发布时间:2023-03-20 16:18:49
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的轨道交通工程论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
首先应分析和总结轨道交通工程存在的各类风险与特点,利用理论分析、施工现场勘查以及专家评审等多种方式,通过定期或者不定期报告在建设期限内展开建设质量以及安全风险管理工作,严格督查并切实加强关键节点的质控与风险管理工作;根据风险要素的表现形式来采取针对性控制策略,有效控制工程建设风险水平,最大化降低风险发生概率,以便于将风险事故所酿成的各方损失将至最低值。
2轨道交通工程的风险要素评估
(1)制定风险管理体系。应结合轨道交通建设管理标准与要求,着眼于轨道交通发展现状,针对轨道交通质量安全策划相应的风险管理方案,其内容涉及参建各方职责、风险管理内容以及各部分管理要求等。
(2)整体性评估。应结合施工现场情况、工程相关文件以及各类管理要求,根据工程自身特征、水文工程地质条件以及周边环境制约因素对轨道交通项目建设存在的风险因素展开综合评估,由此对轨道交通项目形成整体性的风险评估结果,对其管理要求以及风险等级予以明确。组织专家小组负责风险评审工作,与参建各方展开风险交底,明确关键风险点,例如轨道交通建设线路是否穿越保护性设施、历史建筑、局部不良地质、立交桥与铁路桥以及市政重要管线,或者在机场临近区域施工、桥桩基础施工风险以及盾构小曲率推进要点、下穿地表水体或穿越高速公路等等。
(3)动态性评估。开工前应根据工程水文地质、施工工艺、总体筹划、周边环境以及施工工序,由监理方指导参建各方评估本部单位工程中存在的风险要素,明确管理过程中的各个关键风险点。然后由安全管理机构对各单位提交的风险评估报告进行汇总,然后交由专家小组评估审核,制定初步的风险申报文件,并向建设单位提交。
3轨道交通工程施工现场安全管理
安全管理机构应为参建各方制定相应的安全管理标准,用于对安全管理标准化模式的执行做出相应的检查和考核。现场安全管理以规范化的行为和管理程序为主要对象,而巡检则是主要执行方式。巡检执行者由专家工作组以及施工现场监察小组组成,其工作内容涉及如下几个方面:
(1)参建各方。对现场各项建设程序进行检查,评估其规范与否;审核各项审批以及备案程序是否已经到位;检查工程关键部位、工序以及分部分项工程中具有较高危险性的部分,尤其是具有较高危险性且已超出一定规模的分项工程,应确认其遵循既定规程接受审批,或根据专家论证后施工技术方案贯彻落实;应对现场施工行为安全进行严密监控,关注现场危险源以及各环节施工违规操作行为,严格执行安全管理制度。
(2)施工企业。评估现场施工方是否就总分包行为构建质量安全保证体系;应对施工企业施工资质所发生的动态性变化予以严格审查,同时还应全面掌握企业工作人员资质动态变化、安全教育培训制度以及各项规章制度;应对专业分包以及劳务分包进行检查,确认其合法与否;确认总承包方在主体工程结构施工方面是否如约完工,或检查其有无非法转包行为;应对施工方现场管理控制工作进行检查和评估,确认其是否存在以包代管的行为,或者是否存在两级管理(施工单位与项目部)现象。
(3)监理方。应对监理企业资质动态变化予以检查,掌握其工作人员资质变化情况,了解其安全教育培训制度以及其他规章制度;应对监理方安全监理工作人员以及监理数量进行检查,确认其有无违背合同之举;应在施工现场对监理方执业行为、总监与工作人员到位情况、服务承诺是否实现等管理行为进行检查;应就现场监理工作展开评估,确认其有无及时察觉施工违规行为,并提出相应的书面整改要求,后期是否及时开展整改复查工作。
(4)应做好薄弱部位的质控工作,根据《危险性较大的分部分项工程的安全管理办法》可知,申请安全监督手续办理或者申领施工许可证时建设单位应出具具有较大危险性的分部分项工程清单以及相应的安全管理策略。其次应遵循《城市轨道交通工程安全质量管理暂行办法》,由建设单位全权负责工程项目管理工作。
4结语
关键词:牵引动力照明混合网络城市轨道交通供电系统中压网络
一、供电系统的简介及中压网络的概念
1、城市轨道交通供电系统的功能
城市轨道交通供电系统,担负着运行所需的一切电能的供应与传输,是城市轨道交通安全可靠运行的重要保证。
城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。
在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。
保证电动客车畅行,安全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。
2、供电系统的构成
根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压变电所与动力照明。
但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划分成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计(注:动力照明随同土建一起设计)。
3、外部电源方案
城市轨道交通系统的外部电源方案,根据城市电网构成的不同特点,可采用集中式、分散式、混合式等不同形式。
(1)确定外部电源方案的原则
城市轨道交通作为城市电网的特殊用户,一般用电范围多在10km~30km之间。城市轨道交通系统的外部电源方案,主要有集中式、分散式、混合式等不同形式。究竟采用何种方式,应通过计算确定需要负荷之后,根据城市轨道交通路网规划、城市电网构成特点、工程实际情况综合分析确定。
(2)集中式供电
在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所,这种由主变电所构成的供电方案,称为集中式供电。主变电所进线电压一般为110kV,经降压后变成35kV或10kV,供牵引变电所与降压变电所。主变电所应有两路独立的进线电源。集中式供电,有利于城市轨道交通供电形成独立体系,便于管理和运营。上海、广州、南京、香港、德黑兰地铁等即为集中式供电方案。
(3)分散式供电
根据城市轨道交通供电的需要,在地铁沿线直接由城市电网引入多路电源,构成供电系统,称为分散式供电。这种供电方式一般为10kV电压级。分散式供电要保证每座牵引变电所和降压变电所均获得双路电源,要求城市轨道交通沿线有足够的电源引入点及备用容量。建设中的沈阳地铁、长春轻轨、大连轻轨、北京城铁、北京八通线、北京地铁5号线等即为分散式供电方案。
(4)混合式供电
将前两种供电方式结合起来,一般以集中式供电为主,个别地段引入城市电网电源作为集中式供电的补充,使供电系统更加完善和可靠。这种方式称为混合式供电。北京地铁一线和环线、建设中的武汉轨道交通工程、青岛地铁南北线工程等即为混合式供电方案。
通过中压电缆,纵向把上级主变电所和下级牵引变电所、降压变电所连接起来,横向把全线的各个牵引变电所、降压变电所连接起来,便形成了中压网络。
根据网络功能的不同,把为牵引变电所供电的中压网络,称为牵引网络;同样,把为降压变电所供电的中压网络称为动力照明网络。
中压网络有两大属性:一是电压等级,二是构成形式。
中压网络不是供电系统中独立的子系统,但是它却是供电系统设计的核心内容。它的设计牵扯到外部电源方案、主变电所的位置及数量、牵引变电所及降压变电所的位置与数量、牵引变电所与降压变电所的主接线等。
二、中压网络的电压等级
1、国家中压配电现状及发展趋向
我国现行中压配电标准电压等级有:66kV、35kV、10kV。随着城乡电气化事业的发展,只有一种10kV作为中低电压的分界,显然已不能满足城乡配电网发展要求。
我国第一个20kV一次配电的供电区,已经于1996年5月在苏州工业园区投入运行。从前一段运行情况来看,其线损率大大低于10kV系统。
对于农村电网,从电源电压直接送到中压一次配电层,形成高压电源层──中压一次配电层──低压户内三级配电,可以简化电网、降低造价、减少线损、利于发展。采用20kV作为中压一次配电层,功能上可以替代35kV与10kV两个配电层,而造价上则与10kV设备差异不大。由此可见,20kV电压等级的这种特点,也适合于高密度负荷地区的城市电网。例如:早在1999年中电联供电分会发表的“北京电网实施城网建设和改造的规划原则”中表明:北京市区内电压等级按500kV、220kV、110kV、10kV(20kV)设计,其中新建开发区可选20kV电压等级。
2、国内城市轨道交通中压网络现状及发展思路
以往,因国家城乡电网中没有采用20kV这一电压等级,相应的开关柜等20kV设备,也没有跟上发展。在这样的大环境下,要在城市轨道交通工程中使用20kV电压级,是比较困难和不现实的。因而,国内既有城市轨道交通的中压网络电压等级采用了35kV(若采用国外设备则是33kV)或10kV。北京地铁、天津地铁、长春轨道交通环线一期工程、大连快速轨道交通3号线的中压网络为10kV;上海地铁1、2号线的牵引网络采用了33kV,动力照明网络采用了10kV;上海地铁明珠线的牵引网络采用了35kV,动力照明网络采用了10kV;广州地铁1、2号线采用了33kV的牵引动力照明混合网络;南京地铁南北线一期工程、深圳地铁采用了35kV的牵引动力照明混合网络;武汉轨道交通一期工程、重庆轨道交通较新线工程采用了10kV的牵引动力照明混合网络。
然而,随着城乡电力消费的增长,发展城乡20kV配电网已提到议事日程上来。20kV是目前公认的具有发展前景的优选电压级。20kV开关柜、变压器、电力电缆等一系列设备,也完全实现了国产化。
