首页 优秀范文 虚拟仪器技术论文

虚拟仪器技术论文赏析八篇

发布时间:2023-03-21 17:08:48

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的虚拟仪器技术论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

虚拟仪器技术论文

第1篇

【关键词】Labview软件;MATLAB软件;Visual Basic软件;JAVA软件;优缺点

1.引言

传统示波器是电子工业、科学研究和教学实验领域中一种必备的仪器,并且都在这些领域中占有重要的地位。在高速发展的现代科技技术下,对传统测控仪器提出了新的技术要求,主要包括智能化、自动化、多样化等等[1]。传统仪器跟其他传统测控仪器一样,越来越不能满足这些新技术的要求,与此同时,新仪器的开发对开发商与用户都带来了更大的挑战。基于上述原因,新型的测控仪器设备的出现是当务之急,虚拟仪器这个概念变得不再陌生。

虚拟仪器的开发基于强大的计算机软件和硬件,把传感器技术,自动化控制技术等有效的融合在一起[2]。软件设计平台的灵活性,依据用户不同的特殊需求创建出人机友好操作界面,实现并取代各类特殊、昂贵的测试仪器的功能。

实现用户友好操作界面的软件操作平台有很多,例如,Labview软件,MATLAB软件,Visual Basic软件,JAVA软件等,本文将对实现虚拟示波器用户操作界面的开发性软件进行比较。

2.虚拟仪器的发展

2.1 国外发展状况

近年来,世界各国的虚拟仪器公司开发了不少的虚拟仪器开发软件,方便了开发商利用这些开发软件组建自己的虚拟仪器或测试系统,并编制测试软件,最具影响力的是NI公司的Labview和Labwindows/CVi开发软件,美国HP公司的HP-VEE和HPTIG平台软件,美国Tektronix公司的Ez-Test和Tek-TNS软件以及HEM Data公司的Snap-Master平台软件等都是国际上公认的优秀虚拟仪器开发平台[3]。从1988年陆续有虚拟仪器产品面市,当时有五家制造商推出30种产品。此后,虚拟仪器产品每年成倍增加,到1994年底,虚拟仪器制造厂已达95家共生产1000多种虚拟仪器产品,销售额达2.93亿美元,占整个仪器销售额73亿的40%。美国是虚拟仪器的诞生地,也是全球最大的虚拟仪器制造国,生产虚拟仪器的主要厂家有HP公司目前生产100多种型号的虚拟仪器,Tektroflix公司目前生产约80多种型号的虚拟仪器。

2.2 国内发展状况

国内虚拟仪器的开发和研究起步相对比较晚,清华大学,重庆大学,西安交大以及东方震动和噪声技术研究等高校和公司对虚拟仪器的产品和设计平台以及NI产品做了大量的研究工作,所研究和开发的结果在某些方面都得到了很好的应用,比较突出的是重庆大学测试中心所研究的虚拟仪器,目前,部分院校的实验室也引入了虚拟仪器系统,包括上海复旦大学,上海交通大学,华中科技大学等[4]。于此,又开发了一批新的虚拟仪器系统用于教学和科研,其中华中科技大学机械学院所开发出的Inventor可重构虚拟实验台、深圳蓝津信息技术有限公司开发出的DRVI快速可重组虚拟仪器平台等影响力比较大,中国农业大学的研究人员利用虚拟仪器开发平台开发了用于精密播种机性能检测的实验室自动化系统。山东大学医学院基于虚拟仪器技术研究了胸双极立体心电图及其三维可视。

2.3 未来的发展趋势

虚拟仪器正在持续且迅速地发展,它即将取代测量技术在传统领域的各类仪器,使仪器的功能和技术性能方面具有了灵活性和经济性,因而更适应当代科学技术迅速发展和科学研究所提出的更高更新的测量需求[5]。并且随着计算机技术、仪器技术和网络通信技术的不断完善,虚拟仪器技术也会在向网络化方向发展,即基于网络的虚拟仪器。网络技术和虚拟仪器技术相结合,产生了基于网络的虚拟仪器,使用的网络化虚拟仪器,可以在任何地点,任何时间获取测试的数据,因此图像化编辑平台的发展将带动和完善虚拟仪器的发展。国内专家预测未来的几年内我国将有50%的仪器为虚拟仪器,国内将有大批企业使用虚拟仪器系统对生产设备的运行状况进行实时监测。

3.几种虚拟示波器常用开发环境的特点

3.1 基于Labview的虚拟示波器

Labview是一种基于图形编程语言的可视化优秀开发平台,它与传统编程语言最大的区别是使用图形语言,以框图的形式编写程序[6]。它与VisualC++、visual basic、LabWindows/CVI等编程语言不同,是使用图形化程序设计语言G,而不是基于文本语言的程序代码,用方框图代替了传统的程序代码,一个Labview程序主要包括前面板、框图程序、图标/接线端口3部分[7]。为用户提供一个便捷、轻松的设计环境,利用它设计者可以像搭积木一样,轻松组建一个测量系统或数据采集系统,并可以任意构建仪器面板,而无须进行任何繁琐的计算机程序代码的编程,从而可以大大简化程序的设计。

在设计虚拟示波器时,程序包括数据采集,波形显示,信号处理,波形存储和回放几个模块。因而硬件部分的主要功能就是采集外部的信号,可以是PCI、USB、DAQ等数据采集装置,然后是信号调理,目的就是完成信号缓冲、放大、滤波等功能[8],Labview开发平台自带的函数具有强大的信号处理功能,充分发挥Labview的优势所在。在它的前面板上可以非常直观地显示出旋钮,开关,波形等示波器应有的界面设置,参数设置,可以根据开发者的想法自行定义,具有很强的灵活性[9],真正的操控系统的是后面板,建立功能模块,元器件的连接,按键功能的实现等等,模块化的实现使虚拟示波器的功能更加完善。

3.2 基于MATLAB的虚拟示波器

MATLAB是Matrix和Labortaty前三个字母的缩写,意思是“距阵实验室”[10]。是一套功能十分强大的计算机辅助和设计教学软件,MATLAB具有以下的主要功能:数值计算功能,符号计算功能,图形处理功能及可视化功能,可视化建模及动态仿真功能。

基于MATLAB平台设计的虚拟示波器可以充分发挥它的数据分析功能,不仅方便了实验研究,也可以为控制系统的设计与优化提供了有效的途径[11]。基于MATLAB的虚拟示波器硬件系统主要是完成数据采集系统的设计,主要有MCU、数字I/O、A/D、数据通信接口,以及电源部分组成。而对计算机串口以及数据输入的控制,由MATLAB软件的仪器控制工具箱中的函数来完成。通过调用MATLAB的数据采集,画图程序来完善虚拟示波器的功能。MATLAB是很好的数据分析处理软件,而将其与Labview相结合编程可以极大的提高系统的数据采集、分析、故障诊断的能力,具有很强的技术提升空间。

