发布时间:2022-04-27 07:32:47
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的边坡支护技术论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
【关键字】土钉支护技术,深基坑,应用研究
一、前言
现今国内的高层建筑中土钉支护技术应用的很广泛,也是高层建筑的施工重点。很多的建筑工程由于土钉支护技术的失误,结果造成了巨大的经济损失,同时也是建筑工程的工期延误。所以,在建筑工程中,我们应当确保深基坑的安全性和质量,这就需要我们采用土钉支护技术进行深基坑的施工。土钉支护技术的造价较低,施工方法简便,同时工期较短。本文主要通过对土钉支护技术在深基坑中的设计、施工以及检测和在雨季中的处理对策等内容进行分析,从而保证建筑工程的质量和安全。
二、工程概况
笔者所在公司负责某市的一座综合楼,该楼的建筑面积是9.5万平方米。全部采用钢筋混凝土框架结构,该楼有22层,并且有地下室,基坑开挖的深度为9米。通过地质勘查报告可以知道,影响场地基坑支护影响的岩层包括填土层、粉土、黏土、粉砂等。粘土没有钻穿,现场测验有两层地下水,第一层地下水的深度是2到12米,第二层地下水的深度为14米。深基坑东临城市主干道,西侧是住宅区,北侧是一宾馆。
三、基坑支护设计方案
通过现场的地质勘查情况,同时还考虑到工程的安全、经济以及周边情况等因素,对于该工程,我们可以采用土钉支护技术和护壁桩两种施工方案。同时通过地质勘查报告,可知,该场地地下水位较高,因此实际开挖地下3米左右就可以见到地下水。。
1.基坑降水
为了使地下室能够干燥作业,我们使用12口径的管井进行抽水,将降水井安置在距离开挖线1米处,考虑到可能将地下水降到基底一下1米处,因此要在基坑周围布置82口管井,每口管井的距离为八米,在基坑内部布置渗井。降水井的深度为13米左右,将管底封死,同时在管外填上滤料。
2.土钉支护
由于地下结构施工对空间的要求,因此基坑侧壁和地下结构外墙之间的水槽为0.8米,同时土钉墙的高度应该为12米,土钉墙的坡度大约为1:0.2,同时还布置8排土钉。使用20HRB335型号的钢筋,保持水平间距在1.5米。土钉的长度为5米到九米,孔径是110毫米,排拒是1.5米。同时在第二排要采用预应力锚杆,长度为15米。
四、土钉支护施工技术
1.土钉支护工艺原理
土钉支护技术就是在依次开挖基坑土方而形成的坑壁中,通过采用机械进行钻孔,从而将土钉放到孔内,然后向孔内注入混凝土,然后在挂上钢筋网,最后喷射混凝土面层结构,这样就使其形成共同支撑的结构体系,经过这样的施工,一直到挡墙支护完全。
2.工艺流程
首先是基坑降水施工,接着是土方开挖至土钉标高下50cm,然后是土钉成孔,接着是杆体支放,接着注浆,接着坡面修正,接着铺设钢筋网,然后喷射混凝土,然后重复工序至基坑底,最后基底排水沟。
3.基底施工
对于土钉墙的施工,必须要根据开挖来进行,对于基坑的边坡一般应该按照分层分段开挖的原则进行开挖,采用中心岛的开挖方法,也就是说,首先将基坑沿线挖出10米左右宽度的护坡作业平面。将土方开挖到土钉标高一下0.5米处,同时采用机械成空方式,孔径大约为110ram,同时还要控制好空的深度、孔径以及倾角。在成孔以后,要迅速的向孔内插放钢筋,同时进行注浆。土钉杆体的水灰比为0.5,用普通硅酸盐水泥浆进行注浆。在第一次注浆完成后两个小时内,进行第二次注浆,同时要将孔口进行封堵。对于喷射砼施工,我们分段进行在统一分段内,喷射的顺序为自下而上。
五、施工监测
1.地下水位监测
从6月21日项目开工到7月17日,对降水井施工完毕并进行连续的抽水后,必须要保持水位在十米左右,可以达到施工的标准。
2.基坑位移监测
在进行土方开挖之前,要对基坑坡顶的水平位移以及沉降位移进行测定,得到原始值。水平位移很沉降位移的监测点沿着基坑坡顶的变现布置,距离为三十米。在进行土方开挖时,要每天检测一次。将沉降监测点布置在深基坑开挖可能影响范围内的市政道路上。对于水平位移,我们采用视准线法,就是说在需要进行位移监测的基坑槽壁上布置一条视准线,并且在改线两端深基坑可能影响的范围内设置两点A、B,将他们作为监测的主站点和后视点。接着就沿着改线在槽壁上设置几个观测点,就可以直接在读数尺上读出位移。
六、雨季中出现的危机情况和处理措施分析
7到8月间,该地区就进入了雨季,雨季给深基坑施工带来了很多的不便和影响,同时伴随着暴雨的来临,边坡支护的安全就面临很大的挑战。
1.危机情况的出现
在基坑的边坡锚钉和面层喷射混凝土施工完以后,在坑壁的局部就出现了一些出水点,同时在基坑西侧的边坡坑壁上,出水点有不断加大并进而形成涌水或者是涌砂的现象。同时在西侧的土体局部的变形变大,有些观测点点的水平位移达到75ram,沉降位移达到90mm。在基坑的北侧和东侧的情况要好一些。通过我们的观测数据分析可知,土方开挖到预先设计的深度,基坑边坡的水平位移相对比较稳定。
2.处理措施
对于坑壁局部渗水,在基槽四壁增加灌水孔,孔深0.6m,高度距槽底0.8m,间距2m。在护壁中插入周边带孔眼的包网塑科排水管,把局部渗水通过暗埋在土钉坡内的塑料排水管引入基坑周围排水沟及集水坑中。利用水泵及时抽排,加快边坡粉土层排水固结。
基坑东(3—1)轴到(3—7)轴采取分级支护.首先把高2.5m.宽4.0m的土卸除。在-7.0m位置增加一排预应力锚杆,高度16m。
按上述措施进行施工和危机加固处理后,对整个基坑及邻近建筑物的位移进行了跟踪监测。各观测点均处于稳定状态。同时对基坑开挖后,地面裂缝的开展情况进行了跟踪监测,各观测点的裂缝均处于稳定状态。
3.情况分析
通过现场的勘查,基坑西、北两侧场地条件较好,全部进行了硬化处理.通过对承平位移监测数据分析,开挖到设计深度,基坑坡顶水平位移在10mm以内,变形稳定。说明水源远近是影响基坑稳定的主要因素,地表水渗入土体造成坡体土层的力学性能指标严重下降和坡体水压力增加。
七.结束语
土钉支护技术在深基坑施工中的应用十分广泛,对于深基坑施工具有重要的意义。
参考文献:
[1]张晁 郑俊杰 辛凯 土钉支护技术在软土基坑中的应用 (被引用 18 次) [期刊论文] 《岩石力学与工程学报》 ISTIC EI PKU -2002年6期
[2]陈东 黄博 刘兴旺 曹国强 土钉墙支护技术在杭州某深基坑工程中的应用 (被引用 5 次) [期刊论文] 《岩土工程学报》 ISTIC EI PKU -2006年z1期
[3]孙丽梅 张玉敏 高明涛 鞍山东方大厦深基坑土钉支护技术 (被引用 13 次) [期刊论文] 《探矿工程-岩土钻掘工程》 ISTIC -2007年2期
[4]杨文侠 王松泉 朱彦鹏 土钉支护技术在黄土地区深基坑支护中的应用 (被引用 11 次) [期刊论文] 《甘肃科学学报》 ISTIC -2003年4期
[5]赵乃志 刘丹 张敏江 姚静 复合土钉支护技术在深基坑工程中的应用 (被引用 2 次) [期刊论文] 《沈阳建筑大学学报(自然科学版)》 ISTIC PKU -2007年3期
[6]吴忠诚 汤连生 廖志强 刘晓纲 颜波 深基坑复合土钉墙支护FLAC-3D模拟及大型现场原位测试研究 (被引用 10 次) [期刊论文] 《岩土工程学报》 ISTIC EI PKU -2006年z1期
关键词:土木工程;支护技术;应用;分析;现阶段