近年已颁布的国家标准GB156—93中表明,20kV也是可使用的电压级。另外,已经完成送审稿的《地铁设计规范》中规定:地铁中压网络的电压等级可采用35kV(33kV)、20kV、10kV。因此,在我国城乡电网及20kV设备这个大环境,已经发生变化的情况下,在城市轨道交通中压网络的电压等级选用上,也应该拓宽思路,认真比较,优化选用。换言之,不能仅局限于以往的35kV(33kV)和10kV框框,应该认识到,20kV也是可用的,并已成为一个备选电压级。这是因为:城市轨道交通供电系统,尤其是集中式供电系统,与其他公用用户相比,相对独立,自成系统。无论从施工建设,还是运营管理、养护维修等均相对独立。从这个角度来说,城市轨道交通中压网络的电压等级不一定与外部电网电压等级相一致。实际上,上海地铁、广州地铁,已采用了国外的33kV设备,而我国电压等级是35kV,并非33kV。另外,象南京地铁、深圳地铁采用的35kV,也是这两座城市市区电网所要取消的电压级。换言之,在城市轨道交通中压网络电压等级与外部市网电压等级的关系上,是采用35kV还是采用33kV或者20kV,其性质和概念上是一样的。
3、不同电压等级的中压网络的特点
(1)35kV中压网络,国家标准电压级。输电容量较大、距离较长;设备来源国内;设备体积较大,占用变电所面积较大,不利于减小车站体量;设备价格适中;国内没有环网开关,因而不能用(相对于断路器柜)价格较便宜的环网开关,构成接线与保护简单、操作灵活的环网系统;广州地铁、上海地铁已经采用。
(2)33kV中压网络,国际标准电压级。输电容量较大、距离较长,基本与35kV一致;设备来源国外,不利于国产化;国外开关设备体积较小、价格较高,广州、上海地铁已经采用;国外C-GIS产品有环网单元。
(3)20kV中压网络,国际标准电压级。输电容量及距离适中,比10kV系统大。设备完全实现国产化;引进MG、ALSTHOM等技术的开关设备,体积较小,占用变电所面积远小于国产35kV设备,有利减小车站体量,节省土建投资;价格适中;有环网单元,能构成接线与保护简单、操作灵活的环网系统;国内地铁尚没有采用,但国外地铁多有采用。
(4)10kV中压网络,国家标准电压级。输电容量较小、距离较短;设备来源国内;设备体积适中;设备价格较低;环网开关技术成熟、运营经验丰厚,可用其构成保护简单、操作灵活的环网系统;国内外地铁广为采用。
4、不同电压等级的中压网络的综合比较
三、中压网络的构成
1、概述
对于集中式外部电源方案,牵引网络和动力照明网络,可以采用相对独立的形式,即牵引动力照明独立网络,也可以共用同一个中压网络,即牵引动力照明混合网络。对于分散式外部电源方案,采用牵引动力照明混合网络。
牵引动力照明独立网络的特点:牵引网络与动力照明网络,两者相对独立、相互影响较小;35(33)kV较高的电压级与较重的牵引负载相适用,而10kV较低的电压级则与较小的动力照明负荷相适用。
牵引动力照明混合网络的特点:供电系统的整体性比较好,设备布置可以统筹考虑。
牵引网络与动力照明网络,可以采用同一个电压级,也可以采用两个不同电压级。
目前,我国城市轨道交通工程有的采用了牵引动力照明混合网络,有的则采用了牵引动力照明独立网络;国外有的地铁采用了牵引动力照明独立网络。
2、中压网络的构成原则
(1)满足安全可靠的供电要求;
(2)满足潮流计算要求,即设备容量及电压降要满足要求;
(3)满足负荷分配平衡的要求;
(4)满足继电保护的要求;
(5)满足运行管理、倒闸操作的要求;
(6)每一个牵引变电所、降压变电所均应有两路电源;
(7)系统接线方式尽量简单;
(8)供电分区应就近引入电源,必要时可从负荷中心处引入电源,尽量避免返送电;
(9)全线牵引变电所、降压变电所的主接线尽量一致;
(10)满足设备选型要求。
3、集中式外部电源方案下的中压网络构成
(1)独立35(33)kV牵引网络+独立10kV动力照明网络的接线方式
1)35(33)kV牵引网络的接线方式
当中压网络为两个不同电压级时,35(33)kV牵引网络的常用接线方式,如插图一所示。这些基本接线方式可以分成A、B、C、D四种类型。
lA型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;牵引变电所的两路电源,来自于同一个主变电所的不同母线;该类型接线适用于位于线路起始部分、线路终端部分、主变电所附近的牵引变电所电源引入。
lB型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;两个牵引变电所为一组;这一组牵引变电所的两路电源,来自于同一个主变电所的不同母线,每个牵引变电所均从主变电所接入一路主电源,两个牵引变电所通过联络电缆实现电源互为备用;该类型接线适用于位于线路起始部分、线路终端部分的牵引变电所电源引入。
lC型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;两个牵引变电所为一组;这一组牵引变电所的两路电源,来自于不同的主变电所,左侧牵引变电所从左侧主变电所接入一路主电源,右侧牵引变电所从右侧主变电所接入一路主电源,两个牵引变电所通过联络电缆实现电源互为备用;该类型接线适用于位于两个主变电所之间的牵引变电所电源引入。
lD型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;牵引变电所的两路电源,来自于左右两侧不同的主变电所;该类型接线适用于位于两个主变电所之间的牵引变电所电源引入。
2)10kV动力照明网络的接线方式
当中压网络为两个不同电压级时,10kV动力照明网络的基本接线方式,如插图二所示。
全线的降压变电所被分成若干个供电分区,每个供电分区一般不超过3个地下站;每一个供电分区均从主变电所(或中心降压变电所)的35(33)/10kV主变压器,就近引入两路10kV电源;中压网络采用双线双环网接线方式;相邻供电分区间通过环网电缆联络;降压变电所主接线采用分段单母线形式;降压变电所进线开关采用断路器。该接线方式运行灵活。
(2)35(33)kV牵引动力照明混合网络的接线方式
当中压网络采用一个电压级时,35(33)kV牵引动力照明混合网络的基本接线方式,如插图三所示。
在有牵引变电所的车站,牵引变电所与降压变电所合建成牵引降压混合变电所,对大型地下车站,除牵引降压混合变电所或降压变电所外,还会设置跟随式降压变电所。
全线的牵引降压混合变电所及降压变电所被分成若干个供电分区,每个供电分区一般不超过3个地下站;每一个供电分区均从主变电所的不同母线就近引入两路35(33)kV电源;中压网络采用双线双环网接线方式,牵引降压混合变电所、牵引变电所、降压变电所的环网进线开关均采用断路器;两个主变电所之间的供电分区间通过环网电缆联络,其他供电分区间可以不设联络电缆。牵引降压混合变电所、牵引变电所、降压变电所的主接线,均采用分段单母线形式。
该接线方式运行灵活。35(33)kV牵引动力照明混合网络,因其输电容量大、距离长,因而更适合于地下线路。
(3)10kV牵引动力照明混合网络的接线方式
当中压网络采用一个电压级时,10kV牵引动力照明混合网络的基本接线方式,如插图四所示。
全线的牵引降压混合变电所及降压变电所被分成若干个供电分区,每个供电分区一般不超过3个车站;每一个供电分区均从主变电所的不同母线就近引入两路10kV电源(对于地面线路,供电分区的来自于主变电所的两路10kV电源也可以从牵引变电所处引入,不一定就近引入)。
牵引降压混合变电所、牵引变电所的主接线均采用分段单母线形式。地下降压变电所主接线可采用分段单母线形式,地面降压变电所主接线则可以采用两段母线形式,同一工程的地下降压变电所与地面降压变电所主接线,应尽量一致。地面降压变电所的配电变压器,也可以采用负荷开关-熔断器组合电器保护。
中压网络采用双线双环网接线方式。牵引降压混合变电所、牵引变电所的环网进线开关均采用断路器;地面降压变电所的环网进线开关可以采用负荷开关,地面降压变电所的配电变压器,也可以采用负荷开关-熔断器组合电器保护。如果两个主变电所10kV母线间设有专门的联络电缆,那么两个主变电所之间的供电分区间不必再设联络电缆;同一个主变电所供电范围内的供电分区间可以不设联络电缆(尤其是当这些供电分区分别只有一个牵引变电所时)。
该接线方式运行灵活。10kV牵引动力照明混合网络,因其输电容量小、距离短,因而更适合于地面线路。
(4)20kV牵引动力照明独立网络的接线方式
当中压网络采用一个电压级时,除前面已经分析的35(33)kV牵引动力照明混合网络、以及10kV牵引动力照明混合网络外,伊朗德黑兰地铁采用了20kV牵引动力照明独立网络,即牵引网络与动力照明网络相对独立,但均为20kV电压级。该接线方式如图五所示。
20kV牵引网络的构成方式为:两个63/20kV主变电所之间的牵引变电所,以相互间隔的方式分成两组,每一组均以类似于(开环运行的)单线单环网接线方式,分别从两个主变电所各引入一个20kV电源,即这些牵引变电所从两个主变电所各取得一路20kV电源。位于线路端头的牵引变电所,则以传统的(开环运行的)双线双环网接线方式,从一个就近主变电所的不同母线取得两路20kV电源。
20kV动力照明网络的构成方式为:全线的降压变电所被分成若干个供电分区,每个供电分区一般不超过4个地下站;每一个供电分区均从主变电所的不同母线以类似于(开环运行的)双线双环网接线方式就近引入两路20kV电源。两个供电分区间可以设联络电缆。
牵引变电所的主接线采用分段单母线形式,即设有两段环网电源母线及一段牵引电源母线。降压变电所的主接线采用两段母线形式。牵引变电所与降压变电所的电源进线均采用负荷开关作为环网开关。降压变电所的配电变压器,采用负荷开关-熔断器组合电器保护。