3.3 基于Visual Basic的虚拟示波器

Visual Basic简称VB,是Microsoft公司推出的一种Windows应用程序开发工具。在界面设计、文件处理、多媒体应用、数据访问等方面提供了有力的帮助,具有易懂、易学的优点。对于虚拟示波器开发而言,VB在数据处理和图形显示方面不如Labview。在使用VB开发工业测量与控制系统应用软件时,需要对待测量信号进行实时采集、显示、以及实时处理等VB并不擅长。对此类应用程序的开发,最为理想的解决方案是将VB的图形用户界面开发及其他方面的优势和LabVIEW在数据采集、显示与处理方面的优势结合起来[12],互相取长补短,从而开发出功能更加强大的测控软件系统。

MATLAB与VB的结合主要有两种方式。其一是在VB中引入MATRIXVB,使得VB可以调用MATLAB函数。其二是将在MATLAB中编写的文件编译成VB可以调用的DLL文件。通过混合编程,利用VB和MATRIXVB,快速、简洁地生成虚拟仪器[13]。

3.4 基于JAVA的虚拟示波器

JAVA是由Sun Microsystems公司推出的JAVA程序设计语言和平台的总称。面向对象的一次编译随处运行的高级语言,提供了强大的网络支持,用Java实现的HotJava浏览器跨平台、动感的Web、Internet计算的功能。推动了Web的迅速发展,常用的浏览器均支持Java applet[14]。基于JAVA开发网络化的虚拟测控系统具有强大的网络和跨平台的优势。

基于JAVA的网络化虚拟示波器,利用socket和多线程技术实现,使用双缓存技术解决了波形显示时的闪烁问题,由系统启动用户界面线程,同时启动不断侦听对客户连接请求的线程。如果侦听到客户的连接请求,就开辟一个新的线程来处理其连接请求。与此同时还要查询数据是否已经传送完毕,一旦完成便要通知用户界面线程更新界面。

除了上述的几种开发平台外,还有C++ Bulider,Visual ,VC等都可以是结合多种软件的虚拟仪器开发平台,另外国内也有一些虚拟仪器开发系统,如吉林大学自主研发的图形化虚拟仪器开发平台LabScene,重庆大学研制的虚拟仪器开发系统VMIDS等等[15]。并在相应领域取得了一定的成果。

4.结束语

在各领域的应用中,虚拟仪器正在取代着传统仪器,它的优势也是显而易见的,它的出现是仪器界的一次革命,具体表现为:智能化程度高,处理能力强;复用性强,系统费用低;可操作性强等等。对于虚拟仪器的设计而言,软件设计是核心,对于每一种虚拟仪器的开发平台都有它自己的特色与缺陷,MATLAB是一款数字处理与图形化处理的强大软件,在设计虚拟示波器时可以发挥它强大的数据处理功能,对于Visual Basic而言,它的缺陷是存在的,但它是一款作为结合型开发软件的好处;利用JAVA的开发的虚拟仪器是现在乃至未来的重要开发平台,它是仪器朝着网络化的发展,就目前而言,Labview是虚拟示波器开发软件的首选,它的图型化编程语言使用户和开发者都能比较容易理解。在实际应用中,我们不仅仅局限于单种软件开发工具,可以将它们结合起来使用,取长补短,各抒其长,会使所开发的虚拟仪器得到更全面的设计。再者在实施方案前,对开发平台进行分析探讨、比较,最终选择适合的虚拟平台,对之后的工作会带来更多的便利。

参考文献

[1]王波.虚拟示波器系统设计与实现[D].苏州大学硕士学位论文,2006.

[2]王维喜.基于声卡的多功能虚拟示波器和虚拟函数发生器设计[D].青岛大学学位论文,2009.

[3]李艳.基于Labview虚拟仪器的设计和应用[D].南京理工大学学位论文,2006.

[4]丁鹏.基于USB数据采集的虚拟仪器的研究和设计[D].西安电子科技大学学位论文,2010.

[5]王美刚.基于声卡的虚拟仪器[D].太原理工大学硕士学位论文,2006.

[6]姜碧琼.基于Labview的虚拟示波器的设计[D].西北农林科技大学学位论文,2008.

[7]朱红林,刘武.基于Labview的虚拟示波器的设计[J].电子工程师.2006.32(11):17-19.

[8]曾秀云.基于虚拟仪器的信号采集与控制系统开发[D].电子科技大学.2010.

[9]朱治国,郑建荣,刘小平等.虚拟仪器及常用开发软件[J].现代仪器,2004,1:28-31.

[10]薛德庆,姚世锋,刘锐,蔡继军.MATLAB在虚拟仪器中的编程应用研究[J].传感器与仪器仪表,2006,22(5-1):157-159.

[11]罗彬,曾岳南,张雪群.基于MATLAB的虚拟示波器设计[J].仪器仪表用户,2006.13(4):107-110.

[12]宋波,陈一民.关于虚拟仪器开发工具的比较与选取[J].国外电子测量技术,2006,25(8):1-5.

[13]戴永彬,关维国.VB和MATRIXVB在虚拟示波器中的应用[J].仪表技术,2004(6):21-22.

第2篇

【关键词】虚拟仪器 实验教学 创新能力

计算机技术与仪器的结合是当今仪器发展的一个重要方向,这种结合有两种方式,一种方式是将计算机装入仪器中,这就是所谓的智能化仪器,随着计算机功能的日益强大和体积的日趋缩小,这类仪器的功能越来越强大,有着广泛的应用前景。另一种方式是将仪器装入计算机中,充分利用计算机的软硬件资源和操作系统实现各种仪器功能,这就是所谓的虚拟仪器。

一、虚拟仪器技术在实验教学中的应用优势

虚拟实验室具有易于构建,易于实现试验硬件及测试数据共享,便于异地在线检测和远程测控等特点,这些特点使得虚拟仪器在学校实验室中可以发挥重要作用。运用虚拟仪器技术,可以应用现有设备搭建功能强大的实验系统,从而节省大量的购置设备费用,可以提高仪器界面的人机交互能力和可视化程度,给实验者提供更好用的仪器。与传统实验室相比,虚拟实验室具有独特的优点:1.能充分利用计算机现有资源;2.容易实现技术更新;3.自动化、智能化程度高;4.功能齐全、灵活、方便。这些优点在实践教学中产生了不可忽视的作用,能够弥补传统实验室的不足。虚拟仪器最简单的应用就是代替常规的仪器,如函数发生器、示波器等,对实现信号产生及波形记录,可以取得较好的效果。用计算机虚拟出的函数发生器,其波形、频率、幅值等都可用键盘或鼠标进行设置,完全能代替常规的仪器使用。学生可以利用这种虚拟仪器及时进行数据处理,观察和分析实验结果。虚拟仪器的设计和使用,大大提高了学生的实验兴趣、实验效果和效率,巩固了他们对该课程和理论知识的掌握。

