发布时间:2023-03-13 11:14:31
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的量子通信论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:量子密码;量子加密;安全
中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)08-1752-02
如今,应用广泛的密码基本都是依靠数学计算方法来实现的――用复杂的数字串对信息进行加密。无论多么复杂的数学密钥也可以找到规律,破解复杂的数学密码成为计算网络安全的重要隐患。由美国专门制定密码算法的标准机构――美国国家标准技术研究院与美国国家安全局设计的SHA-1密码算法,早在1994年就被推荐给美国政府和金融系统采用,是美国政府目前应用最广泛的密码算法。然而2005年初,山东大学王小云教授和她的研究小组宣布成功破解SHA-1,因为王小云的出现,美国国家标准与技术研究院宣布,美国政府5年内将不再使用SHA-1密码算法。
随着信息安全技术的发展,量子通信网络的安全问题逐渐得到了人们的关注。1984年,Charles Bennett与Gilles Brassard利用量子力学线性叠加原理及不可克隆定理,首次提出了一个量子密钥协议,称为BB84协议(BB84 protocol),可以实现安全的秘密通信。1989年IBM公司的Thomas J. Walson研究中心实现了第一次量子密钥传输演示实验。这些研究成果最终从根本上解决了密钥分配这一世界性难题。经研究发现以微观粒子作为信息的载体,利用量子技术,可以解决许多传统信息理论无法处理或是难以处理的问题。“量子密码”的概念就是在这种背景下提出的。当前,量子密码研究的核心内容就是,如何利用量子技术在量子信道上安全可靠地分配密钥。从数学角度上讲如果把握了恰当的方法任何密码都可破译,但与传统密码学不同,量子密码学利用物理学原理保护信息。通常把“以量子为信息载体,经由量子信道传送,在合法用户之间建立共享密钥的方法”,称为量子密钥分配(quantum key distribution, QKD),其安全性由“海森堡测不准原理”及“单量子不可复制定理”保证。2000年美国Los Alamos实验室自由空间中使用QKD系统成功实现传输距离为80km。目前,量子通信已进入大规模实验研究阶段,预计不久量子通信将成为现实。
“海森堡测不准原理”是量子力学的基本原理,它表明,在同一时刻以相同的精度测定量子的位置与动量是不可能的,只能精确测定两者之一。“单量子不可复制定理”是“海森堡测不准原理”的推论,它表明,在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,所以说不可能。可利用量子的这些特性来解决秘密密钥分发的难题。
1量子密码理论
量子密码技术应用量子力学的基本理论,包括海森伯格的测不准原理和单光子的不可分割性,从而解决了典型密码一直无法完善处理的安全性问题。假设窃听者可观察到传统信道上发送的信息,也可观察及重发量子信道上的光子。
假设Alice要将一个比特序列m发送给Bob。她先对m中的每个比特bi随机地选择极化基B1或B2对其进行编码:如果Alice对比特bi选择极化基B1则当bi=0时就编码成|〉,当bi=1时就编码成|〉(也可以将0编码成|〉,而将1编码成|〉)如果Alice对比特bi选择极化基B2,则当bi=0时就编码成|〉,当bi=1时就编码成|〉。
Alice每发送出一个光子,Bob就随机选择一个相应的极化基B1或B2对收到的光子进行测量。因此,对Alice发出每一个光子,Bob就根据选择的极化基对光子的测量得到一个元(即集合{|〉,|〉,|〉,|〉}中的一个元)。Bob记下他的测量并保密。当Alice发送完相应于m的所有比特的光子后,Bob告诉Alice他测量每个光子的极化基。Alice则反馈Bob她发送的光子极性的正确基。他们保存使用了相同基的比特,而抛弃其他使用不同基的比特。由于使用了两个不同的基,因此Bob所获得的比特大约会有一半与Alice所发送的比特相同。这样Alice与Bob就可将Bob所得到的与Alice所发送的相同的比特用作传统密码系统的密钥
2量子密码安全协议
