首页 优秀范文 化学成分分析论文

化学成分分析论文赏析八篇

发布时间:2023-03-22 17:36:44

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的化学成分分析论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

化学成分分析论文

第1篇

Inova-600型核磁共振仪(中国人民军事医学科学院分析中心);BrukerAM-500型核磁共振仪(微量化学研究所分析中心)ZabspecE型质谱仪(军事医学科学院分析中心);BuchiR-200型旋转蒸发仪;Buchi615中压液相色谱仪;Waters515型高压液相色谱仪,Waters2996检测器;Empower工作站;YMC-PackPh(5μm,250mm×10mm,I.D.)半制备柱;柱层析用硅胶(100~200与200~300目,硅胶H)均为青岛海洋化工厂产品;聚酰胺100~200目为浙江省台州市路桥三甲生化塑料厂产品。

实验所用材料豆叶霸王(全草)11.5kg为李国强博士于200408间采自我国新疆维吾尔族自治区,全部实验材料均经李国强博士鉴定其学名,原植物或原生药凭证标本藏于中国医学科学院药用植物标本馆(IMD),中国科学院新疆生物土壤地理研究所植物标本馆(XJBI),新疆农业大学植物标本馆(XJA)。

2方法与结果

2.1提取与分离豆叶霸王11.5kg,粉碎成粗粉,先用95%乙醇浸泡24h,然后用10倍量95%乙醇加热回流提取3次,4h/次,然后再用60%乙醇回流提取3次。滤过,减压蒸干溶剂,分散于水中,分别用石油醚、氯仿、醋酸乙酯、正丁醇萃取。对低极性部分进行了系统分离,得到了7个化合物。

2.2结构鉴定

2.2.1豆甾-4-烯-3-酮(Ⅰ)白色粉末(CHCl3),mp95~96℃,分子式为C29H48O。Libermann-Burchard反应阳性;EIMSm/z(%):412(M+,21),271(11),229(32),124(100);1HNMR(600MHz,CDCl3)δ:5.72(1H,s,H-4),1.18(3H,s,Me-19),0.93(3H,d,J=6.0Hz,Me-21),0.86(3H,t,J=7.2Hz,Me-29),0.84(3H,d,J=7.8Hz,Me-26),0.82(3H,d,J=7.8Hz,Me-27),0.73(3H,s,Me-18);13CNMR(150MHz,CDCl3)δ:35.7(C-1),34.0(C-2),199.7(C-3),123.7(C-4),171.7(C-5),32.9(C-6),32.0(C-7),35.6(C-8),53.8(C-9),38.6(C-10),21.0(C-11),39.6(C-12),42.4(C-13),55.9(C-14),24.2(C-15),28.2(C-16),56.0(C-17),12.0(C-18),17.4(C-19),36.1(C-20),18.7(C-21),33.9(C-22),26.1(C-23),45.8(C-24),29.1(C-25),19.8(C-26),19.0(C-27),23.1(C-28),11.9(C-29)。以上数据与文献报道的豆甾-4-烯-3-酮[1]一致,故鉴定为豆甾-4-烯-3-酮。

2.2.2正二十八烷醇(Ⅱ)白色粉末(CHCl3),mp82~83℃,分子式为C28H58O;EIMSm/z(%):392(M-H2O,1),364(1),139(8),125(15),111(28),97(55),83(57),69(42),57(100),55(42);1HNMR(600MHz,CHCl3)δ:3.64(2H,t,J=6.6Hz,H-1),1.57(2H,m,H-2),1.25(50H,brs,H-3~H-27),0.88(3H,t,J=7.2Hz,H-28);13CNMR(150MHz,CDCl3)δ:63.1(C-1),31.9(C-2),29.7,29.6,29.5,29.4(C-4~C-26),25.7(C-3),22.7(C-27),14.1(C-28)。以上数据与文献报道的正二十八烷醇[2]一致,故鉴定为正二十八烷醇。

2.2.3正三十二烷醇(Ⅲ)白色粉末(CHCl3),mp88~89℃,分子式为C32H66O;EIMSm/z(%):448(M-H2O,28),420(10),392(15),364(7),139(15),125(25),111(50),97(88),83(100),69(65),55(95);1HNMR(600MHz,CHCl3)δ:3.64(2H,t,J=6.6Hz,H-1),1.57(2H,m,H-2),1.26(58H,brs,H-3~H-31),0.88(3H,t,J=6.6Hz,H-32);13CNMR(150MHz,CDCl3)δ:63.1(C-1),31.9(C-2),29.7,29.6,29.5,29.4(C-4~C-30),25.7(C-3),22.7(C-31),14.1(C-32)。以上数据与文献报道的正三十二烷醇[3]一致,故鉴定为正三十二烷醇。