二、改变实验教学模式,培养创新人才

有关“测试自动化”方面的传统实验大多数以验证性为主,实验内容单一,学生无需思考,按部就班地按照实验步骤就可以做完实验,缺乏设计性和创新能力的培养。引入虚拟仪器系统,就可灵活地增加各种设计性实验内容, 使学生根据实验要求,自行设计各种软面板,定义仪器的功能,以各种形式表达输出检测结果,实时进行分析。因此,虚拟仪器设计不仅能锻炼学生的独立构思和设计能力,而且能激发学习的兴趣。

三、提高实验室水平,满足实验教学的新要求

虚拟仪器技术包括:信号调理技术、数据采集技术、数据处理技术、数据输出和传输技术等,也就是说,虚拟仪器技术使过去互不相干、独立分散的许多技术领域,相互影响,相互融合,并形成新的技术方法和规范。这就要求从事实验教学的教师具有综合实验能力和雄厚的理论基础,能够紧跟现代科学技术的发展步伐,能够不断更新和调整实验方法和手段,使实验室的实验教学设备保持其先进性。虚拟仪器的引入对人力资源的建设提出了更高的要求,而唯有人力资源得到有效的开发,才能使虚拟仪器发挥出应有的作用。

四、可以显著降低试验成本和提高实验效率

传统台式仪器价格相对较贵,若购进一套新型的完整的测试设备少则几万元,多则几十万元,另外,还具有占用空间大、更换不方便的缺点。而虚拟仪器很大程度节约了经费,提高了试验效率。虚拟仪器已在学生的毕业论文实验中开始推广使用,这种训练不仅加强了学生对虚拟仪器的工作原理、使用方法及功能的认识,而且开阔了学生的思路和眼界,提高了处理问题和解决问题的能力。因此,开发和利用虚拟仪器系统是改革实验教学的一个新的发展方向,必将在我校实验领域开辟新的天地。

建设现代化的教学、科研实验室是一项具有挑战性的工作。虚拟仪器的产生和发展推动了试验方式的改革,将虚拟仪器引入实验室教学,不仅可更新实验设备,降低实验仪器费用,还可减少实验测量中的人为误差,提高实际测量的准确度,实验效率较高。此外,在激发学生自主学习的积极性,增加单位时间的实验内容,促进学生动手能力的提高和创新意识的培养等方面也收到了良好的效果。

五、结束语

虚拟仪器克服了传统仪器自成系统,功能单一,体积庞大,仪器繁多,操作次数过多出现滑丝、指示不准等机械故障所导致的测量误差。不仅虚拟仪器工作平台的PC机可以一机多用,就是实验室也可以一室多用,节省了大量的设备购置费,可缓解实验室空间不足,又使现有的计算机资源得到充分利用。

将虚拟仪器技术引入实验教学,不仅可更新实验设备,降低实验仪器费用,还可减少实验测量中的人为误差,提高实际测量的准确度,实验效率较高。此外,在激发学生自主学习的积极性,增加单位时间的实验内容,促进学生动手能力和创新意识等方面也收到了良好的效果。参考文献:

[1]赵茜,夏庆观.多功能虚拟测试仪的设计[J].电测与仪表.2005.

[2]邓焱,王磊.LabVIEW7.1测试技术与仪器应用[M].北京:机械工业出版社.2004.

第3篇

关键词:虚拟仿真实验 大学物理 实验教学

中图分类号:G64 文献标识码:A 文章编号:1673-9795(2013)08(a)-0068-02

1 简介

《大学物理实验》课程是高等理工科院校对大学生进行科学实验基本训练的必修通识课程,是学生进行物理课程学习以及专业课程学习的基础。它具有多样化的实验方法和手段以及综合性很强的基本实验技能训练,对于培养学生严谨的科学思维、创新能力和理论联系实际能力,引导学生确立正确的科学思想和科学方法,提高学生科学素质以适应科技发展与社会进步等方面有着十分重要的意义。

高校扩招及社会对高校实验教学提出更高要求,使得各高校实验教学方面的缺陷凸显,学校面临实验设备的质量和数量不足,无法为广泛的实验教学提供有效的支持,学生实验能力培养欠缺等严峻形势。2001年,教育部提出了积极开展网络实验室建设的建议,鼓励各大高等院校搭建网络实验室,实现资源的共享与互补。

基于虚拟仪器的仿真实验系统及网络实验室是利用虚拟仪器技术和互联网技术的实验平台,整个实验系统由客户端、实验管理服务器、互联网、实验单元和实验仪器单等部分组成,具有良好的资源共享性、互动操作性、扩展性和安全性,允许多用户、多实验同时进行,可以让学生在任何时候、从任何地点访问实验室,从而大大提高实验教学的伸缩性和适应性。

虚拟仿真实验系统在实验方式上可以弥补普通教学中的实验教学环节不足或辅助实验教学;在教学模式上可综合利用计算机技术,完成传统教学中无法实现的实验条件和实验内容,突破传统的实验教学模式,提高实验教学质量,因而在各高校的实验教学中得到了长足的发展,在《大学物理实验》课程教学中也得到了广泛的应用。

在对大学物理虚拟仿真实验的使用过程中,我们发现了一些虚拟仿真实验值得改进和加强的地方,在此提出,以供商榷,期望虚拟仿真实验能日臻完美,更贴近《大学物理实验》课程教学的要求,在课程教学及创新人才培养方面发挥更大作用。

2 大学物理实验教学对虚拟仿真实验的更多期待

2.1 虚拟仪器更趋真实

虚拟仿真实验及网络实验室的基础是虚拟仪器。虚拟仪器是在美国国家仪器公司1986年提出的“软件就是仪器”这一口号的基础上发展起来的,其概念是用户在通用计算机平台及必要的数据采集硬件的支持下,根据测试任务的需要,通过软件设计来实现和扩展传统仪器的功能。与厂家设计并定义好功能的、有固定的输入输出接口和操作面板的、只能实现一类特定测量功能的传统仪器不同,虚拟仪器的用户可以根据自己的需求设计仪器系统,并可通过修改软件来改变或增减仪器的功能,真正体现“软件就是仪器”这一概念。

