发布时间:2023-03-16 15:56:43
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的计算机仿真论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
1.1计算机仿真软件
制造业是我国当前的主力发展领域,是我国经济的支柱产业,这其中就涵盖着机械制造以及各种型材的制造等。制造业在当前所面临的是产品的竞争,所以要在具体的指标上要能够得到满足,要求产品的价格是最低的,以及以短时间完成从概念设计到产品上市这一过程,要能够对客户的需求的到满足,对产品所提供的服务要是最好的。为此我国在计算机仿真软件的使用上就显得非常必要,这几个软件主要是一体化制造系统仿真软件,这一软件主要是在车间设计和分析的建模以及仿真软件,在具体的功能上主要有自动生成离散事件仿真模型,并能够对这一模型进行仿真。另外就是在制造车间的生产计划和工艺路径可以通过表格的形式进行输入,既能够通过手工进行输入同时也能够通过工艺规划的模块进行读入。再者就是加工过程仿真器,为能够有效的价格产品设计和开发周期得到有效缩短,在CIMS当中尤其是强调计算机辅助设计和计算机辅助制造的集成,也就是要求从CAD输出产品设计信息可以直接通过网络传送到计算机辅助加工工艺规划系统,并使其产生刀位轨迹文件。为能够有效确保加工工艺的合理性及NC代码正确,要对真实零件切削加工前进行一次试切削。在这一过程中主要就是通过木模进行替代真实的零件,这显然会对开发的周期有着延长,并在成本上也会比较高。针对加工过程仿真器可以为CAM/CAD集成,尤其是检验NC代码正确性和减少加工过程的碰撞干涉提供支持,所以在这一软件的应用下能够起到部分的代替试切的作用。
1.2计算机仿真在轧钢工艺中的实际应用
现场生产中,小规格的圆钢在冷床上的运动方式和一般圆钢有着很大区别,故此要对冷床的基本结构及原理等进行研究,在计算机上根据建立运动模型进行仿真试验后,结果表明当前生产的最小规格圆钢能够利用现有冷床进行生产。研究当中涉及到的冷床是步进回转式冷床,具有两种齿板,分别是V型齿板及U型齿板,借助它们相互错动使得圆钢一方面做步进运动,而另一方面绕其自身轴进行旋转。针对这一结构可能出现的问题进行仿真机现场实验,要能够从理论的角度进行分析,在半径小的圆钢方面可能在翻过V形的齿轮的第二个齿峰的过程中,不能和第二个V形齿的左壁相接触,这也是其中的一个重要问题,属于冷床翻钢的极限。主要就是造成翻钢的过程中会有不稳定的情况发生,这样就造成了冷却不均。根据这一图示就能看出,在V形齿的第二齿峰和小圆钢那样相交或是相切的过程中,U形齿会向下向前,而V形齿则是向上向后,这样就会出现翻钢的情况,这只是必要的条件。然后根据磨损的情况和具体的规格进行仿真实验,针对不同型号的圆钢进行建模和仿真,正常情况下对90号钢进行分析,从实际的仿真计算以及表现情况能够看出小圆钢在冷床上运动的比较稳定冷却效果较好。而75号钢的仿真系统当中的数字模拟仿真,冷床上运动稳定冷却效果佳,但在稳定性方面相对较差。
2结语
悬架系统是影响汽车驾驶及乘坐舒适性和操纵稳定性的主要部件,是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。汽车悬挂系统就是指由车身与轮胎间的弹簧和避震器构成的整个支撑系统。悬挂系统应有支撑车身的功能,改善乘坐的颠簸感觉,不同的悬挂系统设计会使驾驶者有不同的乘坐感受。外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。常见的悬挂系统结构由弹性元件、导向机构以及减震器等组成,个别系统则还有缓冲块、横向稳定杆等。计算机仿真系统的电控单元控制悬挂系统可根据车载重量、路况条件、行驶速度等来调节悬挂系统的刚度、减振器阻尼力以及车身高度。从而使车辆在各种行驶条件下均可获得最佳的行驶平稳性和操纵协调性。有多种不同类型的电子控制悬挂系统,以大众汽车的电子控制空气弹簧悬挂系统为例,电子控制悬挂系统主要由空气压缩机、干燥器、车身高度传感器、带有减振器的空气弹簧、悬挂控制执行器、悬挂控制选择开关、悬挂用电控单元等组成。在汽车行驶过程中,电控单元不停地接收车身高度传感器、加速度传感器(即油门动作传感器)、制动传感器、转向传感器以及车速传感器输出的信号并进行运算、分析和判断,最终向执行器输出控制信号,控制车身高度和悬挂刚度。
2计算机仿真技术在汽车悬挂系统的应用特点
电控单元中计算机仿真控制悬挂系统的主要优点有:为提高汽车正常行驶时乘坐的舒适性,可以将弹簧刚度设计得较小,以使车身的自然振动频率尽可能的低。为提高汽车的操纵稳定性,使汽车的行驶安全性明显提高,可以将汽车悬挂抗侧倾,抗纵摆的刚度设计得比较大。将车轮快速提起,避开障碍物,可以在车轮碰到障碍物(如砖、石等)时,提高汽车的通过性。电控单元可以在汽车载荷变化,在不平路面上行驶时自动保持车身高度不变。仿真技术可以防止汽车制动时车头的下冲。提高汽车转弯时的操纵稳定性,可以避免汽车转弯时车身向外倾斜。为提高车轮与地面间的附着力,可以减小轮跳离地面的倾向。
3总结
关键词:项目教学法;计算机仿真;创新;实践
一、前言
研究生教学有其突出的特点,他们中多数人理论基础扎实,获取书本知识能力强。但同时也存在创新意识和创新能力不足、工程应用背景不够的缺点。本人通过十多年研究生教学的实践,结合本学院研究生专业方向、课程内容针对性强等特点,对如何在研究生教学改革中突出培养学生的自学能力、创新能力,增强学生的创新意识与工程应用能力等问题进行了一些改革创新。
二、课程定位及课程特点