前言
深基坑支护技术措施,是现阶段我国范围之内投入建设的隧道工程项目抑或是高层建筑工程项目等危险性比较强的工程项目施工相关工作进行的过程中得到应用的一种技术措施,深基坑支护技术措施实际应用的过程中,是可以在某些层面上让工程项目整体性质量以及安全性水平得到一定程度的提升,但是深基坑支护技术措施并不是全面的,其本身具备一定的特征,因此并不是在所有工程项目当中都可以展现出来比较强的适用性,针对现阶段我国土木工程施工相关工作进行的过程中应用到的深基坑支护技术措施展开研究分析,可以在对不同类型的技术模式以及结构模式加以一定程度的应用的基础上,展开各项施工相关工作,因此也是可以在我国土木工程领域中得到较为广泛的应用。
1.针对边坡支护技术措施的意义展开研究分析
边坡支护技术措施实际应用的过程中,可以将各项不利因素对土木工程施工相关工作造成的影响控制在既定的范围之内,比方说土木工程施工现场土质情况不是十分的理想,那么各项施工相关工作进行的过程中,有可能出现地面塌陷这样的问题,除此之外也会使得土木工程施工单位承担一定的经济损失问题,与此同时某些突发性问题,比方说降雨量的急剧提升会使得施工现场周边的河流水文大幅度提升,各种类型的不可抗性自然灾害都会对土木工程整体进度以及工程项目整体性质量造成一定程度的影响,但是科学合理的应用边坡支护技术措施的话,可以将这些因素造成的影响控制在可以接受的范围之内,最终也就可以使得土木工程进度以及土木工程整体性质量水平得到应有的保障。针对现阶段我国土木工程领域当中,边坡支护技术措施的实际应用情况展开研究分析工作,在边坡支护技术更新换代的过程中,可以使得我国土木工程不断提出的崭新需求得到满足,在现阶段我国土木工程项目施工阶段当中,针对各项技术措施提出了崭新的要求,自然边坡支护技术措施也应当得到优化调整,才可以对土木工程施工相关工作的安全性及稳定性做出应有的保证,并将工程进度及质量控制在一定水平之上,在上文中提及到的背景之下,土木工程项目部领域中的各个工作人员应当将边坡支护技术措施放置在一个较为重要的地位之上,以便于可以使得施工相关工作的可靠性水平得到一定程度的提升。
2.针对边批支护技术措施在土木工程领域中的实际应用情况展开研究分析
应当将注浆比例科学合理性放置在较为重要的地位之上,在浆液灌注工作进行的过程中往往都应当应用重力灌注措施,并依据工程项目实际需求适当的开展补充浆液操作;与此同时也应当将基坑领域中的各项工作妥善的完成,在基坑开挖工作进行的过程中应当施行较为严格的质量控制措施,科学合理的展开分区工作以便于可以对保护工作的效果做出保证,以免因为长距离基坑开挖工作进行的过程中,出现操作失误而引发加我诶严重的地表塌陷问题;最终在后续各项工作进行的过程中,应当将监测工作力度提升到一定的水平之上,以便于可以及时的发现安全隐患,并在对有效性比较强的措施加以一定程度的应用的基础上,使得问题得到有效的解决。
3.结语
总而言之,深基坑支护技术措施自从在我国建筑工程行业中得到应用以来,就取得了比较好的应用效果,因此会在我国建筑工程行业发展进程向前推进的过程中起到一定程度的促进性作用,因此在深基坑支护技术措施实际应用的过程中,各项保障性措施应当妥善的完成,以便于可以对各个层面相关问题出现的几率形成有效的控制,即便是深基坑支护技术措施在发展的过程中逐渐变得较为完善,但是仍然存在一些有待改进的地方,在我国深基坑支护技术措施不断的改进以及更新的过程中,未来肯定可以在土木工程领域当中发挥出来更为重要的作用。
参考文献
[1]姜文鹏.深基坑支护施工技术在土木工程中的应用分析[A].旭日华夏(北京)国际科学技术研究院.首届国际信息化建设学术研讨会论文集(一)[C],旭日华夏(北京)国际科学技术研究院:,2016:2.
[2]覃俊甲.边坡支护技术在土木工程施工中的应用分析[A].旭日华夏(北京)国际科学技术研究院.首届国际信息化建设学术研讨会论文集(一)[C],旭日华夏(北京)国际科学技术研究院,2016:1.
关键词:锚杆;支护机理;隧道工程
中图分类号:U45 文献标识码:A
1 引言
隧道支护理论经历了古典压力理论阶段、松散体理论阶段和现在的支护与围岩共同作用理论阶段。支护与围岩共同作用理论认为围岩与支护同为承载结构,前者是主体,后者是辅助,两者互不可缺。为了使得隧道施工设计更加科学、合理,同时节省工程造价,因此在隧道支护中应当在保证不出现围岩失稳的前提下最大限度发挥其自身的承载力。锚杆作为一种柔性支护结构,能与围岩同步变形,使其在隧道支护工程中被广泛使用。
锚杆技术由国外发明,最初用于矿山巷道支护加固。19世纪末20世纪初英国、美国率先使用锚杆对矿山边坡进行加固,锚杆由此得到关注。20世纪50年代到70年代,德国、捷克斯洛伐克、英国、美国将锚杆运用于基坑开挖支护,从此锚杆被各国广泛应用边坡稳定的维护。相比于国外,虽然我国锚杆技术的发展起步较晚,但经过近几十年引进、吸收和消化国外锚杆技术,并通过与工程实践相结合,我国锚杆技术取得了长足的进步。本文通过对锚杆分类和锚杆支护机理发展的阐述以及锚杆支护机理不足之处的指出,以期为相关研究人员提供些许参考。
2锚杆分类
锚杆是一个抗拉强度高于岩土体的杆体,依靠与周围岩土体紧密接触所形成的摩阻力形成对岩土体径向方向上的约束。
锚杆有多种分类依据:
(1)锚固长度:全长锚固型和端头锚固型。
(2)锚固方式:机械型、黏结型和混合型。
(3)是否施加预应力:预应力锚杆和非预应力锚杆。
(4)受力状态:拉力型锚杆和压力型锚杆。
3锚杆支护机理的发展
20世纪40年代以来,各国研究人员对锚杆支护机理进行了大量理论研究,并在工程中检验、推动和完善理论,取得了诸多研究成果。下面对锚杆的支护机理加以综述:
(1)悬吊理论:该理论由Louis A.Panek于1952~1962年间提出,他认为通过锚杆能够直接将不稳定岩石悬吊在上部坚硬岩层。
(2)组合梁理论:该理论由Jacobio于1952年提出,其实质是利用锚杆将岩层钉在一起,增大岩层之间的摩擦力,防止其滑移和坍塌。
(3)减跨理论:将锚杆打入隧道周边围岩中,相当于在围岩中增加了支点,从而使得隧道围岩跨度减小,提高了围岩的稳定性。
(4)整体加固理论:通过大量锚杆的布设,将隧道周边松散围岩锚固在内部稳定围岩上,使得松散围岩和稳定围岩形成一个整体,增大了隧道围岩的整体稳定性。
4锚杆支护机理的不足
虽然锚杆已应用与工程近一个世纪,但是在锚杆支护机理方面仍存在以下不足:
(1)锚杆横向效应:通过锚杆支护机理的发展不难得出,各国研究人员对锚杆的研究重心都集中于锚杆轴向效应,对其横向效应关注度不够;
(2) 设计理论研究尚不清楚:由于隧道围岩的复杂性和多样性等客观条件,使得目前锚杆支护设计理论和计算方法存在这样或那样的不足,造成目前锚杆支护工程中,多采用工程类比法或半理论、半经验法,无法实现科学设计施工;
(3)锚杆荷载传递机理尚无定论:锚杆、灌浆体和孔壁三者之间存在复杂的化学作用,任意两者之间出现一定相对位移,锚杆支护则会失效。
5结语
近年来,高速公路逐步向西推进,期间伴随着大量隧道的修建,而隧道的修建离不开锚杆支护,故相关研究人员应抓住这一历史机遇,将理论与工程实践相结合,争取取得更高水平研究成果,为锚杆支护科学设计施工提供理论依据。
参考文献:
[1] 杨为民. 锚杆对断续节理岩体的加固作用机理及应用研究[D]. 山东: 山东大学博士学位论文, 2009.