Charles H. Bennett与Gilles Brassard 1984年发表的论文中提到的量子密码分发协议,后来被称为BB84协议。BB84协议是最早描述如何利用光子的偏振态来传输信息的。发送者Alice和接收者Bob用量子信道来传输量子态。如果用光子作为量子态载体,对应的量子信道可以是光纤。另外他们还需要一条公共经典信道,比如无线电或因特网。公共信道的安全性不需考虑,BB84协议在 设计时已考虑到了两种信道都被第三方Eve窃听的可能。
这个协议的安全性还基于量子力学的一个性质:非正交的状态间无法通过测量被彻底的分辨。BB84协议利用两对状态,分别是光子偏振的两个直线基"+":水平偏振(0°)记作|〉,垂直偏振(90°)记作|〉;和光子偏振的两个对角基"×":45°偏振记作|〉,和135°偏振记作|〉。这两对状态互相不正交,无法被彻底的分辨。比如选择基"+"来测量|〉,会以100%的概率得到|〉。但选择基"+"来测量|〉,结果是随机的,会以50%的概率得到|〉,或以50%的概率得到|〉,而原始状态的信息丢失了。也就是说,当测量后得到状态|〉,我们不能确定原本的状态是|〉还是|〉,这两个不正交的状态无法被彻底分辨。
3量子共享密钥举例
假设Alice与Bob想借助量子信息建立他们的共享密钥进行秘密通信。首先他们需要两个信道:一个是量子信道,另一个是传统信道。他们利用量子信道来交换从纠缠光子源泉分享出来的极化光子,利用传统信道将通常的信息发送给对方。假设窃听者可观察到传统信道上发送的信息,也可观察及重发量子信道上的光子。
假设Alice先选定一个比特串m=0111001010发送给Bob。Alice随机选择极化基:
B1,B2,B1,B1,B2,B2,B1,B2,B2,B2
则她发送量子比特(即光子)给Bob:
|〉,|〉,|〉,|〉,|〉,|〉,|〉,|〉,|〉,|〉
Bob随机选择极化基:
B2,B2,B2,B1,B2,B1,B1,B2,B2,B1
然后对Alice发送的量子比特进行测量,并记下每次测量的结果。且Bob告诉Alice他选择的极化基。Alice则反馈Bob他选择的第2、4、5、7、8、9个极化基与她选择的相同。于是:
|〉,|〉,|〉,|〉,|〉,|〉
就是Bob测量到的正确结果,它们对应的比特是:1,1,0,1,0,1。因此Alice与Bob就得到了相同的比特串110101,他们就可用此比特串作为秘密通信的密钥。如果Alice发送一个大约112长的量子比特串给Bob,则他们就可得到一个可用于DES加密体制的56比特的密钥。
4量子密钥分发
一般来说,利用量子(态)进行秘密密钥分发的过程可由下面几个步骤组成。
1)量子传输:设Alice与Bob要利用量子信道建立一个共享的密钥,则Alice随机选取单光子脉冲的光子极化态和极化基将其发送给Bob。Bob再随机选择极化基进行测量,将测量到的量子比特串秘密保存。
2)数据筛选:由于传输过程中噪声以及窃听者的干扰等原因将使量子信道中的光子极化态发生改变,还有Bob的接受仪器测量的失误等各种因素,会影响Bob测量到的量子比特串,所以必须在一定的误差范围内对量子数据进行筛选,以得到确定的密码串。
3)数据纠错:如果经数据筛选后通信双方仍不能保证各自保存的全部数据无偏差,可对数据进行纠错。目前比较好的方法是采用奇但凡校验,具体做法:Alice与Bob将数据分为若干个数据区,然后逐区比较各数据区的奇偶校验子。例如计算一个数据区的1的个数并进行比较,如果不相同,则将该数据区再强加于人发,然后再继续上面的过程。在对某一数据区进行比较时,双方约定放弃该数据区的最后一个比特。并且操作过程重复多次,可在很大程度上减少窃听者所获得的密钥信息量。量子信息论的研究表明这样做可使窃听者所获得的信息量按指数级减少。虽然数据纠错减少了密钥的信息量,但保证了密钥的安全性。
综上所述,随着科技的进步,信息交换手段越来越先进,速度也越来越快,信息的内容和形式越来越丰富,信息的规模也越来越大。由于信息量的集聚增加,保密需求也从军事、政治和外交领域扩展到民用和商用。量子密码学正在逐步渗透到通信、电子政务、金融系统乃至航天科技。我国是国际上最早从事量子密码技术研究的国家之一,20多年来,我国密码科技工作者在芜湖“量子政务网”等多个项目中取得优异成绩,我们正在逐步迈进量子信息时代。
参考文献:
[1]徐茂智.信息安全与密码学[M] .北京:北京清华大学出版社,2007.