随着现代工业的发展,科学研究的深入与计算机软、硬件的发展,计算机仿真技术已成为分析、综合各类系统,特别是大系统的一种有效研究方法和有力的研究工具,计算机仿真技术已经广泛应用在各技术领域、各学科内容和各工程部门。仿真技术已经在国防军事、国民经济、社会生活的众多领域发挥了重要的作用,国内外众多学者认为,仿真技术“正在成为与理论、实验并列的第三种认识和改造客观世界以及科学研究的手段”,因此仿真技术被认为是“使能”技术。计算机仿真技术是仿真科学与技术涉及到的有关具体仿真技术中最为基础的部分,具有综合性、多学科交叉等特点。为了拓宽机械工程专业基础,提高培养对象的整体素质,更好地适应社会对机械工程专业人才的需求,高校工科专业的研究生应掌握一定的计算机仿真知识与技能。计算机仿真技术课程是我校机械工程学院面向所有研究生各专业方向的研究生开设的一门专业基础课程,考虑专业应用需求并结合教学实践情况,课程目的是通过本课程的学习,要求学生掌握计算机仿真技术方面的基本理论,基本知识和基本技能,培养学生分析问题和解决问题的能力,为今后分析、综合各类工程系统或非工程系统提供一种有力的工具,以便能灵活应用所学的计算机仿真技术为本专业工作服务。一方面,基于仿真技术课程的内容方法较多,实践性强的特点;另一方面,授课对象专业方向较多、授课学时有限等特点,如何解决在有限的教学课时内讲授内容繁多的仿真内容、对计算机仿真技术课程进行教学方法和手段的改革探索和实践,以达到计算机仿真技术教学目标。
三、教学内容的设置和教学方法的选择
课程开设初期,由于只是机械电子工程专业方向的同学选修,所以所讲内容基本针对该专业方向进行设置。随着选修人数的不断增加,以及选修学生所属专业方向的扩大,专业方向包括:机械制造及其自动化、机械电子工程、机械设计及理论、车辆工程、机械工程(专业学位)等,基本涵盖了机械工程学院的所有专业方向。计算机仿真技术课程涉及多个交叉学科,紧密相关的课程包括数值计算方法、计算机编程、计算机图形学、高等数学、自动控制原理、现代控制理论、优化设计等课程。如何讲出本课程的特点,并充分结合相关课程内容,必须在教学内容的选排上下功夫。项目教学法是一种以任务驱动、以项目为基本教学单元,将理论教学和实践教学有机融合在一起,强调综合能力的培养在研究生教育中的重要性,突出学生在整个教学过程中的主体地位。因此,为了满足各个专业方向学生的要求,使他们能够掌握一门工程分析技术,为后续的学术论文和硕士学位论文的撰写提供计算、分析和仿真手段,本人在讲授该门课程的过程中,逐年对教学内容、教学手段和教学考核方法等不断进行调整和完善。1.采取项目专题方式进行教学内容的讲授,调整授课内容,采用专题教学方法使课程主题内容分明,有利于将仿真方法讲深、讲透。2.扩展所授课程内容涵盖的范围,包括数值计算、优化设计、图形可视化、控制系统特性仿真、控制系统设计以及与外部软件的接口等内容,以满足各专业方向学生的需求。3.增加与课程相结合的实验教学内容。计算机仿真技术本来是实践性很强的综合性技术,仿真技术本身是在对控制系统分析的过程中不断完善和发展起来的。因此并结合各个专业研究生的不同研究方向,灵活设计若干个专题实验,使学生学以致用,培养学生将该门课程应用于实际工程的能力。4.采用多个工程应用实例进行教学,从系统应用、数学建模、仿真建模、模型求解以及特性分析等,使学生从生产实际认知的研究对象,提升到理论高度的学习,应用所学的各科理论知识和技术手段,进行数学建模、仿真建模的建立,并对模型求解以及特性进行分析,获得直观结果,提高学生学习兴趣,最终解决实际工程问题,培养学生解决工程实例问题的能力。5.结合学科前沿,进行课堂讨论。研究生在初步掌握了对系统的模型、仿真算法设计、仿真及结果分析这一流程后,为强化计算机仿真在实际工程的应用概念,在此基础上,以项目形式,开展课程学科前沿以及将该门课程与现代技术融合等专题讨论。6.增加实验环节,培养研究生工程实际应用能力。利用各种平台,扩充计算机仿真技术资料,提供最新的仿真案例,结合教学团队的科研课题,设计实验项目,培养研究生工程实际应用能力。
四、项目教学法的教学效果
基于项目教学法计算机仿真技术课程的教学方法改革与实践,满足机械工程学院各个专业方向研究生的需求,教学方法和手段的完善,使研究生自主学习能力、创新能力和工程应用能力等得到了进一步的提高。计算机仿真技术作为工科研究生的必备研究手段和技术,使学生掌握一门工程分析技术,为后续的课题研究、学术论文和学位论文的撰写提供计算、分析和仿真手段。近五年的每年30—40人研究生选课,工程硕士每年20人左右选课,课程得到了各专业方向研究生的普遍认同。本人指导的研究生,发表与该课程相关的学术论文近20篇,撰写的硕士论文均用到计算机仿真技术。
五、结束语
论文摘要: 在分析专用数字仿真计算机的特点的基础上提出半实物仿真对仿真计算机和实时网络的需求,并且介绍相关技术的新进展。实践证明仿真工作站和实时网络方案是完全可以满足仿真发展需求的。
作为信息技术核心的计算机技术自其诞生之日起经历了50多年的发展,以广泛应用于国民经济和社会生活中。而作为计算机技术重要组成部分的计算机三维视景仿真技术,因其有效性、经济性、安全性、直观性等特点而受到广泛的应用。它是在计算机图形学基础上发展起来的一种仿真应用技术。
据最新统计资料表明,计算机仿真技术是当前应用最广泛的实用技术之一,虚拟现实(VR,Virtual Reality)是计算机世界最热门的一个词汇。视景仿真技术是计算机仿真技术的重要分支,是计算机技术、图形图像处理与生成技术、多媒体技术、信息合成技术、显示技术等诸多高新技术的综合运用。
1 专用数字仿真计算机的特点
1.1 仿真计算机的用途和发展
围绕着对仿真计算机的计算速度、内存容量、接口等基本特性要求,在半实物仿真系统中先后采用了模拟计算机、数模混合计算机、专用数字仿真计算机等类型的仿真计算机。尤其是以AD100及国产YF-2为代表的专用数字仿真计算机在国内、外的一些制导武器半实物仿真系统中得到了广泛的应用。
1.2 专用数字仿真计算机的优点
以AD100及国产YF-2为代表的专用数字仿真计算机主要优点有:
① 采用异构同步并行多处理机、广播式数据总线方案解决了计算速度和存储容量问题;② 设计专用仿真语言,该语言简洁、编程方便,而且还集成了常用的数值积分算法模块,方便使用,同时还能够实现精确仿真计算帧时的定时;③ 提供高速A/D、D/A接口,开关量输入输出接口及数字量(DPM)等接口形式,实现仿真计算机同仿真系统的连接。