[2] 杨松林. 锚杆抗拔机理及其在节理岩体中的加固作用[D]. 武汉: 武汉大学博士学位论文, 2001.
[3] 孙静. 锚杆在节理岩体中的加固作用机理和锚固效应分析及应用[D]. 湖北: 中国科学院武汉岩土力学研究所, 2003
论文摘要:文章以具体基坑工程为例,简要介绍了如何通过基坑开挖检测反馈的信息进行动态设计的全过程;阐明基坑开挖工程实施信息化施工的重要性,提出了基坑支护设计中需要注意的若干问题。
基坑支护动态设计法是在计算参数难以准确确定、设计理论和方法带有经验性和类比性时,根据施工中反馈的信息和监控资料不断完善原设计方案的一种设计方法。基坑支护动态设计也就是全面实行信息化施工,通过建立完善的监控系统,不断地将现场施工信息、地下水及地质变化情况反馈到设计单位,调整完善设计,有利于控制施工安全。这一设计方法客观求实、准确安全,适合于基坑开挖支护、边坡治理等岩土工程施工。现以郑州市某基坑设计为例,简要地介绍动态设计的内容及方法。
l工程概况
拟建某工程场地位于郑州市政七街与纬五路交叉东北角。地下2层,呈矩形,总占地面积340om,基坑开挖深度8.9m,基坑周边建筑物及管线密集,其中南、西、北三侧通信电缆管线距基坑约1.5m;西侧上水管道距基坑约0.3m,山河宾馆配楼距基坑约7.0m;南侧污水管道距基坑约5.0m,北侧办公楼踏步距基坑约1.5m(图1)。
2场区工程地质条件
拟建场地原为拆迁场地,地形相对平坦,所在地貌单元为黄河冲积泛滥平原。场地内深度0.7~1.8m以内为杂填土;约14m以内为第四系晚更新统(冲积形成的)地层,以粉土、粉质粘土为主。与支护有关的各土层计算参数取值见表1。
场地地下水属潜水,水位埋深在地表下3.0m左右。近3~5年来地下水位最高2.0m,历史最高水位为1.0m,主要受大气降水补给。
3原基坑支护结构设计
根据场区工程地质情况、开挖深度及基坑周边环境特点,基坑采用喷锚支护形式,考虑到局部土层粘粒含量大、含水量高,先打一排48花管并注浆后再开挖,典型(基坑西坡)剖面见图2。
基坑支护结构的整体稳定性采用《建筑基坑支护技术规程》(JGJ120—99)及《基坑土钉支护技术规程》(CECS96:97)中规定的方法综合计算分析,其中地面荷载为15kPa。支护断面整体稳定性计算结果在1.321~1.803(安全系数)间,满足规范的要求。
4施工期监测
基坑周边管线、建筑物密集,所以在基坑开挖施工过程中,必须严格控制位移,避免支护结构和被支护土体的过大位移影响周边管道及建筑物的正常状态。针对该基坑工程的上述实际情况,监测在基坑周边及临近建筑物共设34个沉降观测点,并沿基坑周边均匀设置12个水平位移测点(见图1)。基坑支护于2006年11月13日开工,2007年1月16日支护完工,工程于2007年9月10日竣工通过验收。开挖施工过程中,基坑周边位移测点的水平位移量为5.0~82.4mm,基坑坡顶的累计沉降量为28.7~118.5mm(表2);周边建筑物的沉降均不大,最大值为24.1mm。
根据监测结果,西坡的B5点和东坡的BIO点位移较大,分别为82.4nln和41.9mm。基坑东侧B10点位移过大主要是基坑开挖过程中从东坡过土方清运重车,基坑开挖快结束时,挖掘机也从此处来回通行,对此点沉降及位移影响均较大,所以测量结果也有些失真;基坑西坡B5点(曲线见图3)较真实地反应了施工工况:2006年11月23日,基坑开挖至4.0m左右,与南侧城市污水主管道连通的西侧废弃管道被冲开,大量水灌入基坑,浸泡西侧边坡,B5点位移由7mm增至35mm,沉降量由10mm增至40mm;在西坡开挖第五层土及施工第五排锚杆时,由于出现不明管道漏水,使该侧土层含水量迅速增大,开挖面出现了蠕变、侧鼓现象,B5测点的水平位移由37mm突增至80mm,沉降量由40mm增至110mm,均超过最大预警值。
5动态设计过程
根据基坑周边环境及场地土质情况,按照《建筑地基基础工程施工质量验收规范》(GB50202—2002)的规定,本基坑位移的最大预警值为5em。为确保基坑施工的安全和开挖顺利进行,在整个施工过程中进行全过程监测,并根据监测反馈的信息进行动态设计,实施信息化施工。下面仅以该工程西坡支护设计为例,详细介绍根据监测结果及施工信息进行动态设计的全过程:
(I)施工开始时,西坡原计划拆除的上水管道无法拆除。设计根据现场情况,将原边坡斜率由1:0.2调整为1:0.15,48注浆花管间距由1m调整为0.8m,第一、二排土钉长度由7m调整为9m。
(2)2006年11月23日出现灌水情况后,及时停止了西侧施工,抽排坑内明水,待基坑基本晾干后再进行开挖。
(3)基坑开挖至第五层设计接收到监测预警后,立即修改原支护设计,要求在开挖面分别直立和45。斜插补打两排长4.5m的48注浆花管做超前支护,并在第三四排、四五排间分别补打一排长12m的土钉,以控制该区域基坑边坡水平位移;开挖第六层时,含水量还较大,为避免出现侧鼓,设计要求每次开挖深度减半,增加一排土钉。至地下室底板浇筑完成,该测点的水平位移量仅增加2.4mm,沉降增加6.6mm,设计采用注浆花管超前支护及增设锚杆控制位移是及时的、准确的,这两项措施成功地控制住了开挖引起的边坡水平位移。
(4)基坑开挖到第五层土后,现场反映西侧实际地质条件比地质报告中所描述的要差,需要对该区进行加固,即在开挖面处垂直和45。角向下打两排48注浆花管,长度为4.5m。动态设计在整个施工期中根据实际情况不断地调整原设计剖面,施工完成的西坡支护剖面详见图4。
6基坑支护结构设计注意事项
通过全面参与基坑设计、施工、监测工作,认为基坑支护结构设计必须注意如下事项:
(1)详细调查了解基坑周边环境,包括基坑周边管线及建筑物。近年来我国经济发展迅速,城市建设水平普遍提高,许多新建建筑物都设有地下室,在基坑设计时必须考虑采用支护结构对邻近管线及
建筑物的影响。比如,基坑支护采用锚杆,锚杆可能会打到邻近地下室侧壁,必须根据实际情况调整锚杆角度及长度。另外基坑原场地遗留的混凝土结构也可能对施工造成影响。
(2)主体结构施工场地布置,如出土及运输线路、材料堆场设置及塔吊位置等,这些均造成基坑局部地面荷载较大,支护设计时需要对相应位置进行局部加强,控制该处地面沉降、顶部水平位移。
(3)基坑支护土层中含水量较大时,开挖过程中有可能出现坡壁侧鼓现象,且锚杆不易成孔,设计可以采用注浆花管进行临时开挖支护。注浆花管加固可以是水平、倾斜或竖直的。
(4)采用喷锚支护,当基坑局部水平位移较大时,可以垂直向下补打注浆花管,并在上部已护好的坡壁上补打锚杆,以控制在随后的开挖过程中水平位移的急剧发展。
(5)基坑采用喷锚支护结构时,基坑顶水平位移量一般不易控制,在对位移有严格要求的区域可以采用桩锚相结合的支护形式。
关键词:深基坑 支护工程 施工技术