[2]马瑞霖.量子密码通信[M] .北京:北京科学出版社,2006,6.
[3]吴吉义.软件项目管理理论与案例分析[M] .北京:北京中国电力出版社,2007.
[4]曾贵华.量子密码学[M].北京:北京科学出版社,2006.
[5]曹轶乐,杨伯君.量子密码术[J].光通信技术,2004,4.
[6]屈平.量子密码术开辟通信安全新时代[J].世界电信,2004(8).
本书共6章:1.量子点技术;2.超短脉冲量子点边界辐射激光器;3.量子点半导体盘形激光器;4.半导体量子点可饱和吸收镜在锁模固态激光器中的应用;5.量子点和连续波长激光二极管在生物学和医学中的应用;6.结论和前景。目录及序言的后面有各章作者的简介,书的末尾有各章的彩图和主题索引。
本书编者Edik U.Rafailov教授1987年以来一直从事连续谱和超短脉冲激光器、非线性光学和集成光学的研究和开发。他2005年到敦提大学(Dundee University)工作,组建了一个光子学和纳米科学研究组。他曾发表250多篇论文,编著了一本著作,在美国和英国有8项专利。他当前的研究兴趣包括:新颖的高功率连续波长、短脉冲或超短脉冲激光器,紫外/可见/红外和THz辐射,纳米结构,非线性光学和生物光子学。
本书的阅读对象是在光子学、光学、激光物理、光电子学和生物光子学领域工作或学习的物理学家、工程师、研究生或讲师。
征文范围
(1)现代通信技术,包括量子通信、太赫兹通信、移动通信、卫星通信、光通信、空间通信、水下通信、抗干扰通信等。(2)通信网络技术,包括软件定义网络、认知网络、下一代互联网、移动互联网、物联网、移动自组织网、空间信息网络、军事通信网络等。(3)网络安全技术、包括信息加密、安全协议、安全认证、检测预警、可信网络、网络攻击与防范、云计算与大数据安全、数据隐私与保护等。
征稿要求
(1)技术新颖,内容翔实,文字精炼。(2)引用的数据要有充分依据。正确使用标点符号、名词、术语。量符号和量单位请按照法定的量和单位的名称、符号和书写规则书写。(3)文章需附题目的英文翻译和工作单位的英文名称,4~5个中、英文关键词,200字左右中、英文摘要。(4)请给出所有作者的作者简介。简介内容如下:姓名、出生年、性别、学位、职称及现在主要从事的研究方向。(5)杂志是黑白印刷,不能区分颜色,请勿用彩色图,灰度请按25%、50%、75%等比例增减;图稿绘制请用“Word图片工具”;图中中文用宋体六号,除中文外的字符全部用TimesNewRoman体,字号为六号。(6)参考文献择主要的列出(除综述性文章外最多不超过6条),按照出现的次序列在文末,并在文中对应位置以右上角方括弧中的数字表示。中文参考文献采用中英文格式。由于杂志要自引,请在文献中添加1条通信技术的文献。(7)来稿自投送之日起两个月内请不要另投其他刊物。稿件经审阅通过后,请按照修改意见修改论文。但请放心,编者将充分尊重作者的原意和风格。未被录用的稿件恕不退还,作者请自留底稿。(8)来稿请注明作者的真实姓名、工作单位、通信地址、电话以及作者的个人简介。(9)如有国家基金,请给出基金名称和基金编号,基金名称采用中英文格式,并将基金批准函复印件(国家级的)寄到我部。(10)稿件一经录用,即寄赠当期刊物。
“我们在发展过程中致力于紧密结合知识创新、技术创新与区域创新,与国家创新体系各单元联合合作,推进科技成果转移转化,融入经济社会创新价值链。”纳米所党委书记刘佩华说。
苏州纳米所的实践是一个缩影。近年来,我国科技发展面向世界高技术前沿,面向国家战略需求,自主创新步履铿锵,科技创新作为经济社会发展“新引擎”、“发动机”的作用进一步凸显。
过去,我国科技与经济“两张皮”问题严重,科技对经济社会发展贡献率较低。党的十明确提出实施创新驱动发展战略,指出科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。