1.3 专用仿真计算机存在的不足
① 数字接口能力不足:该型仿真计算机虽然提供了较全面的接口形式,但主要还是以模拟量接口为主,数字接口仅能适用几种非主流总线形式(Q-bus等),而且在传输距离、传输速度等方面性能不佳,数字接口能力不足;② 维护性不方便:这类专用数字仿真计算机采用专用设计结构,与通用计算机有着较大的差别,硬件维护和软件管理需要配置专人,而且出现故障不象通用计算机那样容易替换,易影响试验进度。从人力资源配置和快速维护性上看有不足之处。
1.4 仿真计算机的新要求
随着仿真系统间的信息交换已开始转入以数字信号为主,专用数字仿真计算机在数字接口方面能力的不足就显示出来了。仿真设备控制、管理使用的计算机都是通用型的微机(含工控机),应用广泛且有着丰富的应用软件和接口形式,各种高速数字接口各具特色。因此系统应用的关键是迫切需要找到一个仿真计算机的新方案,既能保持专用数字仿真计算机的优点又能满足高速实时数字接口的需求。这个需求就是对航空制导武器半实物仿真系统中仿真计算机的新要求。
2 仿真计算机和实时网络技术的新发展
2.1 实时网络技术
高速数字接口的形式虽然很多,但在仿真系统中的应用还要考虑到系统中信息的共用性,即多个设备共用某些信息。如对目标信息来说,目标特征信号生成装置、目标运动仿真器、数据链传输仿真设备都要用。这是因为系统本身复杂,信息交换多和相应仿真系统设备规模大,耦合多。
考虑到仿真系统信息共用性特点,那些点对点的接口形式不易采用,而网络式、广播式的接口形式更容易满足要求。同时半实物仿真系统信息交换还要求各信息节点的信息要同步更新,换句话说,就是信息传输延迟要小。
经过综合比较分析,光纤反射内存影射式实时网络(RT-net)比较符合半实物仿真系统的技术要求。它们的共同特点是利用映射式的信息传送方法,某一节点的内容自动映射到所有节点, 这种映射是由硬件完成的,系统延迟小。高速、延迟小和信息更新同步的特点适合仿真的需要。这种网络一般有两种拓扑结构,一种是环行网,另一种是通过实时HUB连接的星型网。
理论上,HUB结构的网络数据到达各个节点的时间没有延迟,能做到信息同步更新。而且一个节点故障只影响本节点,不影响整个网络。这一特性对进行系统局部联试时非常有用,不必所有设备均开机。
RTnet的运行机制很简单,分布式计算机系统内,每台结点机上插一块 RTnet卡,卡上有双端口读写内存,通过驱动软件可以读写这些内存,当数据被写入一台机器的内存中后,RTnet卡自动地通过光纤传输到其他连在网络上的 RTnet卡的内存里,通常只需几百纳秒的时间延迟,所有RTnet卡上的内存将写入同样的内容。各成员在访问数据时,只要访问本地的RTnet卡内存即可。
RTnet适应的计算机总线形式一般都有PCI、MultiBus、VME等,在常用的操作系统,如DOS、WindowsXP、Windows2000环境下都可正常工作。
2.2 综合应用
仿真工作站替代专用数字仿真计算机本身难度不大,二者的软件内核基本一致,经过软件移植,几乎所有先前做过的工作都可以继承下来。仿真系统集成的关键是实时网络在系统中的配置和二次应用开发。有这样几方面的工作要做:
① 仿真工作站同实时网络的接口检查:虽然仿真工作站是基于通用工作站基础上设计的,但这种通用工作站与通用微机之间还会有些微小的差别。② 各仿真设备控制计算机的适应性修改:仿真设备功能各异,研制情况不同,其控制计算机的操作系统不统一,有DOS、WindowsXP、Windows2000等版本,因此相应的设备驱动板卡等不相同。为了保证网络系统稳定运行,简化应用开发工作,有必要对能够升级的设备控制计算机进行统一配置,还要对相应设备驱动卡、驱动程序进行更改。③ 共享内存分配表的建立:由于是共享内存机制,所以应对数据存储地址的统一分配,明确各个信息的读写地址。对系统中注册信息、节点状态标志、同步时钟等信息使用的地址也要进行规定。
总之,随着分布式计算机仿真系统、虚拟样机分布仿真系统的广泛开发和应用,实时网络技术做为一种快速的信息交换手段会得到更广泛的应用。
参考文献:
摘要:本文多方面系统论述了学习“计算机图形学”课程的必要性,分析了该课程的学习没有受到人们重视的原因,指出系统学习该课程是读者掌握数据计算类型的程序系统设计基本方法与计算机仿真入门的有效途径,使读者对“计算机图形学”课程的学习有一个正确的认识。
关键词:计算机图形学;计算机仿真;科学计算;程序设计基本方法;可视化
中图分类号:G642
文献标识码:B
1 “计算机图形学”的学科特性
所谓“计算机图形学”是计算机仿真(即按模型计算以生成图像)与科学计算(即通过在计算机上建立模型并模拟物理过程来进行科学调查和研究)的一种基本形式,是研究图形数据模型在计算机内部的产生、设计与构造过程,它是显示图形不可分割的前提(这相当于画家作画之前,对绘画作品的设计思想、表达方式、绘画构思、作品内容与结构等的创作与思考过程;只有当这个绘画作品设计方案成熟之后,画家才动笔绘画);而图形显示是用点、线、面、色彩、纹理等可视化的数学方式表达这种数据仿真计算结果的数学含义、或表达仿真过程中各种实体仿真模型与场景效果的物理含义的一种直观表达方式。参考文献[1,2]已向读者证明这一结论,只有这样,才能较好的理顺“计算机图形学”课程的授课关系,使读者建立用计算机生成图形的完整概念。
我们用这一指导思想主导“计算机图形学”教育20多年,并用“计算机图形学”的授课内容解决了多年来国内计算机程序设计课程没有解决好的计算可行性(可计算性的实现前提)这一教学难题,使该课程成为初学者学习计算机程序设计基本方法、认识图形数据模型构造与显示的一般规律、进行可视化应用程序开发三位一体教学目的的最佳选择,并有效地弥补了从算法语言、数据结构到软件工程之间关于应用程序编程系统训练与计算机仿真等教学环节的缺失。这种教学方法使“计算机图形学”的教学内容完全纳入了计算机科学的教育体系,同时使“计算机图形学”与“数据库”、“网络通信”这三门课程成为现代计算机应用程序的三个基本特征(数据计算、数据存储与检索、数据联网通信)的典型代表,由此转变了“计算机图形学”课程的教育观念与教育思想。在教学过程中,作者曾遇到学生们提出的多种学习问题,今整理成文,以飨读者。