该接线方式的特点是,实现了以“负荷开关”构成环网接线,保护简单;另外牵引网络与动力照明网络相互影响小。但是由于牵引网络与动力照明网络的分离,以及牵引网络采用了单线单环网接线方式,导致区间中压电缆过多。
4、分散式外部电源方案下的中压网络构成
对分散式外部电源方案,中压网络采用10kV牵引动力照明混合网络,基本接线方式有以下四种。下面逐一分析其构成特点。
(1)接线方式一
接线方式如插图六所示。
全线的牵引降压混合变电所、牵引变电所、降压变电所被分成若干个供电分区,每个供电分区一般不超过3个地下站;每一个供电分区均从城市电网就近引入两路10kV电源;中压网络采用双环网接线方式,牵引降压混合变电所、牵引变电所、降压变电所的环网进线开关均采用断路器;两个相邻供电分区间通过两路环网电缆联络。牵引降压混合变电所、牵引变电所、降压变电所的主接线,均采用分段单母线形式。
该接线方式运行灵活。为同一个供电分区供电的从城市电网引来的两路10kV电源,可以来自不同的地区变电所,也可以来自同一地区变电所。该方式要求城市电网有比较多的10kV电源点。
(2)接线方式二
接线方式如插图七所示。
全线的牵引降压混合变电所(或牵引变电所),每两个分成一组。每一组均从城市电网引入两路10kV电源,分别作为两个牵引降压混合变电所的主电源,同时同一组的两个牵引降压混合变电所间设双路联络电缆,实现电源互为备用。相邻两组牵引降压混合变电所之间设单路联络电缆,增加系统的供电可靠性。
牵引降压混合变电所、牵引变电所的主接线,均采用分段单母线形式。无牵引变电所的地面车站,其降压变电所,可按跟随式降压变电所考虑。无牵引变电所的地下车站,其降压变电所的10kV电源可以由相邻两组间的单路联络电缆提供(该降压变电所应采用分段单母线主接线)。
该接线方式比较简洁。该方式对城市电网10kV电源点的数量要求不多,但要求每组从城市电网引来的两路10kV电源应来自不同地区变电所,以增加供电的可靠性。该接线方式适合于地面线路。
(3)接线方式三
接线方式如插图八所示。
全线的牵引降压混合变电所(或牵引变电所),前后关联,浑然一体。除最后一个牵引降压混合变电所从城市电网直接引入两路10kV电源以外,其他牵引降压混合变电所均从城市电网引入一路10kV电源,这路电源既是本变电所的主电源,又是前一个变电所的备用电源,换言之,当前变电所的主电源直接来自城市电网的10kV电源,而备用电源则来自于下一个变电所。依次类推,最后一个变电所则需要从城市电网引入两路10kV电源。
牵引降压混合变电所、牵引变电所的主接线,均采用分段单母线形式。对于无牵引变电所的车站,其降压变电所,可按跟随式降压变电所考虑。
该接线方式最为简洁。N个变电所需要N+1路10kV电源,相邻变电所间只有一路联络电源。该方式对城市电网10kV电源点的数量要求不多,但要求这些城市电网引来的10kV电源应来自不同地区变电所,以增加供电的可靠性。该接线方式适合于地面线路。
(4)接线方式四
接线方式如插图九所示。
全线的牵引降压混合变电所、牵引变电所、降压变电所被分成若干个供电分区,每个供电分区一般不超过4个车站。每一个供电分区由一个电源开闭所供电,每个电源开闭所均从城市电网就近引入两路10kV电源。
该电源开闭所可以独立设置,也可以与就近的牵引变电所合建。若电源开闭所采用独立设置方式,则需与规划部门配合协调,另外该方式的土建投资与设备投资都比合建方式要大,故该方式,仅在地面线可以考虑。
插图九表示的是电源开闭所与牵引变电所合建情况。合建处的牵引整流机组及配电变压器,由电源开闭所直接供电。对于电源开闭所之间的某些牵引降压混合变电所,其电源分别来自与左右两侧的电源开闭所,并通过在这些牵引降压混合变电所的牵引母线段上设置与电源开闭所间的专用联络电缆,将相邻的两个电源开闭所联系起来;对于不参与这种开闭所联络的牵引降压混合变电所,其电源就近来自同一个电源开闭所。
牵引降压混合变电所、牵引变电所的主接线,均采用分段单母线形式。降压变电所的主接线可按跟随式降压变电所考虑。
该接线方式比较复杂。为同一电源开闭所供电的两路市网10kV电源,最好来自于不同的地区变电所。该方式对城市电网10kV电源点的数量要求不多。
四、一种新型接线方式研究-20kV牵引动力照明混合网络
通过对前面各种接线方式的分析,对于集中式外部供电方案,本文现提出提出一种新型接线方式:20kV牵引动力照明混合网络。接线方式如插图十所示。
全线的牵引降压混合变电所及降压变电所被分成若干个供电分区,每个供电分区一般不超过3个地下站;每一个供电分区均从主变电所的不同母线就近引入两路20kV电源(对于地面线路,供电分区的来自于主变电所的两路20kV电源也可以从牵引变电所处引入,不一定就近引入)。
牵引降压混合变电所、牵引变电所的主接线均采用分段单母线形式,即设有两段环网电源母线及一段牵引电源母线,牵引母线与两段环网电源母线间设有进线断路器,任何时候只允许一个进线断路器处于合闸位置,另一进线断路器投入的条件是“失压自投,过流闭锁”。两套牵引整流机组均接入牵引母线段,牵引降压混合变电所的两台配电变压器则分别接入两段环网电源母线段。降压变电所主接线采用分段单母线形式,配电变压器可以采用负荷开关-熔断器组合电器保护。
中压网络采用双线双环网接线方式。牵引降压混合变电所、牵引变电所、降压变电所的环网进线开关均采用负荷开关。两个主变电所之间的供电分区间通过环网电缆联络,其他供电分区间可以不设联络电缆。
该接线方式最大特点分析:前面已经介绍过,传统的10kV动力照明网络、10kV牵引动力照明混合网络、35(33)kV牵引动力照明混合网络,尽管也采用了环网接线方式,但除了10kV牵引动力照明混合网络中的降压变电所可采取了“负荷开关”外,基本上是以“断路器”
作为环网进线开关。这样,当变电所主接线采用分段单母线时,那么当中压网络发生故障,(多个)环网进线开关跳闸以后,故障处理及等待备用电源投入的时间就比较长,这是传统环网接线方式的弊端。而这里提出的20kV牵引动力照明混合网络,其最大构成特点是利用20kV负荷开关作为环网进线开关,同时设置了两段环网电源母线。
该接线方式最大优点分析:当中压网络中的一路环网电缆故障时,主变电所中相应的20kV馈出断路器将跳闸,相关牵引变电所的主进线断路器也将失压跳闸,随之备用进线断路器将自动投入,保证对牵引整流机组的不间断供电。这就克服了传统的10kV动力照明网络、10kV牵引动力照明混合网络、35(33)kV牵引动力照明混合网络环网接线方式的弊端。另外,该20kV接线方式与德黑兰地铁的20kV牵引动力照明独立网络相比,除保护简单、运行操作灵活以外,接线更简单,投资更经济。南京地铁南北线一期工程、武汉轨道交通一期工程、杭州市轨道交通一号线工程等前期研究工作,都充分表明了这一点。
五、结束语
目前环网接线方式,越来越受到重视,并且已在许多城市和地区积极推广应用。同时,20kV也逐渐成为城市中压网络的电压级,并且已成为地铁中压网络的标准电压级。另外,加上20kV环网设备已逐步走向国产化。在这种形势下,我国城市轨道交通领域,在供电系统中压网络方面,应拓宽思路,认真研究,积极探讨采用20kV牵引动力照明混合网络的工程实施,尤其是对那些新建城市轨道交通的城市。
参考资料:
关键字:城市轨道交通;常规公交
1.苏州各种公交协同研究的作用
苏州人口密集,人均道路占有率和国外城市相比更低,苏州市城市化进程已经发展到比较高的程度,用于交通设施建设的土地资源已非常紧张,车辆拥挤、道路堵塞、车祸频繁、污染严重已成为当前的主要交通问题。改善苏州市交通拥堵的最好措施就是扩大公共交通的主导地位,尤其要以轨道交通和公共交通做为首先选取的途径,公共交通体系的骨架要转为快速轨道交通,其他客运交通方式作为体系的辅助部分。在这个过程中,要重视轨道交通与常规公交的协同问题,使出行者换乘方便,交通协同的整体作用不可忽视。
城市公共交通系统的两个子系统包含城市轨道交通系统与常规公交系统,它们是两个竞争、协调的系统,需要采取一系列的协同、规划方法,使交通总体出现有序的结构,从而使公共交通系统的整体优势充分体现出来。苏州市公共交通主要包括公共汽车、出租车、地铁、轻轨等,是苏州的重要交通设施,也是苏州客运交通的主要方式。为居民出行提供方便,也推动国民经济和社会的发展。在我国,对城市轨道交通与常规公交协同的研究才刚刚开始,资料数据也不充分。随着苏州城市化进程快速发展,研究苏州市各种交通方式的协调配合,分析换乘衔接中存在的矛盾,寻找解决的途径等成为交通部门以及城市规划部门的主要工作内容。
2. 苏州市公共交通工程的建设情况
经历多年的潜心研究,苏州市轨道交通工程终于拉开帷幕。根据相关建设规划审批意见,截止到2020年,苏州市将完成1号线、2号线、2号线延伸线、3号线、3号线支线、4号线、4号线支线等线路,产生“井”字型骨架网络布局,地铁网络包含了平江区、沧浪区、金阊区、工业园区、高新区(虎丘区)、相城区、吴中区七个区。目前1号线、2号线已经投入使用。
2.1、投入使用的轨道交通一号线基本情况。苏州轨道交通一号线全部是地下隧道,全线设置的车站达到24个,其中换乘站为4个。1号线位于苏州市东西向轴线上,具有极其重要战略影响,对于交通的疏导起到关键的作用。苏州市的客流大部分集中在此地。1号线沿途经苏州乐园、市政府、苏州大学、园区中心,将苏州古城区、苏州高新区和苏州工业园区紧密的联系起来。
2.2、投入使用的轨道交通一号线基本情况。2号线及延伸线是城市南北向的骨干线路,与1号线形成“十”字形线网骨架,2号线及延伸线位于苏州市的南北向发展轴线上,对于疏导南北方向的客流起到举足轻重的作用。是联系中心城区与相城区、吴中区、园区的一条关键线路,地位非常重要。沿线串联的城市:“两新城、三枢纽、一商业区”。平江新城和沧浪新城为两新城,高速铁路苏州站、沪宁城际铁路是苏州火车站和通苏嘉城际铁路园区站为三枢纽,石路商业区为一商业区。
