机械加工领域,常研究的金属材料的力学性能主要包括以下几个方面:材料强度与塑性、材料硬度、冲击韧性与疲劳强度。通过对金属材料力学性能的研究,在满足零部件加工性能的同时,更好更合理的选材。

一、强度与强度指标

金属材料在机械加工时,承受静载荷的作用,其抵抗塑性变形或断裂的能力称之为强度。载荷就是金属材料在使用及加工过程中所承受的各种外力,其中载荷分为静载荷、冲击载荷、交变载荷。顾名思义静载荷就是力的大小和方向均不发生变化的载荷,而冲击载荷就是冲击力比较大,作用在工件上的时间比较短、速度比较快,交变载荷与静载荷相反,力的大小和方向随时间发生周期性的变化。我们所研究的强度指标就是在静载荷作用下研究的。

屈服强度是用来表示金属材料强度指标最有效的形式。当金属材料受力达到一定程度出现屈服现象时,发生塑性变形并且变形能力不随力增加而改变,此时所对应的应力称之为屈服强度。

在机械加工领域,常用到的材料一般不允许存在塑性变形,这就决定了屈服强度是我们设计零部件和选材的最主要依据。

二、塑性与塑性指标

金属材料在机械加工时承受载荷作用时发生变形,当载荷增加一定程度时发生断裂,在断裂前所承受的最大塑性变形的能力我们称之为材料塑性。拉伸试验是我们获得金属材料的强度和塑性指标最有效的试验。首先把被测材料加工成标准试样,将试样安装在拉伸试验机上通过缓慢施加拉伸载荷,获得拉伸载荷与式样伸长量的关系,即拉伸曲线。

三、硬度和硬度试验

金属材料的硬度就是指金属材料抵抗局部塑性变形和破坏的能力。金属材料的力学性能中最重要的指标之一就是硬度。与拉伸试验相比,硬度试验相对操作比较简单,可以直接在零部件表面进行试验,比较直观,应用比较广泛。硬度试验方法种类比较多,最常用的有以下三种试验方法。

1、布氏硬度试验法

(1)布氏硬度试验原理

布氏试验就是先使用硬质合金球做压头压入金属表面,在施加一定的压力,在规定时间后消除试验力,最后测量压痕表面直径,根据试验压力,作用时间,压痕直径,带入公式,通过计算公式得出其硬度值。通过实验我们可以得出以下结论:布氏硬度值与压痕直径成正比例关系。

(2)布氏硬度特点及适用范围

由于在布氏硬度实验过程中,所用到的试验力和压头直径都比较大,所以压痕也比较大,测量起来比较直观准确,故能准确反映出硬度值。但是也存在一定缺陷,由于压痕比较大,对金属表面的损伤程度也比较大,对于测量零部件表面质量要求比较高或薄壁零部件不适用布氏硬度试验。

2、洛氏硬度试验法

(1)洛氏硬度实验原理

洛氏硬度实验原理与布氏硬度试验相比,不同点在于把硬质合金球形压头改为金刚石圆锥压头,不是通过压痕直径来测量,而是通过压痕深度来测量硬度值。对于不同标尺下的硬度值必须转化为同一标尺才能进行比较。

(2)洛氏硬度特点及适用范围

由于洛氏硬度试验压头采用金刚石锥头,压痕较小,对零部件的损坏程度比较小,适用于测量一些薄壁及表面质量要求比较高的零部件,但存在一定的局限性,测量的硬度值不够准确。

3、维氏硬度试验法

维氏硬度试验压头区别于布氏和洛氏硬度,采用金刚石四棱锥体,维氏硬度试验压痕比较不明显,故可以测量薄壁零部件,但在实验过程中,对压痕对角线的测量比较复杂,增加试验难度。