2.2.4胡萝卜苷(Ⅳ)白色无定形粉末,mp295~297℃,难溶于氯仿、甲醇,Liebermann-Burchard反应和Molish反应均为阳性;EI-MS(m/z):414(M+,M-glc,13),396(100),397(85),381(17),329(8),303(10),255(20),213(18),145(25),81(22),69(20)。与胡萝卜苷对照品混合熔点不下降,薄层层析Rf值。

2.2.5β-谷甾醇(Ⅴ)白色针状结晶,mp140~141℃,Liebermann-Burchard反应为阳性;EI-MS(m/z):414(M+,100),396(50),381(38),329(40),303(55),255(40),213(43),145(45),81(45),69(35)。与β-谷甾醇对照品混合熔点不下降,薄层层析Rf值与β-谷甾醇一致。

2.2.6紫云英苷(Ⅵ)黄色针状结晶,mp170~171℃,盐酸镁粉反应阳性;1HNMR(400MHz,MeOD)δ:8.00(2H,d,J=8.8Hz,H-2′,6′),6.83(2H,d,J=8.8Hz,H-3′,6′),6.56(1H,d,J=1.2Hz,H-8),6.29(1H,d,J=1.2Hz,H-6),5.20(1H,d,J=6.8Hz,H-1"),3.16~3.71(6H,m,H-2"~6");13CNMR(100MHz,MeOD)δ:156.9(C-2),133.9(C-3),177.9(C-4),161.5(C-5),98.4(C-6),164.6(C-7),93.3(C-8),157.5(C-9),104.1(C-10),121.2(C-1′),130.7(C-2′,6′),160.0(C-4′),114.4(C-3′,5′),102.6(C-1"),74.2(C-2"),76.5(C-3"),69.8(C-4"),76.9(C-5"),61.1(C-6")。以上数据与文献报道的紫云英苷[4]一致,故鉴定为紫云英苷。

2.2.73-O-[β-D-glucopyranosyl]-quinovicacid(Ⅶ)白色粉末,mp266~268℃,分子式:C36H56O10,Liebermann-Burchard反应和Molish反应均为阳性,薄层酸水解检测含有葡萄糖;FAB-MSm/z:649[M+1]+,671[M+Na]+;1HNMR(400MHz,pyridine-d5)δ:5.99(1H,m,H-12),1.12(3H,s,H-23),0.94(3H,s,H-24),0.83(3H,s,H-25),1.08(3H,s,H-26),1.21(3H,d,J=6Hz,H-29),0.79(3H,d,J=6.4Hz,H-30),4.77(1H,d,J=7.6Hz,H-1′);13CNMR(100MHz,pyridine-d5)δ:40.6(C-1),28.0(C-2),90.0(C-3),41.3(C-4),57.0(C-5),19.9(C-6),38.2(C-7),40.7(C-8),48.4(C-9),38.8(C-10),24.6(C-11),130.2(C-12),135.4(C-13),58.1(C-14),27.7(C-15),26.8(C-16),50.0(C-17),56.2(C-18),39.0(C-19),40.3(C-20),31.9(C-21),38.4(C-22),29.3(C-23),18.4(C-24),17.8(C-25),20.2(C-26),181.3(C-27),179.3(C-28),19.5(C-29),22.6(C-30),108.2(C-1′),77.0(C-2′),79.5(C-3′),73.1(C-4′),80.0(C-5′),64.4(C-6′)。以上数据与文献报道的3-O-[β-D-glucopyranosyl]quinovicacid[5]一致,故鉴定为3-O-[β-D-glucopyranosyl]-quinovicacid。

3讨论

前期的文献工作表明皂苷类和黄酮类化合物是驼蹄瓣属植物特征化学成分,我们的研究结果也表明了这一点,具有一定的化学分类学意义,为将来进一步的研究该类植物提供了一定参考价值。

【参考文献】

[1]何萍,李帅,王素娟,等.半夏化学成分的研究[J].中国中药杂志,2005,30(9):671.