2.3苏州市轨道交通对公交及其他交通的影响。轨道交通1号线与公交规划线网共有39条公交线路衔接,其中公交干线6条,公交支线27条,公交辐射线6条。三纵两横两环的公交干线和地铁一线形成城市运输的全部任务,通过他们形成一个客运走廊,运输范围包括:古城区、高新技术开发区、苏州工业园区、吴中区、相城区,并且垂直接驳于2路、4路、6路,横向相接于1路、5路,纵向相割于7路、8路,快速客运系统骨架通过良好的连通形成放射环状的客运过道,具有方向性和客流的集散性的特点。
3.苏州市公共交通不同层次协同研究
根据苏州市的历史文化和城市自身的特点,把城市轨道系统和常规公交系统分层次进行研究,从而提高整个公共交通服务水平意识,使公交系统分层次,各个系统也能有序的连接,站点布局更为合理。城市公共交通系统不同层次协同研究主要应该根据各层次公交线网布局和公交换乘枢纽布局来进行。
在1号、2号地铁建成以前,常规公交起着主导的作用,公共交通的设置主要根据客流的方向、经济发展的趋势以及教育培训等公共设施的位置进行布置。在1号、2号地铁建成后,但是仍然覆盖不完善,常规公交可以对轨道交通未到达的区域进行必要的补充,为地铁起到疏散和聚集客流的作用。在1-4号地铁全部投产以后,集散客流的主要任务由轨道交通负责,为轨道交通输送客流由常规交通来负责。
尽量结合常规公交与轨道交通站点的布局设置站点,根据新兴开发区,城镇的建设,经济的发展,合理的选择公交首末站,紧密结合地铁站点布置公交站点,必要时可改变公交线网的分布格局。实时调度城市公交车,特别要关注堵车、到站延迟活提前,等车间距时间长,公交的车速效率低等问题。
5.结论与展望
改善苏州市交通拥堵的最好措施就是扩大公共交通的主导地位,尤其要以轨道交通和公共交通做为首先选取的途径,公共交通体系的骨架要转为快速轨道交通,公共交通体系的骨架要转为快速轨道交通,其他客运交通方式作为体系的辅助部分。通过对苏州交通规划及现状和苏州市轨道交通工程及公共交通的情况及相互关系进行分析,把城市轨道系统和常规公交系统分层次进行研究,从而能够提高整个公共交通服务水平意识,使公交系统分层次运行,各个系统也能有序的连接,站点布局更为合理。在这个过程中,要重视轨道交通与常规公交的协同问题,使出行者换乘方便,交通协同的整体作用便体现出来。
参考文献
[1]黄平.城市公交线网优化及枢纽规划的研究.[武汉大学硕士学位论文].武汉:武汉大学,2005.29
关键词:城市轨道交通,机电系统。调剂策略
正文
1.城市轨道交通发展的历程和现状
起步――20世纪50年代,我国开始筹备北京地铁网络地铁建设,在1965-1976年建设了北京地铁一期工程(54Km )。随后建设了天津地铁(7.1Km,现已拆除重建)、哈尔滨人防隧道等工程。该阶段地铁建设以人防功能为指导思想。 发展――1980年代末至90年代初,我国仅有上海、北京、广州等几个大城市规划建设轨道交通。该阶段地铁建设开始真正以城市交通为
政府调控――进入上世纪90年代,一批省会城市开始筹划建设轨道交通项目,纷纷进行地铁建设的前期工作。由于要求建设的项目较多且工程造价高,1995年12月国务院国办60号文,暂停了地铁项目的审批。同时,国家计委开始研究制定城市轨道交通设备国产化政策。该阶段为政府通过研究制定相应政策来指导地铁的规划建设。 建设――1999年以后,国家的政策逐步鼓励大中城市发展城市轨道交通,全国己建有轨道交通的城市达10个,新申请立项准备建设的城市有8个。该阶段地铁建设速度大大超过之前的30年。
2.城市轨道交通机电系统的组成
城市轨道交通机电系统由以下几部分组成:
2.1供电系统。供电系统主要为列车、设备以及沿途各站点提供照明服务,可以分为集中供电、分散供电及混合供电,一般通过车站、沿路线、控制中心等进行调度。
2.2信号系统。信号系统用于指挥列车的正常运行,并及时发出信号以保证列车的安全。该系统分为ATP子系统、ATO子系统和ATS子系统,一般安装在控制中心。
2.3通信系统。通信系统用于信息的传输和指令的,相当于人体中的神经系统。该系统由电缆传输系统、闭路电视系统、无线通讯系统等六大部分组成,以便指令、信息能及时迅速的传达。
2.4自动售票、检票系统。该系统用于代替人工售票,采用多条线路联网以实现分阶段计程票价制,能够对票次进行跟踪统计,管理方便,还能为决策提供科学依据。
3、城市轨道交通机电系统的调试策略
3.1供电牵引系统
供电牵引系统是为城市轨道交通提供动力的源泉,一般包括牵引供电系统、动力照明系统和高压电源系统[2]。在供电牵引系统的调试阶段,需要:(1)对车辆与牵引供电系统进行短路试验;(2)测试供电系统与SCADA系统、信号系统、主时钟的接口是否正常运行,以确保各系统联动有序,供电牵引系统性能良好;(3)测试该系统在最大行车密度和低压满负荷时供电能力是否满足要求,进行谐波测试。
3.2信号系统
客车的ATS系统(自动监控子系统)能自动控制正线并向外部及时提供信息,ATP系统(自动防护子系统)需要与电动客车设备、轨道空闲检测设备以及ATS系统相关联,在这过程中会产生许多接口,因此在调试过程中需要重点关注以下内容:(1)信号系统与客车之间的调试;(2)信号系统与屏蔽门的调试;(3)信号系统与EMCS之间的调试。
3.3通信系统
通信系统相当于一个综合业务传输网,能对语言、图像、文字等信息实现透明传输。在调试时要注意:(1)将通信系统与各个相关联的子系统进行调试,包括办公自动化系统、EMCS系统、SCADA系统以及FAS系统,使之能正确接收时钟信息,使各个子系统的时间准确统一;(2)通信系统与客车、信号系统之间实现调试。
3.4自动售票、检票系统
自动售票、检票系统由中央计算机、编码系统、密匙管理系统、车站AFC终端以及各种辅助设备构成。一般由车站计算机集中控制,由中央计算机系统多线统一结算、统计、分析、打印IC卡、磁卡实现、单程售票等,分为自动售票机、检票机、半自动售票机。在调试时需要与时钟系统、通信系统实现联调,以保证自动售票、检票系统的中央调控能力。
3.5屏蔽门及其控制系统
滑动门、固定门、端门及应急门四部分组成了屏蔽门系统。屏蔽门的网络拓扑结构上采用的是总线型局域网,在某些重要命令上采用硬线传输,以保证传输的可靠性以及增强抗干扰能力[3]。在城市轨道交通中采用屏蔽门主要是使站台与轨道设有一道物理屏障,确保乘客安全,同时也能屏蔽列车运行时带来的噪声。
屏蔽门调试的重点是:(1)实现与BAS之间的调试,验证其接口是否能正常工作;(2)实现与信号系统的调试,需要列车上线运行,检验各接口能否满足运营的需要。
3.城市轨道交通机电系统调试的作用与意义
3.1实现城市轨道交通整体配合最佳
机电系统的调试是一项综合性很强的工作,不但要调试好各个子系统,在启动后还需要各个子系统能够带负荷正常运行,各系统接口关系正确,运作协调等[1]。在整个城市轨道交通中,线路合理清晰是基础,列车正常运行是关键,供电是保障。机电系统调试的目标就是使以上几点有机结合,实现整个轨道交通的最佳配合,以达到较大的运输能力、较高的服务质量和显著的社会效益。
3.2实现对城市轨道交通安全性分析
城市轨道交通作为公共交通运输工具,必须具备极高的安全性。子系统故障会导致行车安全,因此要增强各个子系统的可靠度,明确各个子系统部件的寿命期限,对于关键部件要定期检查、调试与更换。通过对机电系统的调试,及时确认系统是否可靠、安全、可用、可维修等,及时排出安全隐患,为乘客营造安全、舒心的出行环境。
3.3能够为运营提供技术支持
机电系统的调试是设计、施工完成后必须执行的一个过程,包括客车调试、通信调试、监控系统调试等,这一系列的调试为后续的检验和验收提供了可靠保证,也为正式投入运行后的运营提供了技术支持。
3.4能够使城市轨道交通更加系统性
城市轨道交通是一个有机整体,各个子系统关联性很强。由于受到经验或其他因素的影响,城市轨道交通的各个子系统往往能满足目标最大化,但在整体性能或整体效益上难以达到目标最大化。为了实现这一目标,需要对机电系统进行多次调试、评定,才能认定整个系统已达到最合理、最优化的目标。
结束语
城市轨道交通涉及的知识面很广,对机电系统调试的相关工作人员而言,需要详细的了解城市规划、工程施工建设、供电系统、公交系统等等各个方面的知识及规章制度。机电系统作为城市轨道交通一项重要的组成部分,在调试过程中需要对技术水平、管理模式、设备运行、协调运转等方面做到完整统一,使整个城市轨道交通运行更加安全、稳定、可靠。
参考文献
[1]朱烨中.城市轨道交通机电设备与公共安全防范系统的联动模式.[J]城市轨道交通研究,2011.12:29-34
[2]杨鹏.高性能城市轨道交通直流牵引供电电源的研究[J].西南交通大学研究生
关键词:轨道交通;常规公交;换乘;枢纽
Abstract: this paper first studied urban rail transport hub set planning, the city rail transport hub transfer cohesion. By establishing regular bus and rail transport interchange design principle, analyzes the bus and rail transport interchange conventional layout mode, and the rail transit surrounding the Station Road traffic organization with different conditions of regular bus stop for specific design.