虚拟仪器应用于物理实验教学将有助于改革传统的实验教学,充分利用网络资源开展网上实验,并可开出符合课程内容的许多新实验,改变实验技术跟不上新技术的局面,使学生的创新能力及掌握新技术、新知识的能力得以提高。但目前虚拟实验仪器模型的种类比较缺乏,无论就外观还是功能而言,其真实性与实验室的具体实验器材相比都还存在欠缺之处,这会导致学习者在现实环境下进行实验操作时产生疑问,无所适从,不利于知识的迁移。比如光学中的迈克耳逊干涉仪实验,不同厂家生产的仪器在外观、调节部件及功能等方面有较大的差别,如果学生在虚拟实验中接触的仪器与实际操作所使用的仪器相去甚远的话,学生的困惑是可想而知的。因此,完善虚拟元件模型,丰富虚拟器材品种,增强虚拟仪器的仿真效果,是一般认知过程的需要,它既可加深学生对仪器本身设计原理的理解,也有助于学生发现实验设备设计的优势和缺陷,激励学生探索性思维。

2.2 包含更丰富的实验原理

《大学物理实验》课程教学的主要任务是培养与提高学生科学实验基本素质,确立正确的科学思想和科学方法;培养与提高学生创新思维、创新意识、创新能力;培养与提高学生的科学素养。课程教学的基本要求是学生具有理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神,遵守纪律,团结协作和爱护公共财产的优良品德。要完成上述教学的主要任务和基本要求,教学过程的一个基本出发点就是学生要对实验原理有一个比较正确、全面和清晰的认识理解。

目前,主流的仿真虚拟软件在知识导航的设计上基本上延续了传统多媒体课件的导航模式,通过使用图片、动画、语音等多媒体元素,以线性结构展示整个实验的过程。这种模式不仅使学生比较难于在短时间内掌握实验的整体框架和关键操作要领,而且忽略了实验原理对实验的主导及指导作用,不利于学生对实验原理的认知和理解。虚拟仿真实验如果能充分利用易于被学生接受的视觉及听觉技术来展示实验原理,并在整个实验过程中贯穿实验原理这一条主线,让学生认识到全部的实验都是基于实验原理进行的,都是在实验原理的框架下完成的,学生对实验原理的认识和理解无疑会更上一层楼,对科学思想和科学方法方面的领悟会更深入,对理论联系实际能力的培养也会更有效。

2.3 能够再现复杂具体的实验环境

实验是人类认识万千世界的重要方法。实验研究和理论研究作为两种相辅相成的科学研究方法,是推动社会进步和科技发展的重要力量。实验教学以其直观性、实践性、创造性等优点,在培养学生学习基础知识、提高动手能力、掌握科学研究方法等方面发挥着重要作用。虚拟实验将计算机技术、软件技术以及网络技术和传统实验仪器结合起来,改变了实验系统的构建模式,可提升实验仪器的整体性能,突破实验操作的时空限制,是传统实验的变革。

虚拟实验的最终目的是为了认识现实世界,也就是说,虚拟实验最终是要回到复杂具体的真实实验环境中的。我们从虚拟世界获得的知识,其在现实世界中的有用,或者说有效程度,取决于虚拟对现实的模拟程度。目前的虚拟大学物理实验基本上都是理想化的:仪器是标准的,方法是正确的,环境是理想的,结果是完美的,一切都是无误差的,因为都是由设计好的程序来实现的。但真实的实验环境却是复杂而具体的:实验仪器需要组装、调试和校准,同一套实验方法的施行也会因人而异,实验环境会因时因地而改变,实验结果也就包含了多方面的误差在内。所以,如果能在虚拟大学物理实验中增加对一些对常见环境变化的模拟,考虑一些可预知的人的因素,使其所虚拟的实验更加接近真实,其教学效果或许会更加优秀。仍以迈克耳逊干涉仪实验为例,如果能把底座不水平、两端镜距离过大(即超出相干长度)、两镜不平行时如果夹角逐渐增大或减小、没放置补偿板等情况都模拟实现的话,该虚拟实验与真实情况的差距即可得到进一步的改善。

2.4 对创新实验能力的更多培养

培养与提高学生创新思维、创新意识和创新能力是《大学物理实验》课程教学的主要任务之一。与所有的实验教学一样,创新能力的培养在《大学物理实验》课程教学中尤为重要。在传统实验教学过程中,开展探索型实验是使学生获得创新能力培养锻炼的有效方式之一。

与传统实验一样,虚拟实验也可分为演示型实验、动手操作型实验和探索型实验。在探索型实验中,学生要经历从实验设计到实验结果的整体过程,他们必须自己思考如何选择及操作实验仪器,如何实施及改进实验过程,如何判断实验数据的准确性和误差程度,如何总结规律或发现问题等等。所以这类虚拟实验应该具备极强的交互能力:虚拟仪器应具有真实设备的所有功能属性;实验操作应该可以自主调整;测量结果应反映真实情况等。如此,学生方可通过虚拟而探索出真知,达到对创新能力培养的目的。

3 结语

在《大学物理实验》课程教学中,为了利用虚拟实验,达到较好的教学效果,期望虚拟实验能在虚拟仪器的真实性、对实验原理的更好体现、对实验环境的模拟,及对创新能力的更多培养等方面做得更多更好。

参考文献

[1] 刘志远.大学物理仿真实验的定位研究[J].吉林省教育学院学报,2011,27(11):133-134.

[2] 原安娟,段苹,王吉友.基于大学物理实验的虚拟仪器探讨[J].大学物理实验,2007,20(4):70-72.

[3] 吕红英,吴先球,李凌燕,等.利用虚拟仪器技术,改革物理实验教学[J].中山大学学报论丛,2006,26(5):66-70.

[4] 张慧.虚拟仿真技术在大学物理实验教学中的应用[J].江苏广播电视大学学报,2007,18(5):72-73.