[2]胡幼华.宽果从菔化学成分的研究[J].哈尔滨师范大学自然科学学报,1995,11(2):71.

[3]浮光苗,余伯阳,朱丹妮.黑面神化学成分的研究[J].中国药科大学学报,2004,35(2):114.

[4]WeiF,YanWM.StudiesontheChemicalConstitutensofViciaamoEnaFisch[J].ActaPharmsin,1997,32(10):765.

[5]SkimF,LazrekHBetal.Pharmacologicalstudiesoftwoantidiabeticplants:Globulariaalypumandzygophyllumgaetulum[J].MoroccoTherapie1999,54(6):711.

第2篇

本人长期为事业默默无闻地探索着,为了社会的发展,国家的进步,始终以那种艰苦奋斗,自强不息的精神无私地奉着,并在本岗位上取得了令人瞩目的成就。受到了上级领导和同志们的好评。近几年来,先后发表多篇文章,其中“运用检测手段分析降低原料消耗增加企业利润的途径”获省级一等奖;“浅议烤烟四十级标准烟叶的化学成份与烟叶质量的相关性”获省级二等奖等。最近“浅谈烟叶主要化学成份与卷烟配方的相互关系”一文刊载在《中国发展探索世纪优秀文库》一书中,并获一等奖。由于自己在平时工作中不断努力,通过了高级化验员考核,并取得了合格证书。自学了科技日语并达到一定水平,学习了计算机技术及各仪器的操作技术。结合平时的工作实际写出论文10余篇,其中多篇获奖。

在平时工作中,个人尊重科学、尊重实践、努力探索本行业新路子,自己的劳动也得到了社会的承认。

烟叶的主要化学成份是决定烟叶内在品质的因素之一。现在已发现烟叶和烟气中各种化学成分已达5259种。长期以来国内外的烟草科研工作者,均想从烟草化学上来探索出一种用化学成份表示烟草质量的方法。近几年来,随着化学分析技术的提高和现代化的分析仪器的应用,只能够说明烟草的主要化学成份对其质量的影响,但还不能完全用化学成份的含量来表示烟草在“吃味”、“香气”方面的特性。

从长远来说,对烟草所含更多的化学成份的探讨还是一个任重而道远的长期研究课题。从目前卷烟生产对烟叶的要求来看,我们必须掌握烟叶的主要化学成份和特性以及对烟草质量产生的影响,为设计卷烟配方提供参考。

一、烟叶的主要化学成份及特性

1.碳水化合物

烟叶中的碳水化合物有可溶性的糖和不可溶性的多糖。

(l)可溶性糖有单糖和双糖。烟叶中的葡萄糖和果糖属于单糖,蔗糖和麦芽糖属于双糖。因为葡萄糖分子结构中含有醛基(-CHO)又称醛糖,果糖分子中含有酮基(-C=O)也称为酮糖,醛基和酮基在碱性溶液中都能还原酒石酸铜,所以在烟草化学分析中,用这一性质来检测烟叶中单糖含量,烤烟单糖含量一般在10%—25%之间,单糖含量的高低是衡量烟叶优劣的重要因素。

双糖属非还原性糖,只有在酸性条件下水解成单糖之后,才能与酒石酸铜在碱性溶液中发生还原反应。

(2)不溶性的多糖属于高分子碳水化合物,烟叶中的多糖包括淀粉、纤维素和果胶等,多糖与单糖双糖不同,它即不溶于水,也无还原能力,但在酸性条件下和酶的作用也能水解成单糖,但数量很少,所以在烟叶中起的作用也较少。淀粉在成熟的烟叶中的含量为10%—30%,在于制和发酵过程中转化为单糖、双糖及糊精,所以为提高烟叶内在质量,烟叶发酵是一个重要步骤,发酵技术的高低直接影响淀粉的转化率。

纤维素是构成烟叶细胞组织和骨架的基本物质,烟叶中含纤维素的量一般在11%左右,它随着烟叶等级的下降而增加。

果胶在烟叶中含量为12%左右,果胶影响烟叶的弹性韧性等物理性能,由于果胶的存在,当烟叶含水份多时烟叶的弹性韧性就增大,含水少时就发脆易碎,果胶分子结构中还含有甲醇,影响烟草吃味,因果胶分子易水解,烟叶在发酵过程中在酶的催化下,果胶发生水解便可除掉甲醇,提高烟叶质量。