积极推动科技与经济紧密结合,建立企业为主体的技术创新体系,大力培养引进高层次创新人才,优化有利于创新创业的大环境……在创新驱动发展号角的引领下,我国科技创新不断向前迈进。当前,我国科技发展进入重要跃升期。全社会研发资金投入2012年首次超过1万亿元,其中74%来自于企业;截至2012年,我国研发人员总量达到320万人年,稳居世界第一;SCI收录的我国科技论文数快速增长,连续四年居世界第二;发明专利授权量达21.7万件,稳居世界第三;全国技术合同交易额年均增长超过20%,达到6400亿元。
大亚湾中微子实验发现新的中微子振荡;发现量子反常霍尔效应;“神威蓝光”千万亿次计算机成功应用;量子通信与量子计算研究取得突破;北斗导航系统建成并提供服务……我国取得了一批国际领先、振奋人心的重大成果。
“经过多年积累,我国逐步从跟随者变为并行者,一些领域已有领跑能力,成为具有重要影响的科技大国和创新大国。”科技部部长万钢说。
科技支撑发展,创新引领未来。随着科技创新能力的不断增强,科技进步的贡献率越来越高,从2001年的39%提高到目前的51.7%,对国家经济社会发展的支撑作用不断凸显——
高档数控机床与基础制造装备、新一代宽带无线移动通信网、大型飞机……为了抢占未来国际科技竞争的制高点,我国实施了16个重大科技专项,加速推进了一些重大创新成果的成功应用和产业化,其中民口重大专项累计申请专利4万多项,制定标准几千项。
【关键词】量子力学;教学方法;物理思想
“量子力学”是20世纪物理学对人类科学研究两大标志性贡献之一,已经成为理工科专业最重要的基础课程之一,学生熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。对提高学生科学素,养培养学生的探索精神和创新意识及亦具有十分重要的意义。但是,量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对这些教学中的问题,如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,已经成为摆在教师面前的重要课题。对“量子力学”课程的教学内容应作一些合理的调整。
1 合理安排教学内容
1.1 理清脉络,强化知识背景
从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。
1.2 重在物理思想,压缩数学推导
在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。
2 改进教学方法
“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取传统的灌输式教学,学生势必感到枯燥,甚至厌烦。学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,在教学方法上应进行积极的探索。
2.1 发挥学生主体作用
在必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这
两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。
2.2 注重构建物理图像
在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。
3 教学手段和考核方式改革
3.1 课程教学采用多种先进的教学方式
如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生会认为是全部粒子组成波函数,有的学生会认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。
3.2 坚持研究型教学方式
把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。
量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。量子力学的诞生,开启了人类科学发展的新思维。开展好量子力学的教学活动,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,有利于极大的提高学生的科学素养,从精神上熏陶他们的创新精神。
【参考文献】
[1]周世勋.量子力学教程[m].高教出版社,1979.