2学习“计算机图形学”的原因与重要性
为什么要学“计算机图形学”,这是计算机专业选修“计算机图形学”课程的读者关心的首要问题。众所周知,计算机科学是处理信息技术(IT)的一门学科,通信科学是传输信息技术的一门学科。对于信息技术而言,常用于表达信息数据含义的4种方式分别是①数字与字符方式表述;②图形方式显示;③播放声音表述;④用机械力表达(即把电信号转换成机械运动)。这4种表达信息数据含义的方式又称信息数据的多媒体表达方式(即多媒体技术)。其中,用图形显示这种方式表达信息数据的含义符合人们观察了解事物运动规律的习惯,而且信息容量大,直观方便,同时是人们获得外部世界信息来源的主要依据;也就是说信息数据的可视化是信息技术与计算机科学发展的一种潮流与必然趋势。随着计算机工业的发展与进步,实际应用课题与现代程序设计对信息数据的可视化处理要求已经越来越高,这就要求人们深入研究并掌握图形显示的一般规律,才能更好的为计算机信息数据的可视化服务。
按现代教科书对“计算机图形学”的新定义,“计算机图形学”代表了计算机应用学科的一个重要发展方向――科学计算、计算机仿真、计算机辅助设计、信息数据的可视化、动画与游戏、虚拟现实、数字娱乐,其编程应用还涉及程序设计方法。它们代表了当今计算机技术的发展潮流与应用水平,是解决计算机专业人才出路的有效途径之一;而“计算机图形学”是该方向的公共基础课程,是目前国内计算机本科教育应当加强的内容。显然,仅仅靠学习计算机程序设计语言、数据结构、编译原理、操作系统、数据库、软件工程、形式语言与自动机理论等课程还不能完全使学生的能力直接达到开发这些应用软件的目的,因为原则上这些课程是为用户使用计算机的计算功能而系统量身打造的软件使用工具(数据结构、软件工程除外),它们的教学目的是为用户掌握并研制这些软件工具服
务、而不是为用户使用这些软件工具系统地开发应用程序而开设的课程。计算机专业主要沿这条主线向前发展:研究、设计、制造计算机硬件设备,为用户使用计算机的计算等功能提供一切便利的手段、方法与软件辅助工具,这包括总结用户使用计算机的基本类型与模式,而对于复杂且很难全面概括使用计算机的方法等、则留给一般用户自己解决,这或许是计算机专业本科课堂教学没有介绍对数据计算类型的应用软件系统开发要遵循的基本规律与发展模式的原因之一,“计算机图形学”的教学正好可以弥补这个缺陷。
由于计算机教育本身并不能直接提供认识世界、改造世界的能力,加之我国没有掌握具有国际竞争能力的计算机硬件与系统软件的核心开发技术,这使中国大量的优秀人才在计算机专业上的最后发展受到了严重制约。而“计算机图形学”的仿真方法为计算机专业人员的发展提供了这样一种新的学习方法与重新选择的机遇,它能为计算机专业人员学习其他行业的专业知识(即学习新专业的物理、数学方法)、成为其他行业的专家助手,进行新行业系统仿真与系统设计以获得新生;由于各行业都有各自的研究领域与待解决的研究问题、研究方法与理论研究模型等,当用计算机仿真的方法对这些研究课题进行辅助研究,并用图形等可视化的方法表达计算机仿真研究的中间结果与最终成果时,这将使计算机的应用走向深入。
科学研究的目的就是探索未知世界、认识世界、改造世界、造福于人类自己,而“计算机图形学”的教育正是遵循这样一条主线:通过物理实验认识待解决问题的本质,并用数学模型的方法来描述这种物理现象的变化过程,从而达到用计算机程序设计的方法来仿真光线在自然界中的传播,以及光线在照相机中传播而生成图像效果,这类物理仿真过程是科学研究方法中的一种基本形式,这种科学研究方法的教育思想(包括人文精神)是国内计算机专业本科课堂教育所欠缺的(计算机专业往往专注于数理逻辑思想的基础训练)――即“计算机图形学”的教育,不仅拓展了计算机专业人才的知识领域,也为其毕业增加了就业渠道,同时能培养计算机专业人员的基本科学研究素养,这正是目前国内计算机教育改革所追求的目标之一。
需要说明,全日制普通本科教育是普适教育,它需要建立各专业自己的知识框架,学习基本的概念,了解基本的范畴,明确其发展方向,计算机专业也是如此。本科教育重在基础,提高本科教育质量与水平并非拔高与创新,而是要做到全面、均衡的发展,除要求学生掌握本学科专业已成熟的系统理论知识外,还需培养学生用学科的基本思想与方法独立自主分析问题、解决问题的能力,这种理论与实践相结合的教育方法,能确保学生今后得到稳步的发展。“计算机图形学”就是培养学生利用计算机、数学、物理等学科的系统知识解决实际应用问题能力的一种有效方法,这样培养的学生才能适应社会竞争与选择的需求;只有在研究生阶段,通过再次系统学习、阅读原著与相关论文并参与项目开发等活动,达到全面提升对学科的认识能力,并向某一个研究方向发展、去探索未知世界的变化规律、解决前人没有解决好的难题、逐步走入学术研究的殿堂(即创新教育);当然人们也能在日后的工作中慢慢积累这种工作能力。
文献[2,3]系统论述了“计算机图形学”课程在计算机科学教育中的作用与地位。目前很难找出一门具有像“计算机图形学”类似重要性与多样性的其它计算机本科专业基础课程,能使读者正确掌握数据计算类型的计算机应用程序设计的基本方法,并使计算机这一工具直接服务于社会,这是我们应该重视“计算机图形学”教育的根本原因。
3学习“计算机图形学”的方法
由于“计算机图形学”属于计算机应用软件的范畴,因此,数据计算类型的应用软件的设计方法就是学习“计算机图形学”应该遵循的原则。就“计算机图形学”课程的学习而言,它要求:
(1) 全面掌握程序设计语言的特性与数据结构的基本内容,是实现“计算机图形学”编程的基础。
(2) 掌握建立解决实际应用问题的数学模型与软件系统的概念,是计算机程序设计的两个关键点。软件系统是一个能自动运行的综合执行程序,它能从输入、存储、运算处理、输出等方面全面处理用户在某个领域中提出的诸多数学模型并完成其模型描述数据的加工任务,使用户很容易明确这种软件的组成、功能与使用范围。一般利用二维图形的简单性,可以较完整的介绍二维图形软件系统这一概念。软件系统的概念是目前程序设计语言与数据结构课程中所欠缺的关键内容。