2.含氮化合物

烟叶含氮化合物较多,主要有蛋白质、烟碱和游离碱。

(1)蛋白质:烟叶中的蛋白质对烟叶质量影响较大,在燃烧时产生一种臭鸡蛋味,其含量在5%—15%之间,蛋白质中氮元素的平均含量为16%,在检测烟叶化学成份时不直接检测蛋白质,而是通过测得的氮元素来换算出蛋白质含量,从烟株部位来看,中部烟叶含量低于上部烟叶.它随着烟叶等级的下降而增加,以顶叶含量最高。

(2)烟碱:烟草之所以能区别于其他植物主要是因为含有烟碱,烤烟含烟碱在0.5%-3%,而晾晒烟含量在5%以上,从烟株部位来看,上部烟叶含量最高。烟碱容易和酸进行化学反应,与草酸、柠檬酸作用,生成草酸盐和柠檬酸盐,与硅钨酸作用生成烟碱硅钨酸的白色沉淀,用此法可检测烟叶中烟碱含量。在50℃左右烟碱与水反应生成水合物,并具有和水蒸气共同挥发而不分解的特性,利用此性质可提取烟碱。

(3)游离碱:烟叶中还有一种游离碱,虽然含量很低,但对卷烟质量影响很大,卷烟在燃烧时,挥发碱受热进入烟气中,对人的感官产生一种辛辣刺激,但烟气中还必须有一定量的挥发碱,用以中和酸度较大的烟气,使烟气丰满,吸食后感到舒适。

3.有机酸

烟叶甲含有机酸在200多种以上,大部分为二元酸和三元酸,其中以柠檬酸、苹果酸、草酸、琥珀酸含量最多,这四种酸占烟叶中的有机酸的70%,虽然含量高但不是挥发酸,所以对卷烟香气元明显影响,但对卷烟的吸食品质影响较大。它可增用烟气酸性,中和游离碱降低烟气的辛辣、呛喉现象,使烟气变得甜润舒适,所以在卷烟生产中,经常加入有机酸来调整卷烟吸味品质,尤其对用那些含糖量低,含氮量较高的烟叶,在生产中加适量有机酸更为重要。

4.矿物质

烟叶中的矿物质种类繁多,一般含量为10%上下,从烟株的部位来分,以下部烟叶含量较高,其中对烟草影响较大的有钾和氯。

烟叶含钾高则燃烧性和阴燃持火力都较强,烟灰也好。氯离子在烟叶中含量高低,直接影响烟草的燃烧性,若含量在1%以下可使烟草柔软减少破碎,若超过1%则燃烧性较差,当氯离子达到1.5%以上时烟草就熄火,以上是一种概括的说法,确切的说要看钾氯比值,二者比值在4以上燃烧性就好;阴燃持火力强,若在2以下则烟草熄火,所以应把钾氯比调制到适当的比例。

二、烟叶的主要化学成份对卷烟质量的影响

卷烟质量分外在质量和内在质量,外在质量是指卷烟各种物理性能指标,如硬度、吸阻、重量等,这些指标受卷烟生产过程各个环节的影响。内在质量是卷烟在燃烧后,所产生的烟气中的各种化学成份含量及比例关系,对人的感官产生的各种感觉的一个总的反映。近一二十年来烟草企业都将烟气分析做为衡量卷烟质量的重要依据,卷烟烟气的质量优劣主要是由烟叶所含的主要化学成份及比例关系的协调性决定的,所以在设计卷烟配方时,烟叶的主要化学成份指标.是选评烟叶优劣,确定各等级烟叶比例及卷烟烟气质量的重要依据。

为了设计出一个优质卷烟产品或保持卷烟内在质量的稳定,就应以烟叶的主要化学成份为依据,结合配方师的经验来设计卷烟配方。

1.总糖量对卷烟质量的影响

烟叶的含糖量一向被认为是体现卷烟良好吃味的重要标志,在一定的幅度范围内,含糖量高则卷烟的品质好,由于糖在燃烧后产生的烟气呈酸性,可以中和烟气中的游离碱(氨),消除烟气产生的辛辣和呛喉的刺激。