第4篇

论文摘 要:随着时代的进步和信息化时代的到来,我国的网络虚拟技术得到了跨越式的发展。传统的教学实验室已不能满足当代教育发展的需要,被虚拟实验室所替代已逐步成为发展潮流。本文通过对电工电子虚拟实验室的概述和思考,分析电工电子虚拟实验室的重要功能,旨在与同行交流,以适应新时代下的教学实验需求。

我国中职学校在电工电子教学过程中,不仅应注重中职学生基本知识、基本技能和基本方法的培训,也注重中职学生自主实验的要求。这就要求必须配备相应的实验室,因为它是用于培养中职学生的创新能力和发展复合型人才的基本教学和科研场所。而传统的电工电子实验的投资相对较大、硬件设施依赖性强、运行与维护成本过高且效率不高,又由于受到实验课数、实验室的开放和环境等因素的影响,导致我国中职学校的电工电子教学效果不理想。因此,加强对电工电子虚拟实验室的功能探究,对虚拟实验室建设的认识具有十分重要的意义。

一、概述

随着计算机网络的普及与虚拟现实技术的不断完善,我国中职学校在虚拟实验室的建设方面得到了一定的普及。虚拟实验室的本质意义就是泛指计算机系统中,集虚拟现实、数据库、虚拟仪器、计算机网络与计算机实时监控等技术为一体的虚拟实验环境,用户通过一些渠道把控制信号和参数指令发送至仿真对象或物理设备,然后把实验结果通过文档、图片、视频和动画等形式发给用户,满足用户通过远程服务进行实验。虚拟实验室是集Internet网络技术、仪器控制技术和通信技术于一体的虚拟实验教学系统,用户只需拥有一台电脑,通过因特网就能访问这一虚拟实验教学系统,在Web页面上挑选有关实验实现远程操纵实验所需的仪器设备,并进行实验操作,另外用户还可以直接从网上获取实验数据,动态监控实验结果。目前很多中职学校的虚拟实验室的构造都是客户端在web的基础之上,运行在浏览器之中,由Web服务器自动下载用户系统所需的客户端程序;随后客户端程序与现实意义的服务器端的应用程序建立一个即时通信平台并进行实验。这个虚拟实验教学系统是由实验设备、客户端和服务器端组合而成。

二、关于电工电子虚拟实验室的思考

随着教学体制的改革,实践环节成为中职学生深刻理解理论知识的一个重要环节,实验成为教学环节中不可缺少的重要组成部分。许多中职学校的实验室存在教学设备陈旧、教育资金不足,难以满足日益增长中职学生的需求和跟上技术日新月异发展的步伐。并且有些实验危险性大,在实验室难以开展,使中职学生难以亲眼观察实验现象及结果。随着计算机的性价比和易用性的提高,使得虚拟实验室在教学、科普教育和技术研究领域应用将越来越广泛。在虚拟实验室中,实验者有逼真的感觉,他似乎是在真正的现实实验室里近距离进行现场操作。多媒体计算机技术与仪器技术的结合构成了虚拟实验室实现的基础,中职学生可以在计算机屏幕上通过场景式图形界面拥有自己的实验室。虚拟仪器技术与认知模拟方法的结合也赋予虚拟实验室智能化特征,通过网络中职学生可以身临其境地观察实验现象,并可以观察各实验仪器的详尽情况,不受时间和空间的限制。

近年来,随着电工电子虚拟实验室的不断发展。虚拟实验室表现在人们可以自主地、灵活地模拟操作各种实验仪器,完成各种分析测试任务,评价实验者的操作水平与实际能力。但是现在很多中职学校的电工电子虚拟实验室的实现和播放课件方式相似,中职学生只能通过虚拟实验室进行简单的浏览及实验结果曲线的动画显示。中职学生没有身临其境的感觉,没有真正动手通过实验仪器的操作而显示实验结果,而只是简单对实验数据的输入产生实验结果。

三、电工电子虚拟实验室的重要功能

我国中职学校的传统电工电子实验室一般有电工电子技术实验室、电路实验室和高频电路实验室等实验室。它们的主要功能是用于开设基础训练课目,培养中职学生了解和使用常用实验仪器设备的使用方法和技术,使中职学生具备最基本的实验能力,加以巩固理论课中的所学的电路工作原理,进一步证明理论的准确性。中职学校可以利用多媒体软件、电路仿真软件和虚拟仪器软件组建电工电子虚拟实验室,不仅可以解除实验教学的空间限制,还能使实验教学的实际内容和形式变得丰富多彩,从而提高实验教学的效果、培养中职学生的学习兴趣,使他们学会利用计算机网络技术进行自主学习,通过不断实践和学习,逐步摆脱传统实验室带来的时间、地点、设备和内容等方面的束缚。所以,中职学校应注意电工电子虚拟实验室在基础性实验、综合型设计实验和演示型实验教学中的重要作用。

(一)基础性实验

基础性实验的重要意义就在于能够培养中职学生了解和使用常规的仪器设备,并对理论课中的所学的电路工作原理进一步验证和巩固。借助电工电子虚拟实验室,中职学生通过一台计算机就可以熟悉常用仪器设备的性能及使用注意事项,分析电路的性质,从而提高中职学生的自学能力,减轻教师的教学负担,考验中职学生独立思考能力、分析问题能力和解决问题的能力。

(二)综合型设计实验

借助电工电子虚拟实验室进行课程设计。例如,在设计电路时,可以让中职学生先检验自己设计的电路能否符合仿真检验电路的性能要求,只有符合仿真检验电路的性能要求,才能输到protel进行电路板绘制工作,完成电路板制作、焊接与测试。从而大大节省设计时间、节约设计成本。

(三)演示性实验

对于一些开设成本高、仪器设备复杂的教学实验只能进行演示性实验。比如调频、调幅收发机的实验就十分复杂,不仅有高频电路,也有低频电路;不仅有时域分析,也有频域分析,在传统的实验室内是难以完成综合性强的实验。因此,只有借助于电工电子虚拟实验室进行实验演示,才能使中职学生掌握综合性复杂实验,逐步意识到虚拟实验室的重要作用。

总之,在中职学校的教学实践工作中,所构建的电工电子虚拟实验室应具备为实验教学提供重要的技术支持和服务,从而推动实验教改,替代传统的教学实验仪器设备,降低办学成本,助推学校健康和谐的飞速发展。

参考文献

[1]陈烨,袁小平.电工类专业中职学生创新能力培养的研究与实践[J].电气电子教学学报,2010,(S2) .