[关键词]计算机技术 发展与创新
中图分类号:F224-39 文献标识码:A 文章编号:1009-914X(2014)21-0101-01
自第三次产业革命中计算机技术被发明应用之后,计算机技术得到了快速的推广应用,短短几十年来,计算机技术成为了当今社会发展中最重要的科技技术,在各个行业领域有着广泛的应用,更是带动了整个工业时代走向了信息时代。而计算机技术之所以能够在短时间内得到如此大的发展,离不开计算机技术不断的创新。本文就对计算机技术发展期间的技术创新进行探究分析。
1、计算机技术的发展现状
计算机技术作为当前社会发展中最重要的科技技术,其给社会所带来的贡献是非常巨大的,可以说计算机技术是一种划时代的科技技术,极大了促进了社会生产力的变革。目前,从计算机的发展现状来看,其先进的技术主要有以下几种:
1.1 现代微型处理器。
总所周知,处理器是计算机硬件系统中的重要组成部分,是整个系统的核心,为此对处理器的技术改进是计算机技术中的重中之重。从处理器的发展趋势来看,其正向着越来越小的体形发展,目前我国的计算机处理器已经相当小,但还需要做出进一步的微型化处理,受一些量子效应的影响与限制,目前处理器中所采用的紫外光源由于波长过短,已经不是适宜再应用在计算机处理器技术中,为此,我们就需要不断创新发展,提高计算机处理器的研发技术。
1.2 纳米技术在电子元件中的应用。
由于计算机信息技术的应用不断扩大,使得计算机需要处理的信息量更大,提高计算机的运行效率与处理信息速度就显得非常重要。而当前大多数计算机仍然是采用电子元件作为数据信息处理的基础元件,而电子元件的信息处理能力还较为欠缺,不能很好的满足现代计算机技术的快速发展需求。而纳米技术的应用,形成了新的纳米元件,极大的提高了计算机元件的集成度,使得计算机的信息处理能力大大提高。
1.3 分组交换技术。
通过分组交换技术将要进行传输的数据进行分割,使其成为长度相等的数据段,然后再每段数据的前面加上相应的信息,来对数据发送的位置进行标识,然后根据这个标识进行数据的传输。这种数据传输方式采用逐段的方式对通信链路进行使用,使得通信的效率大大的提升。
2、计算机技术创新发展的趋势预测
按照当前计算机技术的应用现状来看,计算机技术还会在未来得到更为广阔的应用与发展,为了适应社会发展需求,计算机技术仍然需要不断创新。在此,笔者对未来计算机技术的创新发展趋势进行了大胆预测,认为计算机技术会向着以下几个发展方向不断创新改革,进一步的提高计算机的技术水平。
2.1 大力发展纳米技术。
纳米技术用于计算机元件中,能够有效的打破当前所使用的电子元件的性能限制,从而发展出生物计算机甚至是量子计算机,从而使计算机的性能得到质的飞跃,而这种计算机是当前计算机发展的重要趋势。由于纳米技术不受计算机集成以及处理速度这两方面的限制,因此需要大力发展该项技术。随着纳米技术的发展,可以产生量子计算机和生物计算机,无论它们的运算速度,还是它们的存储能力都远远超过目前的计算机。
2.2 改善计算机的体系结构。
当前计算机在结构设计方面主要是进行多任务的并行计算,这样可以利用同一台机器进行多个任务的处理。为了提升当前计算机和用户之间的交互性,应该重点发展集群性的计算机系统,强化系统的可靠性以及兼容性。
2.3 网络技术的应用与软件技术的发展。
在计算机技术不断发展的同时,网络技术的研发应用也在快速发展,计算机网络技术的结合使用实现了相互促进的良好发展局面,提高了计算机的应用水平,扩大了计算机的应用范围。再加上各种软件新技术的不断研发,更是促进了计算机技术的进一步应用与发展。目前软件技术已经有了很大的发展,相信在未来通过网络技术的应用,软件技术会更加完善成熟,从而为计算机信息技术发展更好的提供服务。