烟叶中的蛋白质对卷烟是一种不利因素,燃烧后产生一种使人不愉快的气味,为了调节好烟气,苏联专家施本克教授寻找了用糖和蛋白质的比值来说明卷烟吸味品质和

烟叶品质,

称之为施木克值,比值高表明卷烟含糖量高,含蛋白质低,卷烟档次高品质好。

糖的存在对卷烟质量起到一定的作用,但不能认为糖是决定卷烟质量的决定性因素,更不能认为烟叶含糖越高越好,蛋白质含量越低越好,各自应有一个适宜范围,糖一般在18%—25%为佳,蛋白质一般在5%—10%为好。而且两者应有一个比较适宜的比例关系,所以施木克值也不是越高越好,一般掌握在2~3之间比较适宜。糖是卷烟的有利因素,但在卷烟中不能单独发挥其作用,还必须和烟碱协调起来,才能使烟气丰满、醇和、吃味甜润、舒适。若糖高烟碱低烟气无劲头,吸味平淡,香气不足吸食后不过瘾;若烟碱高糖低,烟气劲头大、不醇和、吸后无舒适感。为此国内外的卷烟配方师们,又在长期的研究和实践中,寻找出糖和烟碱适宜的比例关系,称为糖碱比值,此值一般在10:1—15:1为准。

2.烟碱含量对卷烟质量的影响

烟碱俗称尼古丁,是烟草特有的植物碱,是影响烟叶质量的重要化学成份,具有产生兴奋的刺激作用,同时也是卷烟产品质量稳定的主要标志,所以控制卷烟产品中的烟碱含量是卷烟质量的一项重要指标。

配方师在选择烟叶拟定配方时,必须掌握住各等级烟叶的烟碱含量和配方烟丝中的烟碱含量,一般要求烟碱含量控制在1.2%—2.2%之间比较适宜,但这不是硬性规定,配方师可根据设计产品的需要和当地消费者的口味来确定烟碱的高低。

现在卷烟生产方向为中焦油和低焦油卷烟,但降低焦油的同时烟碱也会降低。配方师必须采取措施保证烟碱在低焦油卷烟中的含量,或者说烟破和焦油之间要有一个适当的比例关系。经研究和实践认为10:1至15:1适宜,也就是说每支烟含焦油10~15毫克含烟碱1毫克,配方师在设计卷烟配方时应特别重视这个比例关系,而且要保持它的稳定性。

烟叶除了烟碱外,还含有一种挥发碱(游离态烟碱)它的含量高低不决定烟的劲头,而决定烟气是否辛辣、呛喉。为了控制挥发碱的含量,引用了一个尼古丁值来表示,此值是烟叶中的总烟碱被总挥发碱除所得的商值,称尼古丁值,此值越大表明挥发碱含量低,烟气就显得舒适平和,此值越小烟气就越加辛辣、呛喉,由此可见尼古丁值与卷烟质量呈正相关系,在一定范围内此值越高,卷烟档次越高质量越好。

三、加强对烟叶化学分析,为卷烟配方提供依据

第3篇

关键词:细叶杜香;化学成分;正二十八烷醇;oleuropeicacid

Abstract:ObjectiveToinvestigatethechemicalconstituentsofthepetroleumandthechloroformextractsofLedumpalustreL.Var.AngustumE.Busch.MethodSilicagelcolumnchromatographywasusedtoseparateandpurifythechemicalconstituents.ThestructureswereelucidatedonthebasisofphysicochemicalpropertiesandspectraldatA.ResultsFivecompoundswereisolatedandidentifiedas5-hydroxy-4′,7-dimethoxyflavone,n-octacosanol,scopoletin,oleuropeicacidandfraxetin.Conclusionn-octacosanolandoleuropeicacidwereisolatedfromtheLedumgenusforthefirsttime.

Keywords:LedumpalustreL.Var.AngustumE.Busch;chemicalconstituents;n-octacosanol;oleuropeicacid

细叶杜香(LedumpalustreL.Var.AngustumE.Busch)是杜鹃花科杜香属常绿直立小灌木,笔者曾报道从细叶杜香嫩枝和叶水提物的乙酸乙酯部位分离并鉴定了4个化合物:七叶内酯,对羟基苯甲酸,槲皮素和金丝桃苷[1]。本文报道从该水提物的石油醚和三氯甲烷部位共分离得到6个单体化合物,确定了其中5个化合物的结构,分别为5-羟基-4′,7-二甲氧基黄酮(1)、正二十八烷醇(2)、东莨菪内酯(3)、oleuropeicacid(4)、秦皮素(5),化合物2和4为首次从该属植物中分离得到。