四、冲击韧性与疲劳强度

由于金属材料在实际使用加工过程中所承受的载荷是多样的,也可能是多种载荷的叠加,常见的的载荷有静载荷,动载荷和交变载荷,只对静载荷研究远不够,对于冲击和疲劳载荷的研究意义重大。

1、冲击韧性

冲击载荷的研究只要通过冲击韧性来获得,冲击韧性主要通过弯曲试验获得。冲击抗力是通过冲击韧度来衡量,主要由材料的强度和塑性决定。

2、疲劳强度

实际生产中常会遇到这种现象,虽然材料承受力远低于屈服极限,但较长时间工作后也会发生断裂,这种现象就是金属疲劳。金属材料出现疲劳破坏时会出现以下特征:(1)疲劳断裂前不出现明显征兆,突然破坏。(2)引起疲劳破坏的应力并不是很大,往往远低于材料的屈服强度。(3)疲劳破坏需要经过三个阶段:裂纹形成、裂纹扩展、整体断裂。

第8篇

(烟台大学环境与材料工程学院,山东烟台264005)

摘要:随着全日制专业硕士招生数量的加大,企业对优秀工程硕士研究生的需求也在逐步增大。为了使培养的工程硕士研究生能更好地服务社会,各高校在培养方案制定、毕业论文选题等各个环节都注重密切结合各专业的行业需求,使培养的硕士研究生既拥有一定的理论基础,又具备较强的实践能力,毕业后能很快地适应企业需求,满足企业对具有良好职业素养和解决实际问题的工程师的需求。本文以烟台大学环境与材料工程学院材料工程专业硕士研究生的培养模式为例,探讨工程硕士研究生培养环节设置的重要性,以期为工程硕士研究生的培养提供参考。

关键词 :工程硕士;基础理论;实践能力;培养模式

DOI:10.16083/j. cnki. 22-1296/g4. 2015. 08. 002

中图分类号:G643.0 文献标识码:A 文章编号:1671-1580(2015)08-0004-02

2009年,教育部进行了学位制度改革,力求转变研究生培养理念,全日制专业硕士研究生不再仅仅面向往届毕业生,开始鼓励应届毕业生报考,目的就是要培养现代经济社会发展急需的应用型高层次人才。为了更好地适应社会发展对高层次人才的需求,对全日制硕士研究生实行分类培养,对于一些具有一定科研潜力而又愿意致力于科学研究的学生,鼓励其报考学术型研究生,以后可以到科研院所搞研究工作,或者选择攻读博士研究生进一步深造。对于一些将来不想从事科学研究工作,而是毕业后想到企业发展,但是觉得本科学到的知识不能满足企业需求,想进一步提高自己解决实际工程问题能力的学生,鼓励其报考专业硕士研究生,进一步提高自己的理论素养和工程实践能力。

本文以烟台大学环境与材料工程学院材料]二程专业硕士研究生的培养模式为例,探讨工程硕士研究生培养环节设置的重要性,以期为材料工程硕士研究生的培养提供参考。

一、研究方向的确定

根据学院各个教师的研究方向、学院现有的实验条件、合作培养单位的情况等设定材料工程硕士的培养方向。学院设有无机材料方向、高分子材料方向、新型金属材料及其制备加工技术、金属材料组织与性能控制、材料表面特性与改性技术等研究方向。当然,每个培养方向都是注重理论为基础、实践能力培养为最终目的的培养模式。无机材料方向侧重研究与开发无机质材料的新品种、新工艺、新特性、新用途以及新的实用技术;高分子材料主要研究将高分子材料合成与加工融为一体的新型反应加工制造技术;金属材料主要以新型金属材料加工制备技术与工艺的研究为主,研究金属材料加工过程中的微观结构、组织形态、相变规律及其对材料零部件强韧性和服役寿命的影响,实现金属材料组织与性能的精确控制;材料表面特性与改性致力于研究耐磨、耐蚀、耐高温涂层材料及其加工设备技术、材料表面涂层的制备技术及调控技术。