我国经济的速发展,城市在断扩大,为适应社会需要,大量高层建筑和地下建筑建设工程兴起,因此涉及到大量的基坑工程。由于施工现场的周边往往已有许多建筑或管道,为保持周边设施的正常使用,需要进行基坑支护工作。基坑稳定安全了,建筑基础的质量和安全才能得到保证。本文在探讨深基坑支护施工的过程中,结合工程实际需要,重点围绕支护结构本身的薄弱点,提出一些具有工程应用价值的建议措施。
1 深基坑支护结构设计阶段与施工阶段的技术难题
工程地质复杂多变,存在很多不确定性的因素。就当前的技术难题,主要存在以下几个技术难题:
(1)在计算实际土体压力方面如何选择一个适合的土体物理力参数;因为在很大程度上,基坑支护结构的安全性能质量程度受所能承受的土体压力大小决定的。在基坑开挖后,粘聚力、含水率、内摩擦角这三个重要参数,由于其具有可变性,进一步增加准确计算支护结构实际受力的难度。此外,支护结构形式和施工工艺等因素,也影响土体物理力学参数的选择。
(2)取样分析方面,无法做到对基坑土体的取样完全。基坑支护结构设计的一个必要步骤是在设计前对地基土层进行取样分析;但在本工程中地质情况复杂,造成随机取得的土层样本无法做到准确地反映土层的真实情况,进而影响到支护结构的设计并不能完全符合基坑的实际地质情况。
(3)无法做到全面考虑基坑开挖后的空间效应,本工程和其它不少基抗开挖实例表明,基坑开挖还存在空间的问题,即基坑四周朝内侧发生水平位移,且往往表现为中间比两边大,这样的现象容易造成基坑边坡失稳的质量问题。
(4)理论计算受力的结果与实际受力情况存在不相符合的情况。在本工程基坑支护施工过程中,也发现了一个当下常见的工程共性问题,即设计人员按极限平衡理论来确定安全系数及设计计算支护结构,从理论的角度来看此类做法是绝对安全的,但从工程成本控制来看,支护结构的建设成本却有所增加,而且不一定就能完成适应工程;但根据以往的工程经验发现,若选择规范中较小的安全系数来设计支护结构,却能达到实际工程的要求。
二、深基坑的支护工程的施工技术要点
平整施工场地之后,基坑开挖之前,需要进行基坑支护工程。当代的建筑往往占地面积大,场地狭小,建筑距离小,开挖基坑深,呈现出大型、紧密、复杂、深挖等特点,而这些都极易造成基坑支护工程的安全隐患。基坑支护工程的质量对基坑开挖的施工进度和效率有着直接影响,所以,基坑开挖的前一周,应当勘探地质,了解施工现场的具体情况,比如周围的地下水流和地下管线,按照有关技术规定,计算出各种必要的施工数据以及土方工程量,选择适当的基坑支护技术和安全合理的基坑支护设计方案。
相对于基槽和浅基坑来说,深基坑的支护有着更复杂谨慎的技术要求和更重要的施工作用。深基坑的支护关系着随后的基坑开挖工程以及整体建筑工程的施工质量,甚至还影响到工程邻近的建筑物的安全问题。因此在深基坑支护的施工流程上,不能因为支护是临时工程就不加以重视,如果一旦发生事故,造成的经济损失和人员伤亡将更加难以估量。经过多年实际实践,技术人员和施工人员总结出以下几种常用的深基坑支护方法:
1.型钢桩横挡板支护
挡土位置预先打入钢轨、工字钢或H型钢桩,间距适宜在1m到1.5m之间,挖方的同时,将挡土板塞进钢桩之间挡土,挡土板的厚度适宜在3m到6m之间,并在横向挡板与型钢桩之间打入楔子,使横板与土体紧密接触。适用于地下水位较低,深度不很大的一般粘性或砂土层中应用。
2.钢板桩支护
这是在经过精确的计算之后,在开挖基坑的周边打入钢板或者钢筋混凝土板桩,板桩入土的深度和悬臂的长度都应该符合计算后得到的数据。如果基坑的宽度足够大,则尽量要加加水平支撑。这样的基坑支护在地下水、深度和宽度都不是很大的粘性沙土层中使用较多。
3.灌注桩排桩支护
在开挖基坑的周围,用钻机钻孔,现场灌注钢筋混凝土桩,达到强度后,在基坑中间用机械或人工挖土,下挖lm左右装上横撑,在桩背面装上拉杆与已设锚桩拉紧,然后继续挖土要求深度。在桩间土方挖成外拱形,使之起土拱作用。
4.挡土灌注桩与土层锚杆结合支护
同挡土灌注桩支撑,但在桩顶不设锚桩锚杆,而是挖至一定深度,每隔一定距离向桩背面斜下方用锚杆钻机打孔,安放钢筋锚杆,用水泥压力灌浆,达到强度后,安上横撑,拉紧固定,在桩中间进行挖土,直至设计深度。适用于大型较深基坑,施工期较长,邻近有高层建筑,不允许支护,邻近地基不允许有任何下沉位移时采用。
5.双层挡土灌注桩支护
将挡土灌注桩在平面布置上,由单排桩改成双排桩,成对应或梅花式的排列,桩数应当保持不变,双排桩的桩径适宜在400mm到600mm之间,排距适宜在双排桩的桩径1.5倍到3倍之间,在双排桩顶部设圈梁使其成为整体钢架结构。
亦可在基坑每侧中段设双排桩,而在死角仍采用单排桩。采用双排桩支护可使支护整体刚度增大,桩的内力和水平位移减小,提高护坡的效果。适用于基坑较深,采用单排混凝土灌注桩挡土,强度和刚度都无法胜任时使用。
6.地下连续墙支护
在开挖的基坑周围,先建造混凝土或钢筋混凝土地下连续墙,达到强度后,在墙中间用机械或人工挖土,直至要求深度。对跨度、深度很大时,可在内部假设水平支撑及支柱适用于开挖较大、深度大于10米、有地下水、周围有建筑物、公路的基坑,作为地下结构外墙的一部分,或用于高层建筑的逆作法施工,作为地下室结构的部分外墙。
7.土钉墙
土钉墙,是一种边坡稳定式的支护,它的挡土作用和上述的围护墙都有所不同,它是起主动嵌固的作用,大大增加边坡的稳定性,使基坑开挖后坡面能够保持稳定。施工的时候,每挖深1.5m左右,挂细钢筋网,喷射细石混凝土面层厚适宜在50mm到100mm之间,然后再钻孔插入钢筋,长度适宜在10m到15m之间,纵间距和横间距适宜在1m到1.5m之间,加垫板,同时进行灌浆,依次进行直至坑底。基坑坡面,有一个比较陡的坡度。土钉墙适用于基坑侧壁安全等级为二级、三级的非软质土场地;基坑深度不宜大于12m。
三、 结语
综上所述,超深基坑采用多种支护形式进行组合,对节约支护成本起到了积极的作用。在整个施工控制过程中,要做到信息化施工控制,与监测单位保持密切联系,将设计、施工、监测等有序结合起来,并制定相关的应急预案与措施,使施工控制过程严密进行,获得良好的工程效益。
参考文献:
[1]周结仪 关于地铁车站深基坑的论述[期刊论文]《广东建材》 2012
[2] 孟凡运,刘全峰.土钉墙在深基坑支护中的应用[J]探矿工程(岩土钻掘工程). 2008(05)
[3] 娄奕红,俞三溥,王秉勇.基坑支护结构内力及变形动态分析[J].岩石力学与工程学报.2003(03)
【关键词】深基坑;支护问题;岩土工程;施工技术
1引言
深基坑支护在岩土工程中发挥着非常重要的作用,但同时也出现了一些问题,若无法解决这些问题,会从很大程度上影响整个工程的质量。因此,在实际施工中,技术人员应及时发现并解决这些问题,才能为岩土工程提供更好的质量保障。
2深基坑支护工作存在的问题
2.1不能严格按照有关规定对边坡进行规范化的处理