(3) 正确的认识“计算机图形学”与计算机仿真的相互关系。“计算机图形学”的重点与难点在三维图形的数学模型研制(包括照相机模型,灯光模型,颜色模型,照明模型,物体的几何模型,物体表面的材质与纹理模型等)与模型描述数据的构造上;由于计算机图形学追求像照相机拍照一样的三维真实感图形显示效果,这决定了要在计算机中使用物理学仿真的方法(仿真光线在自然界中的传播所产生的显示效果或把这种传播效果映射至物体的表面上)才能达到这一目的,这自然需要读者对相应的物理知识有个基本的了解才能进行。
(4) 需要了解一些计算机仿真的基础知识,以确保“计算机图形学”的物理仿真教学过程不会出现偏差。
计算机仿真的主要过程分系统、模型、编程实现(仿真算法)、评估四个步骤。这里①系统是指相互关联又相互作用着的研究对象的有机组合,它决定了被研究考察对象的组成与边界范围。②计算机仿真一般可以用数学模型(简称模型)的方法代替实物研究对象,事实上模型也可以是对现实世界的事务、现象、过程或系统的简化描述,但它反映了实际问题最本质的特征和量的关系。目前“计算机图形学”所述的模型多限于对所研究对象的物理性质、运动变化规律等特性的一种数学描述,它使人们能解释那些难以直接观察到的事物的内部构造、事物的变化以及事物之间的关系――即模型描述了现实世界中有显著影响的因素和相互关系。但这种描述有一定的使用条件与限制范围,研究的目的不同,对该研究对象的数学模型的描述方法以及模型的种类会不一样。③仿真(编程实现)就是在模型上做实验,从理论上测试构建的理想系统的动态行为特性,以评估系统的效能。④系统的用途不一样,评估的方法也不同,人们往往用事先约定的一组指标来评估仿真系统的结果;当所得仿真结果没有达到预期的理想效果时,人们往往不断改进仿真模型与仿真算法。例如计算机图形系统,用途可以是显示三维图形,查看它的真实感逼真显示效果就是人们主要关心的问题;模型的运动与操作(如游戏),看它的操作性与故事情节等如何表达用户的情感与智能(简称好玩)就是人们关心的主要问题;机械设备的综合运动与仿真,考察所设计的复杂设备的工作性能就是人们关心的主要问题;电气系统的系统仿真,能考察系统工作参数如何设计以满足用户的不同需求;作战系统的仿真模拟,能考察作战人员的训练水平、武器性能、指挥作战方式对作战进程的不同影响与作战效能,等等。
(5) 努力把图形学所介绍的各种模型与算法(算法是对模型描述数据的加工与变换处理的步骤与方法,“计算机图形学”中的主要算法有各种线段图形的生成与实面积多边形的填充算法、着色算法、消隐算法、纹理映射算法、阴影算法,光线跟踪算法与辐射度算法)都编写成程序代码,这使读者能直接体验自己的学习效果,也是其它课程不容易做到的。编程时要考虑算法的复杂度,特别是按照软件系统的方法把编写的程序代码组成一个系统整体,这是形成成熟商品软件很重要的前提。显然,此时软件系统中的各种数学模型反映了仿真系统中研究对象之间的相互关系。
(6) 掌握“计算机图形学”打造的绘图工具,是可视化应用软件编程的重要基础。用“计算机图形学”知识研制的工具常用的有OpenGL与Direct3D等三维图形标准,虚拟现实建模语言VRML。而三维动画与CAD等软件可以看成是“计算机图形学”为影视制作、游戏建模与计算机辅助设计部门打造的专业计算工具。仅把图形标准与计算机绘图等应用当作“计算机图形学”很不完备,因为它不能在课堂教学中向读者正确、完整、系统地展示计算机图形学学科发展的基本规律,并人为地割裂了计算机图形数据模型的构造与显示这两个过程。
(7) 学会看中英文专业杂志等参考资料,这些参考资料记录了学科的发展历程与学科当前的研究热点(一本教科书不可能全部包含这些内容),且是一种更重要、复杂、深入的学习研究方法,也是目前国内本科教育的弱项(因为国际上最新的研究成果多用英文发表)。只有这样,才能跟踪计算机图形学的最新发展并站在学科发展的前沿、才能开阔人们的视野并有所鉴别,便于读者日后针对用户的多种需求展开开创性创新或针对已有成果的不足、提出修补与改进等渐进性创新等学术研究活动。
(8) 勇于参与课程实践与项目开发,是巩固、检验所学知识、提高实际动手能力的好方法。实际软件开发工作往往是多种知识的综合应用,它需要对实际处理事务有一个比较透彻的了解(用户需求报告)、并建立这些待解决问题的数学模型与系统流程后才能有效进行(按照软件工程的方法组织实施)。
只有把自己开发的软件做成有效商品、服务于社会,才能使所学的知识转变成生产力,才能使自己得到升华;同时也应注意把自己的心得与研究成果总结发表,与人共享;还应参加学术活动,注意留意不同学术流派之间的观点、思想、方法与学术动态,取长补短,形成自己的风格,广结人缘,相互交流,为学科建设添砖加瓦。
(9) 一本计算机图形学教科书的容量使其只能介绍计算机图形学发展历程中产生的最基本、最经典的模型与算法,这些内容是人们耳熟能详的物理原理与相对简单的数学知识在计算机中的综合应用,太复杂的计算关系因会影响图形的显示速度而一般不采用;目前计算机图形学教科书的理论体系已成熟且“计算机图形学”的教学内容已经构成了一个大系统,这使“计算机图形学”的教学过程变得简单、容易。
4目前国内“计算机图形学”教育未受到重视的原因分析
既然如此,为什么目前人们感觉“计算机图形学”教育的受重视的程度不如数据库与网络通信等计算机应用软件呢?笔者认为其原因之一在于:这是因为“计算机图形学”造就的工具即图形标准的特殊应用环境要求限制了它在很大一部分应用程序中的具体应用;三维图形标准目前仅仅在游戏领域获得了商业上的成功,一些应用软件不调用图形标准也能自己绘图;国内的计算机应用程序可视化的开发要求暂时还较低;关键是作为学科领头羊的美国人目前还没有把“计算机图形学”课程作为计算机本科专业的核心课程,这是因为他们对“计算机图形学”课程的本质与其在计算机学科中的作用与地位认识不到位所致,美国人图形学这种教育现状(目前多以图形标准的原理讲授为主)和局限性与美国人在3D游戏、计算机动画、计算机辅助设计等应用软件的开发上执世界牛耳之地位不相称。