2.4多媒体性能。
多媒体性能的开拓与进展把服务器、路由器以及转换器诸多互联网需要的设施的技术明显提高,其中包含有用户端、内存、图形片诸多硬件性能。互联网使用人不再像原来一样被动地接受解决信息的形态,而是更加以踊跃主动的形式来进入现在的互联网空间。除此以外还有蓝牙技能的发明运用,令多媒体通信技能无线电、数字信息、个人区域网络、无线宽带局域网等快速更新。基于新一代的互联网络的多媒体软件开发,结合以前的各类多媒体工作,便可以令PC无线网络发挥得淋漓尽致,兴起互联网新时期的潮流。多媒体性能数字化是促使将来技能扩展的主要方面,数字多媒体芯片性能就会变成将来多媒体性能生命里的核心。
3、创新是促进计算机技术发展的主要动力
计算机技术之所以能够得到快速的发展,主要是因为其拥有永不衰竭的源泉,那就是创新能力。正是在不断的创新下,才促使了计算机信息技术以及其相关的产业技术不断发展,才为人们的生活带来了这巨大的转变。而在计算机技术的创新发展中,要注意结合实际需要,并注重与传统产业相互配合,只有这样,才能更好的促进计算机技术的创新发展。
创新发明许多有关计算机科技用品的假设都是因为受到社会需要而产生,但是与此同时,又受很多外在条件的影响,比如经济条件、文化差异、组织的规模等也会对计算机科技的创新产生阻碍。另外,传统、专有、封闭的科技体制的文化、构造、机构产生了与计算机科技体制相似的由专有发展到开放的变化。由此可见,计算机科技的创新基于社会的发展,而社会的发展及需求也带动了计算机科技的创新,是协调一致的。计算机科技的迅速发展,由此也产生了许多比起人们需求还要多的有效科技。
4、结语
综上所述,计算机技术作为一种新兴技术,其对社会发展以及人们生活方式有着巨大的影响,并促进了信息时代的快速到来,成为了一种不可缺少的生活必需品。而这些,都依赖于不断的技术创新。在软件、互联网、纳米等技术的不断发展下,必将会实现高速化、智能化、多元化和微型化的计算机技术,因此还需要进一步加强技术创新。
参考文献
一、信息科技与现代通信
信息技术涵盖信息的采集、变换、存储、处理、传送、接收和再现。电子学研究电子的运动、电磁波的传播和它们之间的相互作用。建立在麦克斯韦电磁理论基础上的电子学,是当代信息技术最主要的手段。1887年德国物理学家赫兹发现电磁波及1897年英国物理学家汤姆孙发现电子,标志着电子学的开端。在赫兹实验的基础上,1895年意大利科学家马可尼进行了2.5公里的无线电报传送实验。1901年跨越大西洋3200公里的无线电报实验获得成功,这是远程通信的一件划时代的大事。此后,人类陆续发明了无线电广播、电视等。
第一代电子器件电子管,建立在热电子发射的基础上。1904年,英国物理学家弗莱明发明二极管;1906年,美国的德福雷斯特发明三极管。20世纪上半叶的电子设备,如广播电视的发射接收装置、雷达、计算机等,全部使用电子管。
1947年肖克利、巴丁、布拉坦发明了晶体管。晶体管使电子设备具有省电、小型化、可靠性高的优点,开辟了电子学的新时代。
物理学最新成果的大量采用,使光通信、移动通信产业以空前的速度和规模发展。仅我国,手机用户即已近4亿。物理学的发展必将使21世纪信息技术发生飞跃。
二、材料科学与新材料