在岩土工程的施工过程中,常出现挖掘深度不够或者深度过深的情况,深度不足容易造成基础埋深不够,影响建筑的稳定性;而深度过深则容易造成工程建筑完工后出现地层沉降,导致工程项目地基出现裂缝甚至坍塌的风险,也会导致人员损伤等问题。所以这2种情况的发生都会给工程施工带来严重的影响。该问题的控制难度较大,因为造成这种情况的主要原因是管理人员对整个工程的监督力度不够,并且施工人员的技术水平不够,导致基坑开挖工程完成后,基坑边坡出现问题,包括边坡的平整度不够,稳定性不足等[1]。
2.2施工过程用料不足
进行基坑支护施工时,很多施工单位为了提高施工效率和经济效益,在施工过程中常出现偷工减料的现象,导致深层搅拌桩中水泥量不够的情况[2],这种错误最终会从很大程度上影响基坑的整体强度和稳定性。由于水泥量的缺乏,导致搅拌桩的强度没有达到设计强度,在此情况下基坑支护工作很容易导致桩体出现裂缝,严重影响基坑工程整体的稳定性。同时,施工单位的监管力度不够也是造成整个工程用料不足的一个重要原因。在施工过程中,施工单位经常因为内部管控不合理或人员调配难以负荷需求导致现场缺乏监管,进而出现施工过程用料不足的问题。
2.3施工人员素质参差不齐
在岩土工程深基坑支护施工过程中,很多操作人员并未取得相应的专业资格证明,并且在作业过程中对专业技术的掌握也未能达到实践应用的水准,容易出现工作人员不按照操作标准作业的状况,极容易导致施工质量差,支护效果不佳的问题[3]。另外,一些非专业人员在责任感方面也存在欠缺,难以对所负责的作业内容予以质量保障,并且这一问题还容易导致施工进度无法跟上预期计划。
3深基坑支护实施策略
3.1细化前期的勘察工作
深基坑支护需要在基坑中进行施工,在施工过程中需要保证基坑边坡土体的稳定性,因此,深基坑支护施工在岩土工程中是重点施工内容之一,要保证施工质量和施工过程的安全性,需要细化施工前期勘察工作,并且在确定勘察结果后才能进行施工,以保证施工人员的人身安全和工程质量。勘察内容不仅限于地址土层状况,还包括岩石类型、承压能力等方面的调查研究,同时对于施工周边的区位状况,尤其要对水文地质情况进行详细的勘察与分析,避免地下水对施工过程产生负面影响。另外,还要确保勘察数据的准确性,避免任何细节错误引发的安全隐患。
3.2做好变形预测,及时采取有效措施解决问题
在深基坑的施工过程中,还有一种非常容易出现的问题就是深基坑支护结构容易出现变形,从而严重影响工程质量。对于这样的问题,需要提前做好监测和分析,以便在出现问题时能够迅速采取有效措施解决[5]。对于深基坑支护结构的监测,主要是要对基坑边坡、四周的建筑物和地下管线进行监测,监测其是否产生变形。在监测过程中,需要做好相应的记录,对于地质条件的周期变化以及施工可能造成的额外压力负荷都要做好充分的预估,并且对周期性获取的数据进行阶段统计,这些记录数据可以为技术人员分析工程的变形和沉降情况提供可靠依据。总而言之,对于工程中出现的问题和情况,需要在短时间内进行及时的处理和解决,通过不断的总结和归纳,制定出更加严格规范的行业标准,在保证工程的同时还能节约施工成本。
3.3对深基坑支护的施工质量进行全程的控制
对于深基坑支护中出现的变形问题,应提前制定预防措施,并严格控制和监督施工过程,使施工质量满足相关规范和标准的要求。在施工过程中,施工人员要严格按照施工标准进行施工,尤其是具有重要安全影响的技术内容,要按照对应的参数标准进行设置或处理,不可擅自修改锚杆位置、型号、放坡系数、长度等数据。若发现设计方案与实际情况不符,需要及时上报,经设计单位核实并修改后,按照新行设计方案进行施工[6]。对于施工企业来说,要严格按照施工犯案进行施工,保证技术措施的落实到位,充分为工程质量提供保障。例如,进行土方挖掘时,要严格遵循施工标准和顺序,防止挖掘过深情况的出现,减少无支撑区域的暴露时间。对于施工过程中可能出现的异常情况,要及时解决和排除,以保证施工质量有保证。
4结语
地质灾害,因此,做好隧道洞口边坡稳定性分析及治理是隧道建设中的关键课题之一。论文主要探讨了影响隧道洞口边坡稳定性的因素和隧道洞口边坡破坏模式。最后探讨了隧道洞口边坡滑治理措施,仅供参考。
关 键 词:隧道 边坡稳定性治理措施
中图分类号: U45 文献标识码:A 文章编号:
Abstract:Tunnel construction landslide, collapse, often appear bias, landslides and avalanches geological disasters such as landslide, is one of the most common geological disasters, therefore, do a good job of tunnel portal slope stability analysis and management is one of the key problem in tunnel construction. The paper mainly discuss the influence factors of slope stability of tunnel and tunnel portal slope failure mode. At the end of the tunnel portal slope landslide treatment measures, for reference only.
Key Words:Tunnel; Slope stability; Control measures.
引 言
影响隧道洞口边坡稳定性的因素和公路隧道的围岩稳定性研究是公路工程中一项重要的研究课题。而在工程设计中应用较少。而我国相关施工规范对隧道洞口边坡的内容只作概述性的规定,如《公路隧道施工技术规范》对洞口隧道边坡进行了原则性的规定,对于复杂地质条件和复杂洞口型式下的隧道洞口边坡施工设计未做相应规定。在设计阶段,对隧道洞口的处理相对随意。而在施工过程中,施工方对隧道洞口可能出现的险情未引起足够的重视,造成洞口滑坡或坍塌,影响工程整体进度甚至出现人员伤亡。因此,研究分析影响边坡稳定性的因素,特别是研究影响边坡变形破坏的主要因素和稳定性分析以及隧道边仰坡滑坡治理是一项重要任务。
1影响隧道洞口边坡稳定性的因素
(1)地层与岩性。地层与岩性是决定边坡工程地质特征的基本因素,也是研究边坡稳定性的重要依据,因此,地层岩性的差异往往是影响边坡稳定的重要因素。
(2)岩体结构。近年来,在岩体强度及其稳定性的研究中,证实了岩体中的断层、层理、节理和片理是边坡稳定性的控制因素。所以,结构面被认为是特别重要的影响因素,结构面强度比岩石本身强度低很多,根据岩块强度计算稳定的岩体边坡可以高达数百米,然而岩体内含有不利方位的结构面时,高度不大的边坡也可能发生破坏。