当然,早期计算机图形学教科书编写内容、体系的不够成熟,也影响了人们对“计算机图形学”课程的认识与学习的积极性。例如仅停留在数学公式与算法的层面上介绍二维、三维图形的生成而不注重其建模思想与方法的介绍,且人为的把物体几何模型的构建与其图形显示分解成“计算机辅助几何设计”与“计算机图形学”这两门课程,这直接导致图形学课程教学内容缺少被处理的图形显示对象,加之计算机课程与图形学的教育又没有软件系统的概念,这样安排虽然能满足图形标准等商业软件的发展需求,但却很难让初学者全面掌握“计算机图形学”学科系统性的概念、思想和方法与学科发展的基本规律――用数学模型的方法指导编程实践,在计算复杂性可接受的条件下,针对已有成果中存在的不足,不断用新的数学模型与仿真算法等方法对其进行改进,使图形学的数学仿真过程不断的逼近现实物体模型(包括刚体、软体、流体、气体)的构造、运动、变形、切割和拼接与反光效果的显示这一真实的物理变化过程。即初学者没有用计算机生成图形的完整概念,这也是以往人们认为计算机图形学课程难教、难学的主要原因。
由于“计算机图形学”的绘图原理不像数据库软件那样,数据库的功能可以被所有的应用程序所调用;也不像通信软件那样,所有要联网的计算机都离不开通信技术与网络技术,而计算机显卡工业、3D游戏、计算机动画、计算机辅助设计等产业的市场份额小于数据库与计算机通信等产业的市场份额,即应用软件的商业价值决定了它们在人们工作与学习中的地位。
参考文献:
[1] 魏海涛. 计算机图形学(第2版)[M]. 北京:电子工业出版社,2007.
[2] 魏海涛. 科学的构建‘计算机图形学’的教学内容,促进计算学科的全面发展[J]. 计算机教育,2008,(10).
关键词:盲源分离,自然梯度算法,自适应步长
引言
在科学研究和工程中,很多观测信号可以看成是不可见的源信号的混合,这意味着源信号和传输信道都是未知的,仅仅由观测信号对未知的传输信道和源信号进行估计的问题称为盲源分离(Blind Signal Separation,BSS),所谓“盲”是指(1)源信号不可观测;(2)混合方式未知。硕士论文,自然梯度算法。BSS技术是当前信号处理领域的一个热点研究问题,在生物医学信号处理、军事雷达技术、通信信号处理中有着广泛的应用[1-3]。硕士论文,自然梯度算法。
在Amari[4]的自然梯度算法中,步长的选择对算法的稳定性和收敛速度有着非常重要的影响。步长越大,算法的收敛速度就越快,但同时会引起算法的稳态失调;步长越小,算法的稳态误差就越小,但同时收敛速度变慢。本文算法在迭代过程中,适时对步长进行优化,使得算法在保证稳态误差的情况下收敛速度大幅提高。
1 线性混叠盲源分离模型
假设有n个相互统计独立的未知源信号,经过未知的传输信道后获得m个观测信号,写成矩阵形式为:
(1)
即,该模型称为盲源分离的线性混叠模型,称为混叠矩阵或者传输信道,t为时间指标。硕士论文,自然梯度算法。盲源分离的任务就是在源信号和传输矩阵A均为未知的情况下,仅仅由对源信号作出估计,通过学习,寻找一个满秩的分离矩阵W使得各分量之间尽可能的独立,依此作为对源信号的一个估计。若全局矩阵[5]的各行各列只有一个元素接近于1,其余的元素皆接近于0,此时估计信号是源信号的一个拷贝。硕士论文,自然梯度算法。
2、Iformax[6](information maximization)盲源分离算法
Informax算法采用信息传输极大准则,通过调整分离矩阵使得非线性输出与网络输入之间的互信息最大:
图1 Informax 算法原理图
由信息论知识:
(2)
边缘熵: (3)
微分熵: (4)
得到代价函数:(5)
与分离矩阵无关,优化代价函数为:
(6)
即算法通过调整通过调整分离矩阵,使得(5)式极大。
采用自然梯度算法搜索代价函数(5)的极值点:
(7)其中: (8)
第个分量:(9)
称为激活函数,是对源信号的概率密度函数的近似估计。硕士论文,自然梯度算法。
3、改进的自适应步长算法
在信号分离的初始阶段,由于信号之间的强相关性,算法需要使用较大学习速率,以加速信号的分离,到了算法的后期,需要跟踪分离出来的信号,同时还需要捕捉未分离出来的信号,此时较小的步长可以满足需求,以分离出剩余的信号。硕士论文,自然梯度算法。算法收敛时满足:
(10)
计算过程的迭代式为[4]:
(11)
当(9)式成立时,算法的迭代式满足:
(12)
由(11)式可以看出,当[7]取值较大时,则信号分离情况较差,需要较大的步长,算法趋于收敛时,取值趋于0。所以可以依据取值大小调整步长。现有定义如下:
(13) (为源信号个数)(14)
(15)
综合(10)(11)(12)(13)(15),本文的自适应步长算法可以描述为:
(16)
令,设置小的正数,当时算法收敛。
4、计算机仿真
随机选取混合矩阵,两个语音信号为:
图2:源声音信号图
Fig2:Sourcespeech signal
混合后的信号图像为:
图3:混合声音信号
Fig3:Mixture speech signal
还原后的信号图像为:
图4: 还原声音信号
Fig4: Recovery speech signal
串音误差曲线图[8]为:
图5:串音误差曲线图
Fig5: Crosstalk error
5总结:
本文在对自然梯度算法进行分析的基础上,提出了算法迭代过程中步长适时调整的依据,在加快算法收敛速度的同时兼顾稳态误差,通过计算机仿真,本文算法的收敛速度明显优于原算法,且稳态误差较小。
参考文献:
[1]张贤达,保铮.盲信号分离.[J]电子学报,2001,29(12):1766一77.
[2]CardosoJF.Blindsignalseparation:statisticalprinciples.ProceedingofIEEE.[J],86(10):2009-2025,1998.