物理学是材料科学的重要基础。量子力学、凝聚态物理学,特别是固体物理学和能带理论极大地推动了材料科学的发展。现代物理学的发展,导致了诸如半导体材料、光电材料、超导材料、复合功能材料、纳米材料、软物质材料等大量具有独特性能的新材料出现,并将不断地为研制新型材料、改善材料性能提供新的理论和实验手段。
人工晶体用人工方法生长的单晶体在激光产生、非线性光学、光探测、辐射探测、换能器等方面都有重要应用。我国在这一领域具有一定优势。
三、物理学手段与现代医学
物理学手段在现代医学中得到广泛应用,它们既用于诊断——x射线透视、B超、计算机断层成像即CT、磁共振成像即HRI,又用于治疗——超声波粉碎结石、激光手术、伽玛刀。
四、计量与全球定位系统GPS
计时标准:从观测天体到使用各种物理方法,人类计时精度不断提高。
全球定位系统GPS,由24颗均匀分布在6个轨道平面内的卫星组成,卫星上安装了高精度的原子钟。卫星高度2万公里。它是一个全天候的自动定位和导航系统,通过接收GPS卫星发射的时间—频率信号,判断和计算接收者的位置。经过广义相对论修正(时钟快慢随引力场强度而变)的GPS精度可在1米以内。现在的GPS系统已可装备到家用汽车上。
五、物理学与激光技术
1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。1958年美国科学家肖洛和汤斯发现了一种奇怪的现象:当他们将闪光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。由此他们提出了“激光原理”,受激辐射可以得到一种单色性、亮度又很高的新型光源。1958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础。1960年,美国人梅曼(T.H.Maiman)发明了世界上第一台红宝石激光器。梅曼利用红宝石晶体做发光材料,用发光度很高的脉冲氙灯做激发光源,获得了人类有史以来的第一束激光。1965年,第一台可产生大功率激光的器件——二氧化碳激光器诞生。1967年,第一台X射线激光器研制成功。1997年,美国麻省理工学院的研究人员研制出第一台原子激光器。
六、物理学与国家安全
现代战争是高科技的战争,物理学在国防现代化中起着核心的作用。核武器是释放核能的大规模杀伤性武器。1945年美国首先制成原子弹,并投放到日本的广岛和长崎。为了对抗核讹诈,1964年我国成功试爆了第一颗原子弹,1967年成功试爆了第一颗氢弹。研制“两弹一星”的23位功勋科学家中有13位物理学家。
在创新驱动发展战略中,科技居于龙头地位,可以说是撬动中国梦实现的“杠杆”。在今年两会期间,提醒广大科技工作者,“要增强创新自信”。我认为,在当前态势下,按照总书记的要求,广大科技工作者自觉树立特有的“科技自信”,就显得尤为关键和必要。
敢于自信
建国以来,经过老一辈科学家艰苦卓越的努力,我们已经有了不少可以载入史册的“招牌”性故事,比如“两弹一星”、“人工合成牛胰岛素”、“破解哥德巴赫猜想”、“杂交水稻”等一大批高水平科技成果。这是我们树立科技自信的坚固“地盘”。
改革开放以来,我国依靠自己的资源禀赋和比较优势,在经济上取得了连续多年的高速增长,进入了中等收入国家行列,综合国力显著提高。得益于此,我国财政科技支出连年稳步增加。2006年以来,我国R&D经费投入增速一直保持在20%以上,2011年我国的R&D经费投入总量达到8687亿元,反映了政府、企业、研究机构和高等学校在重视科技方面所做出的不懈努力。这是我们树立科技自信的物质基础。