二、培养目标的明确

虽然全日制工程硕士研究生的培养目标是培养应用型人才,但是对于他们的培养应该区别于职业学院学生的培养模式,充分考虑到硕士研究生的教育层次,使专业硕士研究生在知识结构上实现学术与应用的统一,既具备一定的学术水平,达到硕士研究生层次教育的学术水平,掌握较深厚的本学科领域的理论知识,同时具备解决实际应用问题的能力和素质。基于上述思路,我们制定了学院材料工程硕士研究生的培养目标——既要掌握材料工程领域的基础理论、先进的材料制备技术、材料检测技术和手段等,又能够在该行业的某一具体方向具备良好的独立从事丁程设计、工程实施、工程研究、工程开发、工程管理等能力,特别是具有较强的解决工程实际问题的能力。

三、课程体系的构建

全日制丁程硕士课程体系设置不能完全“去学术化”。在课程设置方面,我们注重基础理论课程和工程应用类型课程并存,将材料工程硕士研究生课程分为公共基础课、专业基础课、专业限选课和选修课四类。公共基础课包括中国特色社会主义理论与实践、自然辩证法、知识产权法等政治理论课以及基础英语、专业英语等。政治理论课采取在国家规定的教学大纲范围内完成课程设置。外语作为工具学科,在制定教学大纲时就充分考虑工程硕士研究生的培养目标和要求,紧密结合专业工程实际的要求,使学生在具备一定的基础英语知识的基础上,通过工程外语类课程的学习熟练掌握工程实践类英语知识,具备查阅英文资料、了解行业发展方向的能力。

在专业基础课方面,我们设置了固体物理、固体化学、材料现代分析测试技术等材料学科的基础课程。固体物理着重研究固体的物理特性、微观结构、固体中各种粒子运动形态和规律及它们的相互关系;固体化学重在研究实际固体物质化学反应过程及特性、固体的合成方法、晶体生长过程、固体的化学组成和结构,特别是固体中存在的缺陷及其对物质的物理及化学性质的影响,探索固体物质作为材料实际应用的可能性:材料现代分析测试技术则可以使学生掌握材料常用的测试技术、测试手段等以及各种测试方法的基本原理。

专业限选课和必修课则根据学院主要的科研方向设置了一些应用性很强、紧密联系工程实际的课程。选修课的设置为学生自主选择课程类型提供了方便,学生可以和自己的导师协商,根据自己所从事的毕业论文选题以及将来自己想从事的行业选择适合自己发展的课程。

为了提高教学质量,我们选用资深的研究生导师作为授课教师,他们不仅具有深厚的理论知识,而且具备丰富的科学研究和工程实践经验。此外,为了使学生更早地接触企业发展现状、了解材料行业的发展前景,学院聘请优秀的企业导师或行业知名专家为学生开设学术讲座、特色专业选修课。

四、学位论文的选题

材料工程硕士的培养采用两年制,课程学习时间安排一年,学位论文安排一年。课程学习结束后,鼓励学生到企业去,由学校导师和企业导师联合培养。学校导师和企业导师根据学生所学专业的实际情况以及企业的实际条件,结合学生将来的就业前景,选取切合实际的应用性论文题目。论文选题可以是新技术、新工艺、新设备、新材料、新产品的研制和开发,工程设计与研究,技术研究或技术改造方案研究,工程软件或应用软件开发,工程管理等。论文内容应达到学校对工程硕士研究生论文工作量的要求,体现作者综和运用所学的科学知识解决工程实际技术问题的能力,理论联系实际,既具备一定的理论基础,又具有较强的实用性。

考虑到我们学院材料工程硕士研究生的学制较短,为了使学生更好地完成学位论文,在课程学习阶段,利用学生的空余时间让学生多掌握一些技能,提早为学位论文的完成奠定一定的基础。入学后,导师可以根据自身的科研情况,尽早为学生选好毕业课题,指导学生先查阅