第5篇

中图分类号:TP311文献标识码:A文章编号:1009-3044(2012)03-0691-02

LabVIEW是由美国NI公司研制的以框图形式产生程序的虚拟开发平台,简明、直观、易学易用,在虚拟仪器技术得到广泛利用的今天有着重要地位。但它的不足之处是修改程序比较麻烦,不如文本语言方便。然而,C语言具有功能丰富、表达能力强、使用灵活方便、应用面广、目标程序效率高、可移植性好的特点。

本文中,作者就通过LabVIEW的CIN接口来调用C语言程序,结合两种软件的长处,实现工程领域中得到广泛应用的数值积分的运算。

1 LabVIEW与C语言的接口――CIN

1.1 CIN概述

CIN即“Code Interface Node”的简称,是LabVIEW与C语言的接口,在遇到一些LabVIEW软件难以实现的功能或者调试过程中可能需要大量修改的程序时,就可以通过CIN图标来将C语言编写的源代码引入LabVIEW,从而提高LabVIEW数据处理功能和程序修改的便捷性。

工作原理:通过输入、输出端口实现两种语言之间的数据传输,当LabVIEW的程序运行到CIN节点时,数据就会从CIN的输入端口传递给C语言源代码,程序就会去执行C源代码,执行完毕后得到的数据结果再由CIN的输出端口返回给LabVIEW显示。1.2 CIN图标调用路径

在程序框图面板,点击鼠标右键,执行函数>>互连接口>>库与可执行程序>>代码接口节点(如图1)。1.3 CIN图标的端口参数设置

将初始CIN图标根据所需的具体情况设置,在本文中,将它设置为如图2所示,有四个输入和输出端口,其中最后一个输入端口设置为无效。CIN的输入、输出端口的参数类型由连接在该端口上的空间的数据类型所决定。

图1 CIN图标对话框

2 LabVIEW调用C语言实现数值积分运算的设计步骤

本论文是在WindowsXP下,运用LabVIEW 8.5通过CIN接口来调用Visual C++6.0为平台编写的C语言代码来实现数值积分的运算的。2.1生成C源代码框架

首先在LabVIEW 8.5中设计出如图3所示的前面板,同时在它的程序框图(图4)中添加CIN端口,并做如图的设置和连接,命名为jifen.vi并且保存。

接着,鼠标右键点击程序框图中的CIN图标,在菜单中选择“创建.c文件”

项,在弹出的储存对话框中,将该文件存为“jifen.c”,则会有C的文件源代码如下:

/* CIN source file */#include "extcode.h"

MgErr CINRun(LStrHandle fX, float64 *b, float64 *a, float64 *result); MgErr CINRun(LStrHandle fX, float64 *b, float64 *a, float64 *result)

{/* Insert code here */ return noErr; }

2.2源代码添加

在上述中的“/* Insert code here */”位置添加已经编写好的数值积分运算的C源代码。这里用最常见的复化梯形公式:

{/* Insert code here */t=h*(f(a)+f(b));

#include do

#include { t0=t;#define e 1e-5g=0;

#define a 0//积分下限afor (i=1;i

#define b 1//积分上限bg+=f((a+(2*i-1)*h));

#define f(x) (x/((3*x*x*x)+(x*x)+5)) //被积函数f(x)t=(t0/2)+(h*g); //复化梯形公式int main();n*=2;{ int i,n;h/=2; }

double h,t0,t,g;while (fabs(t-t0)>e); n=1;printf("%.8lf",t); h=(double)(b-a)/2;return 0; }

2.3 C源代码文件的编译

启动VC++6.0,进行如下步骤的编译:

1)新建一个DLL工程文件,命名为jifen,并保存;

2)在工程文件中执行Project>>Add to Project>>Files操作,找到LabVIEW 8.5安装文件cintools文件夹中的中的cin.obj,labview. lib,lvsb.lib,lvsbmain.def四个文件和源代码文件jifen.c;

3)执行Project>>Setting对源代码文件进行编译前的设置。

a.将Setting for设置为All Configuration;

b.打开C/C++标签,在Category下选择Preprocessor,在Addition Include Directories中添加LabVIEW的cintools文件夹路径,例如在这里是“:D:\LabVIEW 8.5\cintools”。

c.同样在C/C++标签,在Category下选择Code Generation,将Struct Merber Alignment设置为1Byte;将Use Run-time Zibrary设置为

Multithreaded DLL。

d.打开Custom Build标签,在Commands中输入命令D:\LabVIEW 8.5\cintools\lvsbutil$(TargetName)-d"$(WkspDir)\$(OutDir)";在Output中输入命令$(OutDir)$(TargetName).lsb。

4)打开jifen.c源文件,进行编译,如有错误,按给出的提示修改程序,再次编译,直至没有错误。最后对原文件进行组建,即生成可执行文件jifen.lvb。2.4装载、程序运行

在LabVIEW8.5的程序框图窗口中,鼠标右键CIN图标,选择“加载代码资源”,选择jifen工程文件中Debug文件夹下的jifen.lsb文件。最后,即可运行程序,改变上下限b、a的值或者被积函数(fx)的表达式,观察输出显示。

3结束语

LabVIEW虽是功能强大的图形编程工具,但也存在一定缺陷,遇到一些需要大量修改,或是LabVIEW难以实现的功能时,就可

以通过它的CIN接口来调用C的源代码来更方便的解决问题。本文就以复化梯形公式求解数值积分为例,叙述通过CIN图标在LabVIEW中引入C语言源代码,从而增强其整体功能。

参考文献:

[1]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.

[2]谭浩强.C++程序设计[M].北京:清华大学出版社,2004.

[3]崔胜民,李建如.数值为分积分算法及LabVIEW实现[J].机床与液压,2005(4).

第6篇

关键词:电子测量;教学改革;创新型人才

作者简介:顾明亮(1963-),男,江苏无锡人,江苏师范大学物理与电子工程学院,教授;魏明生(1976-),男,山东济宁人,江苏师范大学物理与电子工程学院,讲师。(江苏?徐州?221116)

基金项目:本文系中国高等教育学会“十一五”教育科学研究规划课题(课题编号:06AIJ0090048)、江苏省教育科学“十二五”规划课题重点项目(项目编号:C-b/2011/01/15)的研究成果。

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)23-0048-02

培养具有实践创新能力的应用型人才是当今高等教育的培养目标之一,课程教学改革是培养创新人才的根本措施。“电子测量技术”是现代科学获取信息的重要手段,是从事现代电子科学研究的必备基础,该课程也是电子信息、电气自动化和机械电子等专业的骨干专业必修课程,旨在提高学生所学专业课程中的专业基础理论和单元技术知识及独立设计、构建、调试仪器与检测系统的能力,强化学生对仪器与检测系统工程的感性认识。本课程是实践性非常强的一门专业课程,近年来,随着科技迅速发展,特别是随着自动化技术和信息技术的发展及其在工业控制中的广泛应用,电子测量技术在测量技术的研究、生产测试方法、信号处理方法和技术等方面发生了一系列的变革。为了配合高等学校培养实践创新性人才的需要,同时也为了培养的人才能适应现代科学技术的发展,教研室人员对“电子测量技术”课程的授课内容、教学方法和考核方法等进行了一系列的改革探索,教学中的实践证明该课程的一系列改革取得了良好的教学效果。