(3)工程施工的影响,相关工程实践表明:当隧道两洞间距为 8m 时,左洞先开挖对边坡稳定性的影响略大于右洞先开挖对边坡稳定性的影响。边坡坡度是影响边坡稳定性的一个重要因素;当边坡坡度小于 35°时,边坡坡度变化对边坡稳定性影响不大;当边坡坡度在 35°到 55°区间时,边坡坡度变化对边坡稳定性的影响急剧增加。隧道埋深这一因素对隧道上方边坡在隧道开挖后的稳定性影响巨大;当隧道埋深小于 15m 时,由于隧道开挖为隧道左侧岩体形成了临空面,导致这一区域岩体滑动,从而塌方或山体滑动;当隧道埋深大于 15m 时,隧道埋深变化对这一类边坡稳定性影响不大。
(4)水的作用。水对边坡岩体稳定性的影响不仅是多方面的,而且是非常活跃的。大量事实证明,大多数边坡岩体的破坏和滑动都与水的作用有关。处于水下的透水边坡岩体将承受水的浮托力,而不透水的边坡岩体坡面将承受静水压力,充水的张裂隙将承受裂隙水静水压力的作用;地下水的渗透流动将对边坡岩体产生动水压力。另外,水对边坡岩体将产生软化、侵蚀等物理化学作用。而水流的冲刷也直接对边坡产生破坏。
(5)其它因素。除上述因素外,气候条件、风化作用、植被生长都可能影响边坡的稳定状况。
2隧道洞口边坡破坏模式
在隧道工程中,隧道洞口边仰坡开挖使边仰坡岩体平衡状态遭到破坏,于是边坡岩体在次生应力和各种外界应力的作用下发生破坏。按破坏机理可将边坡的破坏模式分为崩塌、倾倒和滑坡三种,其中滑坡按滑动面形态不同又可分为平面滑动、楔体滑动和圆弧形滑动三类。但是隧道工程有其特殊性,隧道洞口开挖对洞口段岩土扰动比较大,结合其边坡破坏外在表现,隧道洞口边坡破坏模式还应包括局部塌陷破坏和堆塌破坏。
(1)崩塌破坏。崩塌是指边坡上部的岩体在重力的作用下,突然以高速脱离母岩而翻滚坠落的急剧变形破坏的现象,这种破坏是边坡表层岩体丧失稳定性的结果。
(2)倾倒破坏。这种破坏形式是因为在边坡内部存在一倾角很陡的结构面,将边坡岩体切割成许多相互平行的块体,而临近坡面的陡立块体缓慢地向坡外弯曲倒塌。倾倒的特点往往是岩块一般不发生水平或垂直位移,而是以某一点或块体的某一棱线为转动轴心,绕其外侧临空面转动。
(3)平面破坏。平面破坏是指边坡岩体沿某一结构面如层面、节理或断层面发生滑动,通常滑动面的倾向与边坡的倾向一致,而滑动面的倾角小于边坡度但大于其内摩擦角的层状或有粘土夹层的岩体中,也可能发生在有较厚破碎带的岩体中。此类破坏是实际工程中发生最多的破坏,一般是由于边坡岩体结构面的存在以及开挖等施工因素的影响,破坏了原有的平衡,使得岩体沿着软弱结构面产生平面滑动破坏。最常见的破坏形式有:张拉破坏和剪切破坏。
灯草塘隧道是沪昆高速公路贵阳至清镇段上的一座双向六车道连拱隧道,全长280m,最大埋深79m,横向跨度34m,隧道穿越地层为煤系地层,围岩类别为Ⅴ级、Ⅵ级围岩,整体稳定性较差,遇到的不良地质灾害主要为裂缝、地面塌陷、老窑涌水、瓦斯等。隧道进出口均为深挖方段,进口挖方长155米,轴线最大挖高38.95米,左边坡开挖高度52.90米;出口挖方长140米,轴线最大挖高31.52米,右边坡开挖高度49.72米。
自2009年底实施边仰坡监控以来,发生多次险情。2010年1月7日在该边坡上发现地表裂缝,截止到1月10日上午10时,裂缝延伸最长达30m,裂缝最大宽度103mm,深可见0.3~1米。预应力锚索框架局部脱空。边坡后缘出现明显张拉裂缝,并已贯通至边坡深部。截止2010年7月11日隧道仰坡的第一、第二、第三、第四平台及平台截水沟均多次出现规模不等的裂缝(第四平台最大累计沉降103.80mm,)(L1裂缝长15米,宽1.3厘米;L2裂缝长11米,宽13厘米;L3裂缝长5米,宽2厘米;L4裂缝长20米,宽5-10厘米;L5裂缝长6米,宽2-5厘米;L6裂缝长6米,宽2-3厘米;L7裂缝长7米,宽2-3厘米);第三级仰坡面有三个井字架下部断裂。经过多次监测,发现降水后沉降增大明显,降水停止后,沉降变化缓慢。结合锚索应力监测结果,降水后锚索应力增大,尤其是中导洞正上方的锚索应力增大明显,说明雨水已经下渗到坡体导致坡体变形增大。
第一平台裂缝 第三平台裂缝
所有监测结果表明,在施工扰动和降雨的条件下极有可能产生大规模的滑动,是隧道出口施工和运营的安全隐患,给施工带来极大的危险。
3.隧道洞口边坡破坏治理措施
从前面的分析可知,隧道开挖改变了原岩体的应力状态,即所谓的岩体内部区域卸荷,造成隧道上方区域的边坡岩体有向下滑动的趋势,而这一部分岩体向下滑动又对隧道的稳定性造成影响。从这分析可知,减小开挖扰动和加强隧道支护为治理这类边坡破坏的最佳策略。从对这类边坡稳定性影响分析来看,在不同的地质条件、隧道参数、开挖条件下其稳定性有所不同。所以应首先详细分析工程地质条件,根据具体地质条件选取设计参数和确定开挖方案及支护措施。
地质条件是影响边坡稳定性的决定性因素,在工程选线时应对预选方案的地质条件进行详细调查,尽量避免不良地质情况。对隧道洞口段的地质调查应包括自然地理概况以及工程地质和水文地质:地层、岩性及地质构造变动的性质、类型和规模;断层、节理、软弱结构面特征及其与隧道的组合关系;地下水类型及地下水位、含水层的分布范围及相应的渗透系数、水量和补给关系、水质及其对混凝土的侵蚀性;崩塌、错落、岩堆、滑坡、岩溶等不良地质和特殊地质现象及其发生、发展的原因、类型、规模和发展趋势,分析其对隧道洞口稳定的影响程度;主要结构面(特别是软弱结构面)的类型和等级、产状、发育程度、延伸程度、闭合程度、风化程度、充填状况、充水状况、组合关系、力学属性和与临空面的关系;查明危岩分布及产生崩塌的条件、危岩规模、类型、稳定性以及危岩崩塌危害的范围等,对崩塌危害做出工程建设适宜性的评价,并根据崩塌产生的机制提出防治建议。
在选线时应尽量避免边坡坡度大于35°,隧道埋深小于15m。上述参数是在考虑隧道围岩为Ⅴ级时得出的结论,在实际工程中应结合具体工程地质情况作更为详细分析比选。隧道开挖方式对隧道围岩及边坡稳定性影响复杂,目前未得出一致结论,从总体上讲在施工过程应采取“弱爆破、短进尺、及时支护”相应的措施避免扰动过大。
综合工程地质条件还可以采取的具体工程措施如下:
(1)注浆加固隧道仰坡面和平台,增加松散岩体的自稳能力和抗剪力。由于隧道出口山体岩层很薄,且主要由煤和煤矸石组成,风化严重,在深埋侧侧向压力推动下易变形滑坡,为了提高仰坡围岩的自稳能力和抗剪力,对仰坡面和平台采用深孔注浆钢花管加固处理,同时增长锚索框架梁的锚索长度,做好边仰坡防排水措施。
(2)及时进行明洞施工和明洞回填反压。洞口仰坡较陡,必然造成边坡不平衡推力过大,为了防止边坡下滑,暂时停止隧道洞身开挖施工,以减少隧道洞身开挖爆破对边仰坡的扰动。为了提高明洞回填对坡脚形成的反压力,在明洞上方回填土M7.5浆砌片石和废渣,对坡面形成反方向作用力,阻止坡体的下滑。延长明洞衬砌长度,以提高明洞回填反压高度,增加洞门墙的抗剪力,在洞门墙与明洞衬砌结合部采用钢筋连接。