Keywords: rail traffic; Conventional public traffic; Transfer; hub
中图分类号:U213.2 文献标识码: A 文章编号:
1. 轨道交通不同接驳方式现状分析
轨道交通枢纽作为城市客运交通系统的主导,其规划建设、客流预测、规模布局、功能定位、换乘布局模式以及交通组织等因素将对客运交通系统产生决定性的影响。轨道交通枢纽规划与设计,应该提高轨道交通与其它客运交通方式的衔接换乘水平。然而在我国城市客运综合运输发展中,主要存在以下几个问题:
换乘枢纽发展缓慢,尤其是可供各种交通方式实现换乘的综合客运枢纽发展尤为缓慢。
(2)轨道交通网络的规划研究和枢纽的规划研究应该同时进行,但是,在理论研究方面,往往只注重轨道交通网络的规划与设计理论,而忽视轨道交通枢纽的规划设计理论.
(3)对城市轨道交通枢纽的规划与常规公共交通的互动关系方面缺乏深入研究,(4)有的城市虽然已经形成了一定规模的轨道交通网络,但是地面公交的线路、站点设置、车辆运营模式常常不能起到主动支持轨道交通客流的作用,反而出现了轨道线与地面公交线路走向重复,造成公交系统内部争抢客流的局面。
2.城市客运综合运输方式接驳的方法研究
2.1城市轨道交通换乘枢纽研究
城市轨道交通与 BRT、常规公交的线网衔接与客流交换最终都要通过换乘枢纽来进行。合理的轨道交通换乘枢纽规划不但直接关系着城市轨道交通的吸引力,影响城市轨道交通系统的服务水平,也是整个城市公交系统高效运转的关键因素之一。
2..1.1城市轨道交通换乘枢纽规划的主要内容
主要内容是:在城市客运交通体系宏观规划的基础上,分析公交换乘枢纽换乘客流的组成与规模,设计有效的客运交通方式组合来运送客流;根据换乘枢纽的交通量,规划不同等级、不同规模的客运枢纽以加强系统之间的有效衔接,扩大轨道交通服务范围;研究轨道公交换乘枢纽的规模和布局,为后期的设计工作提供详细的规划条件;为公交换乘枢纽周围土地的使用规划提供指导性意见,使建筑的发展与交通发展协调一致。
2.1.2城市轨道交通换乘枢纽规划原则
城市轨道交通换乘枢纽规划的原则应体现城市公共交通发展的整体性、协调性、便捷性、合理性和政策性,使常规公交与轨道交通能有机的形成一体,发挥网络的整体运输能力。
(1)整体分析和局部分析相结合的原则
(2)换乘枢纽布局和城市土地利用规划紧密结合
(3)换乘枢纽的布置与区域综合交通环境相结合
(4)公交优先的原则
2.1.3客流换乘分析模型的建立
现已开发的非集计模型种类很多,早期被提出的主要是 Logit 模型和 Probit 模型,其中 Logit模型由于形式简单,较为实用,但 Logit 模型存在一个致命的缺陷,即其效用随机项是单独假设的,Probit 模型虽然克服了这一缺点,但是该模型往往需依赖于极其复杂的 Monte Carlo 仿真算法或者多项式 Clark 求解逼近算法,因此人们对交通方式划分预测又提出一系列的改进 Logit 模型。
2.1.4轨道交通枢纽选址方法
轨道枢纽的选址也就是确定枢纽内轨道车站设置的具体地理位置,根据其它客运方式站场(或枢纽)位置的确定性情况,此问题可以划分为下述三种类型:
①简单型枢纽选址:在其它方式站场(枢纽)的位置已定的情况下,仅确定轨道枢纽选址的简单情形,此类问题在轨道交通与城市对外交通衔接的枢纽中比较常见;
②互动型枢纽选址:在其它方式站场(枢纽)的位置没有确定的情况下,轨道枢纽与其它方式
枢纽同时优化选址的问题,此类问题在轨道交通与常规公交衔接的枢纽中比较常见;
③综合型枢纽选址:也就是上述两种选址类型的综合情况,在多种交通方式衔接的综合型枢纽中比较常见。
2.1.5换乘信息服务系统设计
轨道交通车站信息服务是指借助于声学、光学、电气等现代技术,在出入口、售票处、通道、站台等乘客经过的地方,通过广播、指示牌(板)、线路图、电子显示屏等各种方式有关轨道交通运行和交通方式换乘等静动态信息。完善的交通信息服务有助于乘客选择最佳行程路径,减少换乘的盲目性,从而达到提高枢纽换乘效率的目的。
2.2城市轨道交通与常规公交的换乘
轨道交通与常规公交的合理换乘是交通一体化的关键环节。只有两者换乘密切,换乘方便,达到时间与空间上换乘的融合,才能提高公共交通的辐射吸引范围,充分发挥轨道交通速度快、运量大、占地少、能耗低以及环境污染少等优点。另一方面,城市轨道交通提供快捷的“ 站到站”服务,但不能提供“ 门到门”服务,它的集散能力往往与所换乘的交通工具的特点和周围的道路系统疏解能力密切相关。城市轨道交通重要作用的发挥,很大程度上是与常规公交方式共同完成的,这也说明加强轨道交通与常规公交换乘研究的重要意义。
2.3常规公交接驳城市轨道交通起终点的调整
2.3.1调整原则
对轨道交通沿线常规公交线网调整应遵循以下原则:
(1)常规公交线网优化调整以客流需求预测为依据,并确立轨道交通的骨干地位;
(2)对沿线常规公交线网进行抽疏或加密,实现轨道交通与常规公交双赢的局面;
(3)在轨道交通主要站点(综合枢纽站和枢纽站)上,以放射的形式组织接运线路;加强轨道交通与接运公交线路的换乘能力;优先保留历史较长而运营效率较高的常规公交线路。
2.3.2调整方法
(1)常规公交起、终站点均在轨道交通直接吸引服务区内。(2)常规公交起点或终点在轨道交通直接服务区内。(3)常规公交起终站点均不在轨道交通直接服务区内。
对于上述三种情况,在轨道交通直接服务区内的常规公交站点(包括起点、终点和中间站点)都应尽可能调整到某一轨道交通站点附近,以方便换乘。经上述调整后,原有的一些常规公交线路己成为接运公交线网的一个组成部分。
3.总结
本文在对相关文献系统研究总结的基础上,提出了基于轨道交通站点的换乘系统规划的基本方法,得出了以下主要结论:
(1) 与国外城市完善的轨道交通站点换乘系统规划的成功经验的比较,从常规公交线网的调整、换乘时间和换乘距离、及站点设置形式等几个方面来看,我国城市轨道交通站点换乘系统还存在诸多问题。
(2) 站点换乘客流量直接决定了换乘设施的布局和规模。
(3) 在规划层面和运营层面协调的基础上,介绍了轨道交通之间以及轨道交通与其他交通方式换乘、地面公交优化调整的一般思路。
参考文献
[1]单传平.以轨道交通为骨干的城市公交线网协调性研究[D].重庆交通大学硕士学位论文.2008.