一、课程内容的改革

由于目前科学技术的迅速发展,电子测量技术正从传统的电子测量仪器向智能化、复杂化自动测试仪器和虚拟仪器等方向发展,使得当前的“电子测量技术”课程内容结构已经不能满足当前人才培养的新要求。其主要缺陷包括电子测量技术教材建设的滞后,该课程内容未及时全面反映技术新发展而导致体系陈旧等。因此,电子测量技术教材应与时俱进,在讲述传统测量内容的前提下应补充智能化仪器、虚拟仪器和复杂自动测试系统等一些新的技术理论,以及先进的仪器设计方法和操作方法,而且授课内容应全面反映现代测量技术的新方向和新技术。

在该课程教学内容的改革中,主要以电子测量技术的教学大纲为主要依据,以该课程的原理、结构和测量系统为主要体系,从电子信息科学的角度来理解和观察该课程,突破以往教学中就器件论器件的传统教学方式,努力做到思路开阔,层次清晰,阐述准确,结构科学合理。按照“理论教学模块”和“实践教学模块”相结合的体系结构进行授课,课堂教学主要采取理论教学模块,重点讲授该课程教学大纲基本要求的内容。内容主要分为:检测系统的误差理论部分,非电量检测方法及智能仪器设计应用部分,信号调理与数据采集技术部分和检测仪器系统设计部分。辅以实践教学模块,主要以实验教学、调研论文、智能仪器及虚拟仪器测试技术综合设计为主。

根据学生的专业方向选取不同的授课教材,并且根据不同的专业实际情况自编讲义加以补充,主要对教材中没有涉及的内容和讲解不充分的内容进行补充。还可以联系社会热点问题,如社会上地沟油问题出现之后,教师随时给学生补充探讨地沟油的测量方法,这样课堂和现实生活紧密联系在一起,使学生感觉到课堂授课内容的重要性和实用性,提高了学生课堂听课的积极性。

为了在授课中缩短理论与技术实践的差距,在课堂授课中,通过运用案例教学,大大提高了学生解决客观实际问题的能力,教学过程中进行校际合作,提高教学效果。让学生从教学内容融入到实际科研项目中去,比如讲到电磁检测时,给学生列举一些在研的省部级科研项目,使学生了解管道泄露的不同检测方法,使学生认识到某一种物理量不同测量方法,让学生体会到检测一些物理量的新方法、新思路,引发学生思维,激发他们的创新意识,取得了很好的教学效果。

为适应创新型本科人才培养目标和教学实际,在实验课程的教学中,把理论教学和实验教学结合起来,适当增加设计型实验和综合型实验对学生能力的锻炼,共设计了4个验证性实验和3个设计性实验。实践教学中一方面为了使学生理解电子测量技术的基本原理保留了基础性的实验,另一方面,开发了新的工程应用性综合性实验,可以对高年级各专业学科之间的学生因材施教。

二、教学方法的改革

1.重视第一堂课的教学

第7篇

关键词:LabVIEW;可燃气体;远程测控方案;测控

中图分类号:TP274 文献标识码:A 文章编号:2095-1302(2013)04-0022-03

0 引 言

近年来,全国燃气行业发展迅猛,液化气、天然气等易燃、易爆、有毒气体的种类和应用范围都显著增加,它们易流动、易燃烧。在生产、储存、运输过程中,有毒、易爆气体的泄漏是可能存在的,具体泄漏位置较难查询,易造成重大火灾、爆炸、中毒事故,给国家和人民生命财产造成损失。为了防患于未然,在生产现场设置可燃、有毒气体检测报警器,及时检测并发出报警信号,采取有力措施,防止事故的发生便显得尤为重要。本系统采用目前流行的NI公司虚拟仪器开发平台LabVIEW作为软件编程环境,研究基于LabVIEW的网络通讯技术,实现对可燃气体的远程检测、报警、输出控制等功能,从而便捷、直观、安全、快速地检测和控制可燃气体泄露现场环境。

1 系统功能及构建思路

本设计为基于PC―DAQ的虚拟仪器系统。以LabVIEW8.6为软件开发平台,采用具有USB接口的多功能数据采集卡LabJack U12及传感器完成对工作场所多个监测点的气体信号采集、信号调理、浓度测量、控制信号输出等功能。选用继电器、蜂鸣器等电气元件来完成排风扇、电磁阀对现场环境的报警控制功能。利用在Web上HTML文件的方法实现对工作现场可燃气体的远程检测,可以使用户在本地或远程计算机上浏览并且操作LabVIEW程序面板,实现对整个系统远程报警及自动或人工控制。

2 系统硬件设计

本系统的硬件结构框图,被控对象是扬声器、排风扇和电磁阀。系统采用多个气敏传感器工作现场可燃气体信号,经信号调理电路放大、滤波后,再经过数据采集卡进入计算机,控制程序根据现场内的气体浓度值与系统给定阈值作比较。若超出参考值,采集卡将输出控制信号,并开启扬声器、指示灯进行声光报警,同时启动排风扇,关闭电磁阀,进行处理。

2.1 传感器

本系统中采用MC―112型传感器,它是一种催化燃烧式传感器。其工作原理是:气敏材料在通电状态下,可燃性气体在催化剂作用下氧化燃烧,产生的热量使电热丝升温,从而使其电阻值发生变化,通过测量铂丝的电阻变化的大小,就知道可燃性气体的浓度。此种传感器在任何环境温度下非常稳定,并能对爆炸下限的绝大多数可燃性气体进行检测,具有输出信号线性好,指数可靠,价格便宜,不会与其他非可燃性气体发生交叉感染等特点。MC―112型传感器普遍应用于石油化工厂、造船厂、浴室、厨房等处的可燃气体的监测和报警。

2.2 测量电路

测量电路主要由传感器和信号调理电路组成,气敏传感器的输出信号经信号调理电路处理后通过采集卡的模拟通道输入计算机,并由LabVIEW程序计算得到浓度测量值。调理电路的作用是把传感器采集的温湿度信号转换成电压信号,并将其放大,以满足数据采集卡A/D输入端电气参数要求。

本系统的信号调理采用双恒流源法,其设计图如图2所示。根据气敏传感器的特性,其电阻值随着浓度的变化而变化,在反馈放大器中设计了两个相同的恒流源,其值用IS表示。其中R(T)是气敏传感器根据感知的所测浓度所变化的阻值,标准电阻RN=100 Ω。根据采集浓度的不同,即电阻阻值的不同,转换的电压值也不同。