[3]E.OjaThenonlinearpcalearningruleinindependentcomponentanalysis.[J].NeuroComputing,17(1):25-46,1997.
[4]SAmari.NaturalGradientWorksEfficientlyinLearning.[J].NauralComputation,10,251-276,1998.
[5]CardosoJF.Blindsignalseparation:statisticalprinciples.ProceedingofIEEE.[J],86(10):2009-2025,1998.
[6]RLinsker.Self-organizationinaperceptualnetwork.Computer,[J].21:105-117,1988.
[7]一种改进的步长自适应EASI算法。[J].舰船电子工程,2006,(2),P137
[8]AmariS,CichockiA,YangHH.Anewlearningalgo2rithmsforblindsignalseparateion[J].NeuralInformationProcess2ingSystems,1996,(8):757~763
关键词:军事运筹学;装备效能评估;DWK
中图分类号:TP391.9文献标识码:A文章编号:1007-9599 (2010) 15-0000-02
The Application of Operations Research on the Equipment Evaluation
Han Bo,Liu Qiang
(Xinjiang Urumqi 69017 Troops,Urumqi830017,China)
Abstract:This is a new technological revolution in the context of military operations research in the equipment evaluation on the Application of issues were discussed.First,we should make a clear analysis of the performance evaluation system in the equipment operational research on the application,then make sure the battle simulated effectiveness evaluation,to lay a solid foundation for the application of operations research in equipment performance.
Keyword:Smilitary operations research;Equipment effectiveness evaluation;DWK
所谓军事运筹学就是应战争中准确计算和合理分配战场资源的,根据实际需要而产生的学科。它诞生于20世纪30年代,是军事学的重要组成部分。军事运筹学就是用数学方法研究各种军事系统最优化问题的学科,应用于军事运筹学,以便解决实际问题。它为指挥员提供科学决策的依据。
基于仿真的武装装备效能的评估就是一个很大的成就。效能评估是军事运筹学里面的一个非常基础却又非常重要的分支,也是现在战争战法的依据所在。在美国,这方面的应用远远高于其它国家(从最近的几次战争的效果来看),所以我们现在要以美国的发展趋势为目标,就实际情况而论,我们和他们之间的差距还很大,但是,美国这方面的成就很值得我们去借鉴。
一、运筹学在装备系统效能评估上的应用
高新技术快速发展到今天,往往在一个武器装备系统中综合运用了多种高新技术,如:红外、雷达、激光、电子等探测技术、雷达、红外、GPS、激光、图形匹配等精确制导技术,电子对抗技术、通信技术、信息处理技术等。如果想要准确评估一个武器装备系统的作战效能是非常困难的,因为这不仅涉及到多种高新技术,而且还要涉及到它们之间的相互关联和相互影响,并且还涉及到这些技术的综合运用后对作战效果的影响。
DWK是为了适应复杂仿真系统的需求仿真模型的重用和计算机仿真技术的发展所开发的对抗仿真应用软件的高层开发平台。DWK采用了HLA技术,它可以方便地实现分布运行集中控制、模型重用等仿真工作。DWK主要由建模模块、配置模块、态势生成、效能评估模块、视景显示模块和管理工具几部分组成。DWK还包括几个联邦成员,包括相应的HLA框架和其数学模型。
DWK不仅可以用于武器效能评估系统的开发,还可以用于战术训练系统开发,是对抗仿真应用系统的高层开发平台。DWK主要由开发工具、通用仿真模块和专业联邦成员组成,其中专业联邦成员包括相应的HLA框架和其数学模型。为了适应复杂仿真系统的需求、仿真模型的重用和计算机仿真技术的发展,DWK采用了HLA技术,它可以方便地实现分布运行集中控制、模型重用等仿真工作。
使用DWK,用户可以不了解HLA技术,只要将自己的仿真模型添加到DWK中就可以实现对抗系统的建模与仿真。用户就可以将主要的精力放在专业数学模型的开发和改进之上,仿真的控制和协同由DWK来完成。DWK提供效能分析和战术训练两种仿真模式组成。利用效能评估工具可对仿真对象的效能做出科学的判断;战术训练通过GL Studio开发的模拟真实设备的操作界面和丰富的指挥参考信息,对指挥人员和武器操作员进行战术使用训练。
DWK适用于对作战场景中的装备、装备部件进行仿真,军方装备部门、地方工业部门都可以利用DWK测试武器装备在对抗条件下的效能和进行装备的使用训练。
二、运筹学在装备作战模拟效能评估上的应用
运筹学在作战模拟效能上的应用是20年来研究最为活跃的领域之一,但是,在实际应用中,必须先建立作战模拟模型,这是研究运筹学在其应用中的先决条件。在运筹问题中,运筹学在作战模拟效能的应用表现为:武器装备的对抗问题;高技术下采用何种作战方法;使用何种方案对作战效能进行评估;作战的兵力需求和兵力结构研究等。
众所周知,构建作战模拟模型工作量大、周期长、技术难度高,因此,如何解决模拟的可重用性、模型的有效性,是运筹学发展的重要目标。为了提高建模的质量和效率,我们应注意以下两个方面。
(一)为了能充分发挥武器装备的作战效能,要深入研究新的作战样式的特点和规律,和发展相应的军事运筹的理论和方法。针对作战模拟中联合作战能力量化和效能评估所提出的难点问题中,不仅提出利用“联合指数”法按打击力、机动力、防护力、信息力和保障力对武器装备的作战能力进行量化,而且并利用矢量求模的方式,求取武器装备整体合力。它不但克服了传统指数法无法对联合作战中各军兵种作战能力按统一标准量化的缺点。还论文尝试利用“协同系数”方法对联合作战编组整体作战能力进行量化和分析,弥补传统指数计算中单纯利用线性聚合方法所造成的无法反映协同作战效果的问题。最后,根据指数―兰彻斯特方程对想定背景条件下的联合作战进行了效能评估。高技术战争呼唤新的军事运筹方法,是军事运筹学在新的军事革命形势下面临的挑战,同时也为运筹学的创新和发展提供了难得的机遇。