近几年来,我国的基础研究、应用研究和高技术研发都取得了历史性的长足进步,整体科研水平已经从过去“跟踪”国际一流同行的工作,到现在逐步实现与国际一流工作的“同行”,乃至在个别领域成功实现了“引领”。仅以2012年为例,我国科学家在高温超导、中微子震荡、量子通信、诱导多功能干细胞等方向取得了一大批世界领先的研究成果;在关系到国计民生和国家安全等重点领域,取得了像载人航天、探月工程、载人深潜等方面的重大突破。另外,在基础研究领域,我国科研人员发表的国际论文总数已经连续多年稳居世界第2位,论文影响力也逐步提高;我国科技工作者的数量和质量也得到大幅提升,一大批优秀科研人才学成回国,本土人才培养体系也在逐步完善。这是我们树立科技自信的丰沃土壤。
实现自信
当然,我们必须客观理性地看待科技自信,正视与发达国家的科技差距,切不可夜郎自大,自娱自乐。毕竟,我们还不是一个科技强国。中华民族的复兴之路在于创新,关键要靠科技。面对这样的共识和期盼,科技界应该练好内功,解决好自己的问题,关键时刻给力,确保不掉链子,最终挺起腰板“实现科技自信”。
要真正实现科技自信,科技工作者必须要恪守科学价值观。当官和发财是两条道,同样科技工作者也应该把实现科学创新作为自己最大的人生梦想和价值追求。袁隆平院士将一生的汗水洒在了心爱的田地里,直到今天,80多岁的他仍有“禾下乘凉梦”:水稻长得有高粱那么高、颗粒有花生米那么大。相比袁隆平,遗憾的是,科技界还存在不少的“投机取巧”的现象:浅尝辄止,因循守旧,小富即安,甚至沉溺于名利追逐的游戏。科技工作者要耐得住寂寞,板凳宁坐十年冷。
要真正实现科技自信,科技工作者必须要树立“干大事”的信心和勇气,敢碰重大科学命题,要把致力于重大科技突破作为奋斗目标。近日,中科院物理所和清华大学组成的联合团队,成功实现了“量子反常霍尔效应”。这是中国科学家长期积累、独立完成的重大科学突破,完美地贯穿了从理论研究到实验观测的全过程。我相信,这支研究团队在数年的攻关过程中,心中一定有着干大事的豪情作为支撑。
要真正实现科技自信,科技工作者还要敢于“标新立异”。科学研究的过程,本身就是一个不断去伪存真、逐步逼近真理的渐进式过程。不盲从、不迷信、不跟风理应是科技工作者的职业特质,提出新理论、开辟新领域、探寻新路径理应是科技工作者的价值追求。只有形成“标新立异型”的特色文化,中国的科技界才有希望涌现出一批乔布斯式的人物,担当起为中国发展、中华民族振兴、中国人民幸福做出创新贡献的责任。
助力自信
要真正实现科技自信,各类机构要充分尊重科技工作者在科研活动中的主体地位,要把高层次人才真心实意地当作第一资源看待。几十年前,小平同志就提出自己要做“科学家的后勤部长”。在今天,我们要致力于打造人才“宜居”型创新生态系统和科研“软环境”,在科技资源投入、效率配置等方面力争有所作为。例如,中国科学院近两年就启动实施了解决科研人员后顾之忧的3H工程(Housing,Home,Health),保证科学家有五分之四的时间安心用于科研工作。
要真正实现科技自信,还需要在国家层面切实做好制度的顶层设计,深化科技体制改革,统筹协同创新。党和国家对此给予了高度重视,在党的十、两院院士大会、全国科技创新大会上都有详细的阐释。去年,中国科学院联合教育部启动实施了“科教结合协同育人行动计划”,联合所有省级地方科学院组建了“全国科学院联盟”,试图通过这些外部举措,在国家层面上探索更为优化的创新路径。同时,中国科学院近期在内部确立了两个“三位一体”的改革举措:科研院所、学部、教育机构“三位一体”的组织架构,出重大成果、出优秀人才、出前瞻思想“三位一体”的机构使命。