2.3 数据采集卡选择

数据采集系统的核心是数据采集卡。数据采集卡是实现将检测信号从模拟信号变成计算机能接收和处理的数字信号功能的硬件,其选用在整个硬件选用的过程中占据了重要位置。这是因为它不仅关系到与其他硬件设备之间的性能匹配,而且还涉及到应用程序开发的难易程度以及应用环境的具体要求。综合考虑本系统待定参数的特征,以及数据采集板的可靠性、精度和性价比等因素,我们选择了美国LabJACK公司生产的数据采集板LabJACK U12。它是一种可以与带USB接口的计算机通讯的多功能模拟、数字和定时I/O数据通讯设备。

2.4 控制电路

本系统的控制电路如图3所示。整个电路由排风电路和电磁阀电路组成,排风电路部分采用380 V/750 W的循环风机,并应用继电器和交流接触器对其进行控制。本设计中选用的继电器的型号是hrs1H―S―DC5V,继电器线圈需要较大的电流才能使继电器吸合,一般的集成电路不能提供这样大的电流,因此必须进行扩流,即驱动。采集卡把控制电压输出给控制三极管基极,继电器线圈作为集电极负载而接到集电极和正电源之间。当输入为+VCC(5 V)时,三极管饱和,继电器线圈有相当大的电流流过,则继电器吸合(ON),220 V的交流电导通,此时交流接触器的主触点吸合,使380 V的循环风机开始工作,完成对循环风机的开启控制。在此过程中,三极管有放大和开关两个作用。采集卡有输出保持作用,当希望系统停止工作时,采集卡输出为0 V,三极管截止,继电器线圈无电流流过,则继电器释放(OFF),220 V交流电断开,交流接触器的主触点释放,循环风机停止工作。声光报警和电磁阀电路都由采集卡U12的输出控制端AO1完成,当软件将AO1置1,三极管VT1,VT3导通,报警灯点亮,蜂鸣器发出报警声,并且电磁阀关闭。

3 软件设计

可燃气体监测系统的主控程序采用模块化的设计方法,将系统划分成几个相互独立的功能模块,各模块内部分别完成确定的任务,模块之间相对独立而又通过系统的框架协议相互联系。为了使各模块之间按照系统的框架协议协调动作和相互通信,以及实现人机交互,设计了提供用户接口的主控程序。在用户通过鼠标或键盘发出指令后,主控程序通过统一调度各功能模块实现用户意图。

3.1 系统前面板设计

系统的前面板分为显示、操作和报警三个功能区域。

显示包括数值显示、波形显示及表头监控显示。数值显示显示传感器实时采集数据;波形显示以曲线形式直观地反映现场环境浓度的变化;表头监控显示用时间控件显示当前时间,水平滑动条显示当前的环境浓度,指示灯显示报警的具体情况并伴随有BEEP声音提醒。

用户在操作区域完成测试和程序响应用户的操作,并完成参数保存、测控、查询、生成报表和打印等功能。

报警区域的功能可对被测指标与预先设定的极限值进行比较,若超出极限值,系统报警。报警区域的设置为用户提供了有效的监测手段,可避免因设备故障而造成的损失。

为了让前面板更加美观以及对图表控件初始化,程序使用大量的属性节点对控件的颜色、可见性、闪烁、比例进行设置。

3.2 数据采集模块

图4所示是本系统数据采集模块的框图程序。数据采集模块用于完成对数据采集卡LabJack U12的驱动以及各项参数设置,如通道设置、增益、读写状态等。实现方法是在LabVIEW界面下调用采集卡LabJack U12提供的AI simple函数,通过采集卡AI0,AI1,AI2 ,AI3 四个通道同时对四个不同采集点浓度信号进行采集。之后连接解析簇函数unbundle函数解析出一维电压值数组,再由索引数组函数Index Array给函数四个索引端口连接索引值,element参数输出该索引值对应的电压值。最后四路电压求平均,求出传感器采集的现场四个点的电压值,经过换算得出现场浓度。

3.3 系统控制模块

系统控制子程序对两个执行机构排风扇和电磁阀、扬声器的相关电路输入控制电压, 图5所示是系统的控制子程序。该系统调用了EAnalogout函数,此函数可以同时输出两个模拟通道电压。分别在analogout0,analogout1端口连接排风扇和电磁阀、扬声器的驱动机构,采集的浓度参数经软件程序处理后,在analogout0,analogout1输出指令,执行机构根据指令进行相应的操作。

3.4 系统网络化的实现

LabVIEW的网络功能主要建立在DataSocket技术、Web服务器和TCP、UDP协议基础上。本测控系统采用在Web上HTML文件的方法实现烤房的远程测控,也可以使本地或远程计算机浏览并且操作LabVIEW程序面板,从而对整个系统进行监测和控制。

4 结 语

有安全才有发展,有安全才有效益。厂矿住宅可根据具体环境及需要的功能选择合适的可燃气体监测系统,以确保人身与生产安全。该监测系统可以应用于实际,具有方便、快捷、直观等特点,相信会给用户耳目一新的感觉。

参 考 文 献

[1] 苏文静.可燃气体报警器的设计[J]. 电工电气,2009,24(5):8-12.

[2] 陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2003.

[3] 刘君华.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2001.

[4] 韩硕.基于虚拟仪器技术的温度采集监测系统[J].广西轻工业,2011(8):102-103.

第8篇

>> 可视化通信原理仿真平台GUI方案的设计与实现 基于“通信原理教学仿真平台”的课程设计 通用实验教学仿真平台的设计与实现 基于LabVIEW的通信原理虚拟实验平台设计 钢结构稳定原理虚拟仿真平台开发探索 Maltab仿真平台在《通信原理》理论教学模式的应用与探索 基于虚拟仿真平台的电气工程实验教学改革研究 物联网虚拟仿真平台在农学专业实验教学中的应用 《信号与系统》虚拟教学仿真平台设计 采油厂安全培训虚拟仿真平台设计 基于虚拟仿真平台的高职《电路分析》课程设计与开发 基于89C51的单片机虚拟仿真平台设计 浅谈虚拟仿真平台编撰脚本的建议 嵌入式实时仿真平台接口通信的设计与应用 基于MATLAB/Simulink实验仿真平台的《自动控制原理》实验教学改革探析 面向医院环境的网络仿真平台的设计与实现 航空发动机总体性能仿真平台的设计与实现 公路隧道交通诱导仿真平台的设计与实现 城市轨道交通系统运行仿真平台的设计与实现 数字通信原理的虚拟实验室系统的设计与实现 常见问题解答 当前所在位置:l?s_cid=baidu_matlab

[6]焦瑞莉,南利平,李学华. 基于LabVIEW的通信专业远程虚拟实验室[J]. 国外电子测量技术(虚拟仪器),2005(3):4-7.

[7]廖云伢.基于Java与Matlab集成的数字通信原理虚拟实验平台的设计与实现. 中南大学硕士学位论文.2007.