(二)军事运筹学效能的评估应用在技术方面需要我们共同的提高和进步,这点是我们共同的目标。但是我们还要在应用中发现问题,譬如说效能的评估结果的呈现,现在的文献与应用结果都把结果的呈现简单化了。这样种种的问题会使其应用非常困难,因为现有的体制使得我国在效能评估方面的应用本来就是非常有难度的。如果我们还不适应领导们的口味,那么效能评估都只能是纸上谈兵了。
目前,我国现在军队的装备效能技术水平远远低于美国等发达国家。作为一个具有优秀军事思想的国家,在技术发展的今天我们已经落后了,这不仅表现在技术上,而且表现在思想上。作为新时期的工作者任重而道远。我们应在分析落后原因的基础上,提出解决问题的方案,迎头赶上,为我们国家的军事运筹学的应用做更大的贡献。
参考文献:
[论文摘要]在教学中运用虚拟现实技术不但能有效的提高教学效果,激发学生的学习兴趣,而且还能提升教学过程中的科技含量。阐述虚拟现实技术在教学中的重要作用,重点探讨在各基础学科中虚拟现实技术的运用。
一、引言
随着计算机技术的飞速发展,虚拟现实技术已经从前沿的航天、军事领域开始进入教育领域,并涉及高等教育的各个学科。计算机变成实验台,软件变成仪器,网络变成实验室的虚拟现实技术能形象生动地表现各个学科的教学内容, 有效地营造随技术发展的教学环境,提高教学质量。
二、虚拟现实技术概述
虚拟现实(Virtual Reality,VR)技术利用三维图形生成技术、多传感交互技术以及显示技术,生成三维的虚拟环境,介入者利用键盘、鼠标等输入设备,或者带上头盔、数据手套等传感设备进入虚拟环境,在虚拟环境中进行实时交互,并且能够感知和操作虚拟环境中的各种对象,获得身临其境的感受和体验。
虚拟现实技术具有沉浸感、交互性和想象力三个基本特征。在具体的教学实验中,学生可以作为主角存在于虚拟环境中,对虚拟环境内的物体进行操作并从环境中得到自然的反馈,而且当学生沉浸在多维信息空间中时,能够主动地获取知识,寻求解答,形成新的概念。
虚拟现实技术以其诸多的优点决定了它在教育领域中的重要作用。一是避免真实实验或操作所带来的各种危险并降低真实实验的实验用品损耗;二是在虚拟实验中可以获得与真实实验一样的学习效果,还可根据实验教学发展需求“引入”新设备,不断对新设备进行扩展。三是彻底打破空间与时间的限制。总之,虚拟现实技术结合多媒体技术和计算机网络,能提高实验效果与效率,充分发挥教学优势。
三、虚拟实验室的实现
虚拟实验室是由虚拟现实技术生成的一类适于进行虚拟实验的实验系统,包括相应实验室环境、有关的实验仪器设备、实验对象以及实验信息资源等。在虚拟实验室中,学生能够在计算机建立的三维的模拟实验场景中从不同的视角观察一个实验对象,通过鼠标的选择或者拖曳操作便可完成与虚拟实验对象之间的交互。
(一)仿真实验
虚拟实验室实际上就是数字化的仿真技术在实验教学中的应用,一个真正的虚拟实验教学系统的前台是多媒体或是虚拟化的环境,后台是实时仿真的过程。
目前的仿真软件很多,如EASY-T、VT-LINK3.3、SPW、Cadance、Mentor、MatLab、Protel2004、LabView、OpenGL、MultiGen等。在构建虚拟实验时,应根据具体需求,选择合适的开发工具。如何将计算机仿真技术与虚拟化的仪器或多媒体环境有机的结合起来是虚拟实验室建立的关键和核心技术。
(二)支持技术
目前国内外对虚拟实验室的开发大致采用以下几种方法 :
1.使用JAVA+VRML进行开发。Java目前已经成为跨平台应用软件开发的一种规范,主要讨论对象行为。VRML 是一种虚拟现实建模语言,着重于虚拟场景中对象的特征。采用JAVA+VRML混合编程是实现较复杂动态场景控制等高级交互功能的有效方法。但基于VRML虚拟现实的虚拟实验在制作上较复杂,客户端需要有大量的专业的设备(如头盔、触觉手套等),附加成本较高,并且运行VRML对客户端计算机的性能要求也很高。
2.使用ActiveX控件进行开发。ActiveX技术是Microsoft为适应网络发展的需要而将OLE技术在Internet上的重定义。在虚拟实验室的开发过程中,代码复用性对于持续开发过程尤为重要。可以利用VB、VC++、Delphi、Builder等任何一种支持COM规范的开发工具来进行ActiveX控件的开发。由于ActiveX控件只能运行在基于Microsoft Windows的操作系统,因而移植性和通用性较差。
3.使用QuickTime VR进行开发。QuickTime VR(简称QTVR)是新一代的、基于静态图像处理的实景建模的虚拟现实技术。QTVR可以应用照片、录像或数字图像等离散数据来创建虚拟环境,完成三维空间及三维物体的造型,并实现全方位观察。具有更高的真实感、更丰富的图像和更鲜明的细节特征。QTVR制作简单、周期较短、可控性也很强,对开发一些简单的网络实验教学软件的难度不大。
4.使用FLASH进行开发。FLASH是一种基于矢量的图形系统,具有短小精悍、任意缩放、兼容性良好、嵌入ActionScript脚本功能等特点。而且Flash中的工作组功能极为强大,包含一套新的工作流程,可自动更新Flash网站的数据驱动,从而大大节约了开发者的时间。因此,FlashActionScript是网上教学虚拟实验室开发的最佳平台。
(三)功能模块设计
无论建设哪个学科的虚拟实验系统,从功能模块上均可划分为三个部分。
1.网络服务。用户可通过网络注册个人信息并经过验证后登录虚拟实验系统。登录该系统后学生可自主选择将要进行的实验,并根据实际需要获得相关的指导。
2.仿真实验。采用计算机仿真技术来构建实验模型,设计出用于测试的虚拟仪器设备、实验线路或回路、实验元器件或构件库、判别实验效果的评价标准等。用户选择相关的仿真实验以后,根据提示进行相关的操作,观察实验现象并记录实验结果。
3.数据库。为虚拟实验系统提供相关的数据服务。维护虚拟实验系统的数据信息及用户的相关权限,为仿真实验提供支持。
四、结束语
如何将虚拟现实技术很好地运用于教学中是目前教育领域发展的一个新热点。虚拟现实技术在教学中具有广阔的应用和发展前景。虚拟实验的普及能更好的提高教学效率,优化教学过程,达到更好的教学效果。
参考文献
[1]孙宏彬等,VRML-Java远程虚拟教学平台的研究与实现[J].现代远程教育研究,2003(2).
[2]许又泉、谭敏生、邓轶华,网络虚拟实验室及其实现方法研究[J].邵阳学院学报(自然科学版),2004(03).