(3)洞内及时施工仰拱,使支护系统及时封闭成环。在任何情况下,使隧道断面在较短时间内闭合是极为重要的,在岩石隧道中,因围岩的结构作用,能够自我封闭成环,而在软弱围岩中,必须靠支护措施封闭成环。本隧道工序复杂,开挖扰动围岩次数多,每次对围岩的扰动也较大,岩体本身的自稳能力差,在主洞开挖过程中,应及时施工仰拱和二衬,并与边墙钢拱架连接成为一体,使其封闭成环,共同承受来自上方仰坡以及侧面围岩的压力。
4结 语
总之,在隧道施工过程中,大多数工程事故均出自洞口段,多数又由于洞口边坡产生破坏而引发洞口段整体失稳。所以,隧道洞口边坡的稳定性问题已成为隧道施工过程中最为关键的步骤。论文重点探讨了隧道洞口边坡的稳定性影响因素及治理对策,希望对实际工程提供理论依据。
参考文献:
[1] 周庆人.重庆大坪隧道进口段滑坡特征及稳定性分析[J]. 城市勘测. 2006(02)
[2] 黄泽瑞.石川隧道边坡稳定性评价与控制[J]. 山西建筑. 2009(18)
[3] 方建勤,廖树忠.隧道施工对洞口边坡稳定性影响研究[J]. 公路. 2009(12)
关键词:膨胀岩 路堑 边坡防护 破坏机理
中图分类号:U213.15 文献标识码:A 文章编号:1674-098X(2014)09(b)-0105-04
膨胀岩土属于特殊岩土,在我国分布较广[1]。因膨胀岩具有显著的胀缩特性,工程中往往不宜做出正确的评价,且施工方法缺乏应变能力,给实际工程带来许多预料不到的危害[2]。近年来,随着高速公路、铁路等工程的建设的快速发展,许多工程涉及到了膨胀岩路堑边坡问题。
工程人员借助工程地质学、岩体力学和土力学等学科的知识和成果,对膨胀岩边坡进行了研究与探讨,在理论和实践两方面均取得了一些进展[3]。蒋忠信等[4]从膨胀岩的胀缩性、碎裂性、低强度性及膨胀岩路堑边坡支护工程的适应性分析入手,提出了以膨胀岩工程地质分类为基础的膨胀岩地区铁路选线和路堑边坡设计原则;答治华等[5]在对膨胀岩边坡进行病害特征地质调查和分析的基础上,提出了膨胀岩边坡的防护加固原则;杨庆等[6]总结近几年的研究成果,认为在处理膨胀岩边坡工程时,应尽量避免原岩扰动,减小活化程度,有效的隔离膨胀岩与水分的接触,做好防排水工作,利用锚杆、锚索、支护或挡板等加固岩体,采取控制与适度膨胀相结合的防治方法;李青云等[7]对南水北调中线工程中的典型膨胀岩进行深入的试验研究,提出了膨胀岩渠坡治理的主要措施和设计施工导则,并对比了不同措施的处治效果。
尽管在工程实践中,对膨胀岩边坡已积累了一定的工程经验,但其边坡病害问题仍不断出现,这与膨胀岩边坡的工程特性与病害机理认识不足不无关系。因此,该文从膨胀岩路堑边坡的病害特征出发,阐述膨胀岩边坡的破坏机理及影响因素,总结了膨胀岩路堑边坡的设计基本原则,并针对其病害提出可采取的防治技术措施,以期为加深对膨胀岩边坡的认识提供一定参考。
1 膨胀岩路堑边坡病害特点
膨胀岩路堑边坡病害多是在工程开挖暴露条件下,因水的作用而发生,暴露失水、风化和降雨是膨胀岩产生强烈干缩膨胀的先决条件。因此,膨胀岩的病害分析必须考虑工程开挖和运营过程中可能引起的工程环境变化。
膨胀岩边坡失稳的特点是在无支护条件下,浅层逐次发生开裂、剥落和滑塌,如图1所示;在有支护条件下,常见表面开裂,严重时支护整体性丧失稳定性。在反复浸水和失水作用下,浅层膨胀岩边坡体反复胀缩,使岩体结构遭破坏,原有力学强度衰减,直至无法自稳而滑塌,巨大的膨胀压力是引起支护结构开裂的根本原因。膨胀岩滑坡往往具有:①季节性;②区域气候性;③逐级牵引性;④渐进性;⑤结构与构造性;⑥浅层性;⑦在相当平缓的边坡上也会发生滑坡。膨胀岩滑坡的这些特征,除了当地的气候和地形等因素外,还与膨胀岩本身所具有的多裂隙结构和构造性有关,其边坡破坏受到软弱结构面的控制,如图2所示。
膨胀岩边坡的破坏形态既不同于岩石的破坏形态,也不同于土体的破坏形态,其破坏形态可分为:①面滑动;②平面张裂滑动;③追踪式阶梯形滑动;④屈服拉裂剪切滑动;⑤弧形滑动;⑥胀裂破坏。工程中最为常见的破坏形态为胀裂破坏。就膨胀岩边坡的变形破坏类型而言,可分为三种破坏类型。①坡体失稳;②坡面失稳;③边坡失稳[8]。其中又以坡面失稳和边坡失稳两种类型为主。坡面失稳的破坏形式有剥落、溜塌、局部崩塌;边坡失稳的破坏形式有坍塌和滑坡。膨胀岩的坡面病害一般发生在边坡表层受气候影响较大的区带内,其深度与大气营力的作用直接相关,但一般不超过lm。湿胀干缩是膨胀岩产生这类病害的原因。坍塌是膨胀岩边坡中最常见的病害形式之一。边坡开挖引起坡脚应力集中,同时膨胀岩岩体结构破碎,吸水膨胀导致岩体强度衰减是产生这类病害的根本原因。坍塌体的边界受到岩体结构面控制,规模不一,大的可波及到整个坡体。
2 膨胀岩路堑边坡破坏机理
膨胀岩边坡在开挖后将经历不同阶段的动态变形。开挖后边坡表现出前缘水平滑动为主,后缘垂直下坐的运动趋势,但裂缝充水,受到持续孔隙水压力作用时,边坡表现出整体滑动趋势。在强膨胀岩中,常沿强度较低的面形成中型滑坡。但下伏砂岩、泥质砂岩中有地下水补给时,滑带可向下发展至膨胀岩内,出现顺层滑动,也可以产生切层滑动。
3 膨胀岩边坡失稳的影响因素
影响膨胀岩边坡失稳的主要影响因素有工程特性、边坡形状和工作条件、干湿效应、开挖及加固措施等[9]。归纳起来,分为三个方面:岩体内在原因、外在环境影响和人类工程活动[10]。①岩体内在原因主要表现在物质组成、裂隙作用和湿化性影响。膨胀岩含有大量亲水粘土矿物,如蒙脱石、伊利石等,具有吸水膨胀和失水干缩特性,这是影响其宏观工程性质的最关键因素。裂隙的存在破坏了岩体的连续性,同时也为风化营力进入岩体提供了通道,使得风化作用随着结构构造面延伸至地表以下较深的部位,也为工程性质更差的裂隙面填充物质提供了场所;此外,裂隙造成了岩体应力集中,为边坡的连续破坏创造条件。湿化性决定着膨胀岩边坡的坡面风化病害特征,同时也影响着边坡的坡体病害。②外在环境因素主要有:气候、地形地貌、地表水与地下水条件等。对于膨胀岩边坡,水的软化作用不容忽视,水能加剧膨胀岩的干湿循环作用,降低滑面(带)岩土强度,促使和加剧滑坡的形成和滑动。气候变迁与气象变化,也常导致膨胀岩边坡失稳,归根结底也是因为水的影响。③人类工程活动的影响。人们在膨胀岩地区所采取的不当工程活动(如勘察不准确、设计方案不合理或施工方法欠妥等)间对边坡稳定性产生不利影响,也是触发滑坡发生和发展的重要因素。
4 膨胀岩路堑边坡的设计原则
膨胀岩边坡的防护设计应基于其变形机制和破坏模式,根据不同的变形机制和潜在破坏模式设计相应的防护加固对策,以“放缓边坡、坡脚支挡、非全封闭防护”为宜[11]。用桩、墙固脚可解决坡脚岩体强度不足的问题并抵御滑动,以采用抗滑桩、重力式抗滑挡土墙或重力式锚杆挡土墙较有效。抗滑桩需要考虑侧壁应力的控制,加大埋深。挡土墙埋深需要超过气候剧烈影响层,考虑附加膨胀力加大截面以抗倾覆[12]。另外,边坡设计时,还必须综合考虑膨胀岩土的类型、性质、填筑条件,工程措施以及地区气候特点等因素。上部边坡放缓至稳定坡率,与岩体低剪切强度相适应。分级留平台以减小趾部压力。坡面防护措施贯彻“允许膨胀力释放和裂隙水排泄”的宜疏勿堵的原则,以采用锚杆框架加草皮护坡和干砌片石护坡等非全封闭防护为宜。若采用全封闭的浆砌片石护坡,则应注意泄水,加大厚度;若采用浆砌片石骨架加草皮护坡,则应加大骨架的埋深和截面,避免浅层溜坍和坡面鼓胀。