[2]王欲敏.城市公共交通换乘方式分析[J].交通标准化.2010.
[3]岳芳,毛保华,陈团生.城市轨道交通接驳方式的选择[J].都市快轨交通.2007
[4] 覃矞,宗传苓.轨道交通接运系统规划方法[J].城市交通.2006
[5]崔艳萍,刘莲花.公共交通接驳换乘系统评价指标体系的构建[J].都市快轨交通.2008.
[6]周伟,姜彩良.城市交通枢纽旅客换乘问题研究[J].交通运输系统工程信息.2005.
(常州大学,江苏 常州 213164)
摘 要:针对常州大学轨道交通信号与控制专业如何培养出符合轨道交通产业需求的具有工程应用及创新能力的优秀人才,确立了“科学制定培养方案、校内校外实践并重、多学科交融校内外团队指导”的人才培养模式。论文从培养方案设置、实验室建设、实习基地建设等多个方面进行研究,为培养轨道交通信号与控制特色专业应用型人才进行了一些有益的尝试。
关键词:轨道交通;人才培养模式;信号与控制;培养方案
中图分类号:G640 文献标识码:A 文章编号:1002-4107(2015)07-0079-02
收稿日期:2014-11-09
作者简介:屈霞(1968—),女,甘肃张掖人,常州大学城市轨道交通学院副教授,主要从事嵌入式系统应用研究。
基金项目:常州大学教育研究课题“卓越教学理念及其实践研究”(SCZ131950000V/002)
从2005年开始,国内轨道交通建设一直处于高速发展期。截至2014年,我国获得国家批准建设轨道交通的城市已达到37个,高居世界第一。目前,包括苏州、无锡、常州、徐州等9座城市的长三角轨道交通线路规划总量将达到3383.87公里。未来3年,至少还有10个以上城市将获得批准。也就是说,我国城市轨道交通的建设热潮至少要持续10年以上,这将在轨道交通信号与控制领域急需大批具有工程应用及创新能力的优秀人才。常州大学为推进立足常州、服务地方的办学实践,在整合现有优质学科资源的基础上,于2013年成立城市轨道交通学院,开设轨道交通信号与控制专业,以深入培育轨道交通产业新领域人才。逐步确立了“科学制定培养方案、校内校外实践并重、多学科交融校内外团队指导”的人才培养模式,本文针对城市轨道交通领域的发展需求,从培养方案、实验室建设、实习基地建设等多个方面进行研究,为培养轨道交通信号与控制特色专业应用型人才奠定良好基础。
一、科学设置培养方案
(一)确立培养目标和办学定位
从调研各高校尤其是长三角地区高校本专业办学的经验及其目前就业实际形势,确立了培养目标:为轨道交通建设和发展培养优秀人才,培养掌握自动化专业基础理论,掌握轨道交通系统理论和轨道交通信号工程领域的专业知识、方法和技能,能从事轨道交通信号与控制方面工作的应用型人才。
从苏州大学、上海工程技术大学的毕业生就业情况看,30—50%的学生进入轨道交通产业,其他出国、考研及其从事通信、自动化控制类岗位占多数。将办学定位为“在宽基础之上重视轨道交通信号控制”,即以城市轨道交通工程技术为主线,培养通信工程、控制工程、信息工程、电子信息工程等专业领域工作的复合型人才。
(二)课程体系建设
应用型人才培养的终极目标是培养各种能力,而能力的获得必须有相应完善的课程体系来支撑。课程体系建设是根据专业培养目标与办学特色自主设置,本着为轨道交通行业服务的宗旨,突出轨道交通行业的特色,明确人才培养的目标。从应用型人才培养的办学实践出发,改变学科导向为专业导向,先从培养专业能力入手,分析所需的专业知识从而确定专业课,由专业课导向专业基础课,再根据专业课和专业基础课来确定基础课程的内容[1]。
1.专业课程的确定。轨道类专业课程的设置是在企业和行业专家参与下,根据自动化学科大类与专业内涵对创新型人才培养目标的要求,从加强核心专业基础教育,强调综合性和完整性出发,整合出9门轨道交通信号与控制课程。确定列车运行控制技术、车站信号自动控制、城市轨道交通设备检测、城市轨道交通综合监控4门课程作为专业课程,列车运行监控系统原理及应用作为专业选修课,城市轨道交通概论和城市轨道交通运营管理基础作为专业基础必修课程,城市轨道通信系统和系统可靠性原理作为专业基础选修课。
2.专业支撑课程的设置。配合轨道专业课程,设置了信号与系统、数字信号处理、通信原理、自动控制原理、运动控制系统、电机学、单片机原理及应用和嵌入式系统设计等电子信息、通信、自动化和计算机类基础课程,以扩展学生知识面,更好地适应就业形势。
二、实践平台搭建
培养方案的有效实施以及教学目标的最终实现需要依托实践教学平台的建设,良好的实践教学平台保障了实践教学活动的系统性和完整性。好的实践平台要贴近工程实际和科技前沿。
(一)专业能力进阶的校内实验室建设
依据专业基本能力培养、专业能力提高和职业能力提升的要求,按照专业基础实训、专项技能实训、专业综合实训三个层次[2],搭建轨道交通信号基础设备、城市轨道交通信号控制和微机连锁实验室,为学生提供了校内的城轨课程课内实验及实训场所。信号基础设备实验室包括轨旁信号控制设备及城轨动车转向架模型等基础设备。城市轨道信号控制实验室分为城市轨道综合监控模块、城市轨道通信模块、城轨信号及列车监控沙盘模块等。城市轨道综合监控模块实时地模拟地铁车站控制、运行,包括车控室IBP一体化工作台及车站级ISCS综合监控工作站二部分。
(二)建立校外实习及实践教育基地
工程应用型人才的培养关键是通过实践教学将专业理论知识要素与工程应用能力培养要素进行有机结合,提高学生的动手能力和创新能力。教师应该主动到企业进行广泛调研,了解城市轨道交通的最新发展技术,进一步与苏州地铁公司、上海申通地铁公司等企业建立实习及“工程实践教育基地”。通过校企合作建立稳定的校外联合培养基地,共同制定实习培养方案,学生进入企业实习或毕业设计,参与真正的轨道信号的检测、诊断与维修等具体的工作。由企业高级工程师担任学生在企业实习的指导教师,为学生开设专业课程及现场学习指导等。通过校企合作,提升了学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力,确保学生的培养质量。
(三)高校教授、企业专家技术讲座
学院聘请了西南交通大学、苏州大学、上海工程技术大学、中国南车长江车辆有限公司、四方车辆研究所等轨道交通领域专家教授、企业家担任客座教授,定期为学生开展技术讲座,学生通过现场与专家教授的交流,把握城市轨道交通技术前沿,拓宽其知识视野,激发了学生的创新思维和工程应用能力。
三、多学科交融的团队指导模式
轨道交通信号与控制是一个多学科交叉、行业相关性很强的专业,涉及到自动化、通信、电子信息、计算机等学科,培养工程应用和创新能力强的学生,开展课堂教学、实践指导和城市轨道的实际工程项目研究需要具有学科交融的教学团队的群策群力。
(一)成立教学指导委员会监督教学
由西南交通大学教授、中国南车车辆、学校教学校长等校内外专家组成教学指导委员会委员,对培养方案、实验室建设方案、日常教学等进行指导和监督。
(二)跨学科、校内外指导团队的形成
本专业教师全部来自原通信工程系,具有企业或相关工程实践经验的教师占80%。有较强的理论功底和一定的实践生产能力。但由于信控专业具有起点高、发展快、技术更新快的特点,因此,专业教师都需要到地铁公司参加培训,参与企业正常的生产和运营;需要经常性地去企业现场调研,通过调研展开课题研究;吸纳其他相关专业教师,并聘请企业技术骨干担任校内实训课兼职教师,自有实验教师负责助课,共同构成教学指导团队,指导学生校内实践及毕业设计,实现学生培养过程中的知识交叉和融合[3]。
(三)课堂项目教学激发学生创新潜质
作为实践教育创新的主体,教师需将学科前沿的最新成果和自身科研成果渗透到教学过程中,采用项目教学,即在相关课程授课过程中,结合研究项目进行案例教学,有意识地启发学生思考相关问题[4],例如对于“列车运行控制技术”课程,教师可以采用列车自动驾驶系统ATO的设计和速度控制器的设计、有轨电车车载控制器的设计、轨旁区域控制器ZC的设计等案例,启发学生思考,让学生课后通过查阅文献设计相关系统方案。在专业课教学中,尤其要注重让学生掌握仿真工具及软硬件设计方法。以“单片机原理及应用”课程为例,学生应熟练掌握KeilVision软件模拟仿真和Proteus对电路交互式仿真,课后每位学生要动手焊接并调试出一个具有实际功能的作品。在EDA技术课程后,学生应该能够用VHDL语言设计一些基本的通信信号。
(四)将提升工程应用能力和创新能力贯穿本科教学
进一步综合各学科优势,搭建和完善学生实践创新能力培养的软硬件平台,鼓励更多的学生积极参与到实践创新活动中来。以教师科研项目、各类学科竞赛、各级科技创新项目为实践创新活动板块形成多个学生创新实践团队。鼓励学生申报省大学生实践创新训练计划项目,积极参加全国大学生“飞思卡尔”杯智能车竞赛、全国大学生电子设计竞赛等竞赛。
通过大学生参与教师科研项目、各类学科竞赛、各级创新性实训计划项目、创新基金项目、校企合作、科技创新活动等实践,构建多样化人才培养模式。引导学生参与科研项目和各类竞赛等方式,激励学生自主学习,激发学生创新动力,激活学生创新潜质。
常州大学城市轨道交通学院的成立为常州市围绕轨道交通产业进行人才培养及科技创新增添了新的力量。轨道交通信号与控制专业自2013年招生以来,报考人数位居常州大学前列,学生录取分数高、生源好。2013级学生一年级英语四级考试,通过率93.5%人,六级通过25.8%人,多人获得江苏省数学竞赛二等和三等奖。部分学生已参与到专业教师的科研项目或进入大学生创新实验项目,培养了良好的研究习惯和功底。
参考文献:
[1]魏朱宝,刘红.“错位”与“重构”——应用型人才培养方案设计的思考[J].中国大学教学,2011,(7).
[2]王海燕.“轨道交通信号与控制”专业的人才培养模式探析[J].吉林省经济管理干部学院学报,2014,(4).
关键词: 城市轨道交通 房地产价值 影响
1.城市轨道交通概述
城市轨道交通是一种高效快捷、安全舒适、节能环保的城市公共客运交通方式。它作为快速交通出行方式,极大地改变了现代人的生活,其建设和运营也对城市发展起到了促进作用,带来了巨大的间接经济效益,具有其他常规公共交通无法替代的优点。
城市轨道交通主要指:地铁、轻轨、单轨交通、有轨电车和市郊(郊区)列车(通勤列车)等。城市轨道交通一方面能够促进城市土地的集约化开发利用,节约城市土地,促进周边房地产价值的增值,引导和改善城市空间结构,另一方面能够极大地缓解城市交通压力,节约市民出行时间,促进城市社会、经济和环境的协调发展。总之,城市轨道交通具有建设一次投资较大、运营成本高、回收期长的特点。
2.影响房地产价值的因素
在研究城市轨道交通对房地产价值的影响时,我们主要考虑经济因素、区位因素、环境因素和结构因素。
2.1经济因素
首先,国民经济增长速度、国民生产总值、居民收入水平、物价指数等经济因素都会对地价产生影响。在国民经济增长快、国民生产总值大、居民收入水平高、资金充裕的地区,国民生产总值中用于投资、消费的部分加大,用于生产性、投资性或消费性等方面的房地产支出增加,从而促进房地产业的繁荣,带动房地产价格上涨。再有,居民收入和消费水平及利率也影响房价。当居民实际收入(即扣除通货膨胀率后的收入)增加后,对其居住与活动的空间的要求也会提高,导致房地产价格上涨。另外,利率水平的高低影响社会投资收益水平的高低。
2.2区位因素
区位,不仅指房地产在城市区域(空间)中坐落的地理位置,而且包括该位置出行的便捷程度(即通达性)及房地产在该位置获得的非经济方面的满足程度。具体说来,就是指房地产坐落的地理位置和以此为基点进行工作、购物、娱乐、上学、就医等出行活动所需的交通成本(包括直接成本和间接成本),以及该位置的自然环境、社会人文环境等对居住者、办公者、生产者身体和心理等方面的影响。
2.3环境因素
影响房地产价格的环境因素,是指那些对房地产价格有影响的房地产周围的物理性因素,主要包括声觉环境、大气环境、水文环境、视觉环境、卫生环境等。若一个地区绿地较多、公园充足、环境优美,则该地区房地产价格水平高;相反,则房地产价格水平低。
2.4结构因素
结构因素指房屋本身的要素,主要包括外观、室内布局、房厅分配情况、工程质量、水电设施、通风、采光、朝向等。这些要素的重要性,因购房者年龄、教育程度、购买动机、经济条件等因素不同而不同。例如,年轻人比较注重外观和室内布局,这与年轻人重视享受的观念是相吻合的。
3.城市轨道交通对房地产价值的影响机理
3.1节省出行时间和交通成本
城市是由人口、产业、土地使用、交通等子系统交互作用而形成的一个动态系统。胡佛(Hoover)认为,城市形成的必要条件有三个:土地的异质性、聚集经济性和交通成本的存在。由于运输成本的存在,人们从事生产、商业和居住活动,必然选择交通方便的地区,以求原料、产品运输和雏形交通的成本最小。假如运输成本不存在,交通阻力为零,就没有必要选择地点和区位。
传统的出行方式主要是步行或乘坐公共汽车,出行速度较慢导致出行时间延长,出行的交通成本增加;城市轨道交通是因其快速、准时、舒适、安全等特性,大大缩短了从住宅到办公、生产场所的出行时间,拉近了住宅和城市中心的距离,提高了居民的出行速度,节省了居民出行的交通成本,从而引起了房地产的增值。
3.2改变土地利用性质
城市轨道交通的建设,将为人们提供快速出入市中心的交通手段,从而使居住区、商业区、工业区在地域上分开,使居住地疏散出市中心。这样,住宅和商业等设施更容易向轨道交通沿线影响区域范围内高度集聚,从而导致城市轨道交通沿线住宅和商业等设施的用地需求量增加。因此,城市轨道交通沿线区域土地的使用类型,也将按照市场规律发生改变,不仅可以强化市中心的金融、贸易、服务业等功能,而且将为城市新城的形成提供强有力的交通支持。
3.3提高土地开发强度
城市交通设施与城市土地利用形态有非常密切的关系。城市主要交通方式的运量越大,所形成的城市内聚力就越强,城市常常呈紧凑的形态。城市轨道交通可以促进沿线土地的高密度开发。随着用地距离地铁车站增加,用地开发强度需要呈梯度递减,在站点200米核心服务半径以内为高强度开发的居住及商业或办公用地,200~500米直接服务半径内用地为中高强度的开发,服务半径以外为低强度、低密度城市开发及公共绿地和公园。
3.4促进地区经济快速发展
城市轨道交通的活力和地区经济活力是相辅相成的,一方面轨道交通的建设能带来地区经济活力的增强,另一方面地区经济活力增强了,能增加轨道交通客流。城市轨道交通的修建与改善,加速了中心区的改建与重建,使商业区恢复生机与活力。交通沿线地区的居住、经商、公环境,因交通设施的修建获得改造的契机和动力。各个城市发展轨道交通时,无不希望它能带动城市的土地开发,加速城市发展。
4.结语
城市轨道交通是公益性、经济外部性很强的大型公共基础设施,高度的能达性及节省周边居民的出行成本和时间刺激周边土地的开发和利用,给沿线土地带来显著的增值效益,能繁荣轨道交通沿线的经济。因此,城市轨道交通能给周边房地产带来明显的增值效益。
参考文献:
[1]胡国桥.轨道交通对房地产价值的影响研究.硕士论文,重庆大学.
[2]何芳,王晓丽.轨道交通对房地产价值的影响.房地产市场,2004:119-121.
[3]郑捷奋,刘洪玉.城市轨道交通对房地产影响研究综述.铁道运输与经济,2003(10):15-16.