现行《铁路特殊路基设计规范》(TB10035-2006)[13]提出膨胀岩路堑边坡设计应遵循:“缓坡率、宽平台、加固坡脚和适宜的坡面防护相结合的原则”;边坡坡率及平台宽度视边坡的高度及岩土质条件按表1设计,边坡高度大于10 m时应结合稳定性分析计算进行设计。同时规范对边坡防护加固给出了应遵循的规定:
a)可能发生浅层破坏时,宜采取半封闭的相对保湿防渗措施;
b)可能发生深层破坏时,应结合浅层破坏,通过边坡稳定性分析确定加固处理措施;
c)膨胀岩强度指标应采用低于峰值强度值,可采用反算和经验指标;
d)支挡结构基础埋深应大于气候影响层深度,反滤层厚度应适当加厚;
e)路堑边坡防护加固类型依据工程地质条件、环境因素和边坡高度按表2~表3设计。
由于膨胀岩的复杂性、可变性和不确定性,地质勘察参数往往难以准确确定,而设计理论尚不完善,且设计方法带有经验性和类比性。因此,膨胀岩地区的路堑边坡工程设计,不应忽视的重要内容是根据施工中的信息反馈和现场监控资料进行不断校核、补充和完善原始设计,即采取信息化设计的原则。
5 膨胀岩边坡防治技术措施
膨胀岩边坡治理的工程实践表明,膨胀岩边坡防治应从边坡控制和边坡治理两个方面着手,综合运用边坡控制和边坡治理技术措施,保证边坡的长期稳定性。边坡控制技术措施主要有:排水工程、削方减载、浆砌片石、格构护坡、植物防护等;边坡治理的措施主要有:抗滑桩支挡、挡土墙支挡及格构锚固等。
5.1 排水工程措施
水分迁移变化是导致膨胀岩工程性状恶化,诱发边坡失稳的重要原因之一。因此,在膨胀岩路堑边坡治理中,要始至终保证边坡不受或降低遭受外界地表水及地下水的侵蚀。在易发生滑坡或已经产生滑坡的边缘上方修筑截水沟,隔离滑坡体以外的地面水,由截水沟引向桥涵或排水沟排出;在坡面上设置树枝状排水沟来排除坡体范围内的地表水;对于坡面裂缝,或截水沟渗水形成的大裂缝,应及时予以充填夯实,防止地表水向下入渗。对于地下水一般以疏导为主,通常设置盲沟排水。
5.2 坡面防护措施
(1)物理防护。
随着大气营力的作用,边坡表层暴露的膨胀岩岩体强度逐渐降低,使得坡面难于维持原有坡率,进而导致坡面病害的产生。因此,膨胀岩边坡坡面防风化是坡面防护的重要内容。目前,常用的物理性坡面防护技术措施主要有:水泥砂浆抹面、喷浆、喷混凝土、灰土捶面、浆砌片石骨架护坡、浆砌片(条、卵)石护坡、锚杆挂网喷混凝土、钢纤维混凝土喷锚、土工织物、植被防护等。这些坡面物理防护技术措施在许多大型工程中已得到广泛应用,但不同的技术措施在使用中各有利弊[14]。
(2)化学防护。
化学防护主要是使用化学改性方法改良膨胀岩土自身的膨胀性。常用的化学改性剂有:DAH(十二胺氯化物)混合溶液、树根桩+CMA混合溶液、土壤生态改性剂、NT无机防水材料等。该类方法主要用于膨胀土边坡的坡面防护[15]。对于膨胀岩坡面防护,不宜采用全封闭措施,护坡过程应以非全封闭或柔性封闭类型为宜。
5.3 坡体支护措施
膨胀岩坡体支护措施有传统的坡脚重力式挡土墙及新型的锚杆框架护坡、板桩墙、锚杆挡土墙等。其中,以浆砌片石坡脚挡墙应用的最多,对弱~中等的膨胀岩边坡支护效果较好。但对于强膨胀岩边坡,因坡脚挡墙设计尺寸不足而出现破坏的实例较多;锚杆框架护坡和锚杆挡土墙在膨胀岩堑坡的应用效果良好,但锚杆框架护坡的框架间坡面岩体的防风化措施必不可少,否则,坡面剥落、碎落、溜塌病害不断发展,会使框架梁支护作用失去效果;边坡较低时可采用干砌片石护坡、浆砌片石骨架护坡,地面反坡时方可采用浆砌片石护坡,草皮作为框架、骨架护坡补充,支撑渗沟、石灰土桩可作固坡之用。土钉墙在膨胀岩边坡工程中应慎用。另外,在弱成岩或强或全风化的膨胀岩堑坡中,支撑渗沟的作用是明显的。
6 结语
膨胀岩是一类受气候和环境影响较敏感的岩土体,因其易扰动,且具有胀缩性、裂隙性、崩解性和流变性等复杂工程性状,使膨胀岩边坡病害及其防治成为工程中的突出难题之一。对于工程中常遇的膨胀岩路堑边坡,应充分认识膨胀岩工程力学特性和病害产生机理,采用综合防治方法,以“稳固坡脚,保湿防渗、刚柔结合、以柔治胀”为主要思路,同时应针对主要病因和膨胀岩性质不同而有所侧重。总之,膨胀岩路堑边坡工程有章可循,但决不可生搬硬套,无论采取何种技术措施,把握膨胀岩的工程力学属性才是根本。
参考文献
[1] 李生林,施斌,杜延军.中国膨胀土工程地质研究[J].自然杂志,1997,19(2):82-86.
[2] 曲永新,张永双.中国膨胀性岩、土一体化工程地质分类的理论与实践.中国工程地质五十年[M].北京:地震出版社,2000.
[3] 廖世文.全国首届膨胀土科学研讨会论文集[M].成都:西南交通大学出版社,1990.
[4] 蒋忠信,李敏,秦小林.关于南昆铁路膨胀岩路堑边坡设计原则的探讨[J].中国地质灾害与防治学报,1994,5(4):66-74.
[5] 答治华,王小军.膨胀岩边坡病害与防护[J].路基工程,1998,16(4):58-63.
[6] 杨庆,张传庆,栾茂田.巷道及边坡工程中的膨胀岩[J].防灾减灾工程学报,2003,23(1):74-79.
[7] 李青云,程展林,包承纲.膨胀土(岩)渠道破坏机理和处理技术研究[J].南水北调与水利科技,2009,7(6):13-19.
[8] 曾继杰.南宁盆地膨胀岩边坡稳定性研究[D].广西大学,2004.
[9] Skempton a.w.第四届朗肯讲座: 粘土边坡的长期稳定性研究[J].岩土工程,1961(2):77-101.
[10] Lauren J.D.,Expansive rocks in California:an engineering and geologic review in part fulfillments for the degree master of science,San Jose State University,Decemher,1998.
[11] Wittke W.Foundations for the design and Construction of Tunnel in Swelling Rock,Proceedings of the 4th international congress of the Society for Rock Mechanics,Montreux, Switizerland,1979:219-729.
[12] Gysel M. Design methods for structure in swelling rock. Proceedings of the 6th international conference on rock mechanics, Montreal,Canada,1987.