关键词 城市轨道交通,线网规划,指标体系,决策方法
1 引言
轨道线网规划的评价是对轨道线网规划方案的网络特性、技术指标以及经济、社会、环境等方面做出相对满意度的判断,是方案优选与决策的基础。目前对轨道线网评价较多采用线路总发送量、日均客流量、客流强度等评价指标。由于这些指标仅针对线网本身,而不是立足于城市整个公共交通系统乃至城市综合客运系统,就可能造成线网局部效应分析最优,而从整体角度分析未必最优的结果。
轨道交通线网评价有如下特点:第一、轨道线网规划投资大,时间跨度长,通常远景目标年超过城市总体规划年限,属于不完全确定的状态;第二、轨道线网的评价指标,有些可以定量,有些是无法量化的,如促进城市土地的合理开发,提高劳动生产率等;第三、不同的评价主体所需达到的目标是多样的,有的目标是相互冲突的,如使用者希望出行费用低廉,而运营者重视经营收益性,希望票价高一些。
因此,对于轨道线网规划这样一种半结构化、非完全定量、多目标的复杂系统,不可能采用简单的项目评价法。本文提出一种轨道线网方案评价的组合综合评价方法及其评价指标体系。
2 轨道交通评价准则与目标
轨道交通系统的品质标准与目标,是改善居民出行可达性,推进城市结构的合理调整,扩展城市的发展空间,改善生活环境与生态环境。这些目标包括功能目标、经济目标、社会目标和环境目标。
1) 功能目标
主要涉及轨道线网交通质量,包括与城市规划的匹配程度、可达性、安全性、服务性以及满通需求的能力;
2) 经济目标
轨道线网的建设、运营、管理费用与运营收入的状况;
3) 社会目标
轨道线网对整个交通系统运营状况的改善以
及促进社会经济发展的程度等;
4) 环境目标
轨道线网对环境方面消极影响及对人类有用资源的耗费程度。
3 轨道线网评价指标体系
轨道线网的评价指标应能独立反映线网规划的某一具体方面的特征,并与轨道线网规划方案选优的目标相联系; 评价指标的数量应越少越好,且每一评价指标应具有可量测性,或者可以通过定量法获得,或者可以用定性分级比较的方法获得。评价指标应合理公正,不能以主观判断一种方案形式有利而另一种方案形式不利。本文在进行轨道线网评价时分两层次5 个方面建立指标体系。第一层次通过结构特征评价产生候选方案;第二层次是对候选方案进行交通功能、运营效益、社会效益及持续发展四方面应用组合的综合评价决策。
3. 1 候选方案产生
采用线网长度、中心区线网密度、非直线系数、换乘节点数、覆盖面积率以及与大型客流集散点衔接数量等指标,对轨道线网预选方案进行结构特征评价并产生候选方案。
(1) 轨道线网长度:规划区轨道线网各条线路长度之和。该项指标在功能相同条件下越短越好。
(2) 中心区线网密度:线网中心区轨道交通线网长度与中心区面积之比,反映轨道交通线网在中心区的服务水平。
(3) 非直线系数:轨道交通线路实际长度与轨道交通线路起终点空间直线长度之比,反映快速轨道交通线网各线的顺直程度。环线的此系数按主要集散点之间的实地距离与空间直线距离之比。
(4) 换乘节点数:轨道交通线网线路相交点的数量,反映快速轨道交通静态线网提供换乘的灵活程度。
(5) 覆盖面积率:在中心区按轨道交通沿线每侧750 m 范围的用地面积,在郊区按轨道交通沿线每侧1 000 m 范围的用地面积,两者之和为轨道线网覆盖面积。其与轨道线网规划区面积之比为轨道线网覆盖面积率。
(6) 与大型客流集散点衔接数量:轨道交通线网线路与大型客流集散点衔接的数量,反映轨道交通线网对大型客流集散点的覆盖性。
3. 2 候选方案评价的指标体系
(1) 交通功能评价
采用日均客运总量、换乘率、线网负荷强度以及轨道交通客运量占公交总客运量的比例等指标, 对轨道交通线网的交通功能进行评价。
① 日均客运总量:规划年度轨道交通线网各线客运量之和,以交通需求量分析结果为依据。
② 换乘率:轨道线网的换乘客运量与轨道线网总客运量之比,反映轨道交通线网对乘客出行直达的满足程度。
③ 线网负荷强度:轨道线网日均客流量与轨道线网总长度的比值,反映轨道交通线网单位长度承担的客流量,用以评价轨道线网的运营效率和经济性。
④ 轨道交通方式占公交方式的比例:轨道交通方式日均总客运量与公交方式总客运量的比值,用以评价轨道交通方式在公交方式中的地位。
(2) 运营效益评价
运营效益评价系统主要从建设费用、运营费用、运营收入等角度对轨道交通的财务收支情况进行评价。
① 建设费用:各种轨道方式每公里平均造价与该方式里程之积的总和。从中可了解工程难易程度并判断投资的可能性。
② 运营费用:客流周转量与每公里人均运营成本之积,反映线网客流度及建设管理水平。
③ 运营收入:为日均客流量与票价之积,反映经营者的经济利益。
(3) 社会效益评价
社会效益评价主要针对轨道交通方式引起整个公交方式服务水平的提高以及缓解城市道路拥挤程度的情况进行分析,如公交方式的出行比例、公交方式的平均出行时间、平均机动车速、居民平均出行时间、路网负荷均匀性等。
① 公交方式的出行比例:公交出行占全方式的比例,用以评价轨道交通线网对城市交通结构的改变。
② 公交方式的平均出行时间:城市居民以公交方式出行的平均出行时间,用以评价轨道交通线网对居民出行时间的改善程度。
③ 平均机动车速:城市中心区高峰数段道路机动车速的平均值,用以评价轨道交通对城市道路机动车速的影响。
④ 居民出行时间[2 ]: 路网出行总时间tT =
nn
∑∑Nijtij + thc,其中Nij 、tij 分别为( i , j) 点对之
i =1 j=1
间的客流量及出行时间; thc 为路网折算换乘总时间; tT 为路网中一天全部出行时间总和,包括折算换乘时间及路段出行时间。
⑤ 路网负荷均匀性[2 ]:路网负荷均匀性,ψ = 11 ∑(ηi-ηT) 2 ]1/ 2 , 反映路段负荷ηi ( qi/ ci)ηT[
m i =1
m偏离平均负荷率ηT 的程度。其中qi 、ci 分别为第i 条种路段的客流量及客流容量;ηT= 1 ∑ηi, 为
m i =1
m所有路段负荷率的平均值; m 为轨道交通路段总数。ψ值越小,路网负荷均匀性越好,行车组织越经济,运营成本越低,路网能发挥的总体运能就越大。
(4) 持续发展评价
采用与土地利用吻合程度、沿线土地开发价值、线网发展适应性等指标对轨道线网持续发展特性作出评价。
① 与土地利用吻合程度:轨道交通线网与城市总体规划拟定的土地利用吻合程度,可用轨道交通吸引范围内的人口岗位数与同期全部的人口岗位的比例表示,以评价轨道交通线网与城市总体规划的一致性。
② 沿线土地开发价值:轨道交通沿线土地利用开发价值,以评价轨道交通线网对土地潜在开发能力的影响。
③ 线网发展适应性: 轨道交通线网的可调节性,以评价轨道交通线网适应城市发展变化的能力。
4 组合的综合评价法
对于多目标、多因素、多层次的复杂系统,其评价方法有层次分析法、层次熵分析法以及模糊聚类分析法。但如何建立一套切实可行,又能全面准确衡量轨道交通线网方案优劣的评价方法是一个值得研究的问题。
4. 1 已有评价方法分析
(1) 层次分析法(AHP)
层次分析法是一种决策思维方法,它将复杂的问题分解为各个组成因素,将这些因素按支配关系分组形成有序的递阶层次结构,通过两两比较的方式确定层次中诸因素(指标) 的相对重要性,综合人的判断以决定诸因素相对重要性的顺序。
AHP 方法的根据是评价指标对象的层次性, 得出的结果是各决策方案相对于总目标的优先顺序,适用于方案各层次指标的排序及权重分析。
(2) 灰色关联系数法
它是通过确定各方案指标与相对方案指标的类似程度,进而确定各方案的优劣。具体步骤为:
① 选择各方案同类指标中的最佳值,形成参考
数列: { X0} = { X0 (1) , X0 (2), ?, X0 (N)} (1)
② 求关联系数:
min min |X0 (k) -Xi(k)|+ρmax max |X0 (k) -Xi(k) |
ik
ξi(k)= i k
|X0 (k) -Xi(k) |+ρmax max |X0 (k) -Xi(k) |
ik
(2)
③ 求关联度Ri :
1Ri= n ∑ξi(k) (3)
nk=1
Ri 反映了方案与参考方案的关联程度。Ri 越大,方案越优。
灰色关联系数法在数据处理过程中没有掺入人的主观判断,而是对确定的定量指标进行比较与计算,保证了结论的真实性。因此,该方法适用于轨道线网规划评价过程中对确定的定量指标的评价,
也适用于轨道线网初始方案比较后产生候选方案的评价。
(3) 模糊评价法
模糊综合评价法是将不确定的信息用定量的方法加以处理,变定性决策为定量决策,增加判断的直观性、准确性。
4. 2 一种组合评价方法
候选方案综合效益评价是对候选方案进行一次全面、详细的分析和考核,以谋求轨道线网系统整体功能的“最优”,而不仅仅是某一项或几项指标的“最大值”,并在系统整体优化过程中,不断向决策者提供各种关系信息。本文提出一种组合方法是将已有的系统决策方法运用其各自的优点进行有机结合的轨道交通线网的综合评价与决策方法。即:以多级模糊综合评价为框架,按评价指标类别, 利用层次分析法建立评价的多级权重;利用灰色关联系数法求运营效益指标的评价矩阵,采用模糊评价模型建立交通功能指标或运营效益指标的评价矩阵;利用专家系统或打分法建立持续发展指标的评价矩阵,采用多级模糊综合评判的步骤、算子及评判准则,分别计算轨道线网各预选方案的广义效用函数值,以效用值的大小对各方案进行排序和优选,为决策者提供决策的依据,实现轨道线网方案的评价决策。图1 为该方法的框架图。
广义效用函数计算方法是首先计算各子系统“效用值”:
n
ui = ∑wij ·fij (7)
j=1
式中:fij — 表示第i 个子系统第j 个指标的效用值; wij 对应fij 的权重; n 表示第i 个子系统的指标总数。然后计算整个系统的“效用值”:
m
U= ∑Wi ·ui (8)
i =1
式中: Wi 第i 个子系统的权重;
ui — 第i 个子系统的效用值;
m 表示子系统的总数。
图1 轨道线网方案组合评价方法的流程
参 考 文 献
1 顾保南,方青青. 城市轨道交通路网规划的评价指标体系研究. 城市轨道交通研究,Vol. 3. No1. 2000 ,3(1) :24~27.
2 吕慎. 城市快速轨道线网布局规划研究: [ 学位论文] . 南京:东南大学,2000.