1仪器、试剂与材料

熔点用X-4数字显示显微熔点测定仪测定(温度计未校正);紫外光谱扫描用岛津UV-2450紫外分光光谱仪;红外光谱用5DX-FT型红外光谱仪测定;质谱用Agilent6120型液相色谱-质谱联用仪测定,核磁共振用BrukerAV超导核磁共振波谱仪测定,柱层析和薄层层析硅胶均由青岛海洋化工厂生产。薄层色谱检测用254nm、365nm紫外灯。石油醚(60~90℃)、三氯甲烷、乙酸乙酯、甲醇均为分析纯。药材于2005年6月采自内蒙古大兴安岭,经广东药学院中药学院刘基柱老师鉴定为细叶杜香(LedumpalustreL.Var.AngustumE.Busch),样品现保存于广东药学院天然药物化学教研室。

2提取与分离

干燥的细叶杜香嫩枝和叶(5.8kg)粉碎后,用水回流提取6次(首次5h,收集挥发油,其余每次2h),合并提取液减压浓缩,浓缩液加醇沉淀,过滤,合并滤液浓缩至4L,依次用石油醚,三氯甲烷萃取,得到石油醚部位3.8g和三氯甲烷部位40g。

石油醚部位(3.8g)经硅胶(200~300目)柱层析,石油醚-乙酸乙酯梯度洗脱,每150mL收集一个流分,TLC检测,合并相同流分。在第21~30流分析出黄色絮状沉淀,过滤,沉淀用石油醚-乙酸乙酯(体积比20∶1)重结晶,得化合物1(7mg)。

三氯甲烷部位萃取物(40g)经硅胶柱层析,石油醚-乙酸乙酯梯度洗脱,每800mL收集一个流分,TLC检测。其中,石油醚-乙酸乙酯(体积比100∶3)洗脱部分,第113~136流分合并后浓缩,静置,析出白色颗粒状结晶,用三氯甲烷反复重结晶得化合物2(10mg)。石油醚-乙酸乙酯(体积比5∶1)洗脱部分,其中第427~442流分浓缩液合并后,静置,溶液中析出无色透明长针状晶体,滤出结晶,用丙酮-甲醇(体积比1∶1)反复重结晶,再过LH-20凝胶柱进行纯化,甲醇为洗脱剂,根据色带收集并结合薄层检测合并相同流分,放置析晶,得到化合物3(30mg);第451~466流分合并后,析出大量淡黄白色方晶,抽滤,用乙酸乙酯洗涤,沉淀变为纯白细颗粒状,经甲醇反复重结晶,得化合物4(150mg);第535~552流分析出大量的淡黄色絮状沉淀,过滤,用石油醚和乙酸乙酯重结晶得到颜色不均一的黄色鳞片状晶体,复用甲醇和水溶解晶体并制成高温下的饱和溶液,然后放置冰箱,数小时即析出土黄色透明鳞片状结晶,再次过滤,用甲醇和丙酮加热溶解晶体后室温放置,数天后析出黄色针状结晶,再用甲醇进行重结晶得化合物5(50mg)。

3结构鉴定

化合物1:黄色粉末(CHCl3),mp170~172℃。薄层色谱展开可见明显黄色斑点。UVλmax/nm:269,326(MeOH);269,326(NaOMe);269,326(NaOMe,5min);279,300,340(AlCl3);202,279,300,340(AlCl3/HCl);270,329(NaOAc);268,331(NaOAc/H3BO3);紫外光谱显示可能含有3-或5-OH。IR(KBr)cm-1:3242(-OH),1656(C=O),1622,1593,1575,1489(Ar),1442,1355,1288,1211,1140,1008,830。1H-NMR(CDCl3,500MHz)δ:12.81(1H,s,C5-OH),7.84(2H,d,J=9.5Hz,H-2′,6′),7.02(2H,d,J=9.5Hz,H-3′,5′),6.58(1H,s,H-3),6.48(1H,d,J=2.0Hz,H-6),6.36(1H,d,J=2.0Hz,H-8),3.89(3H,s,7-OCH3),3.88(3H,s,4′-OCH3)。以上数据与文献[2]报道的5-羟基-4′,7-二甲氧基黄酮基本一致,确定化合物1为5-羟基-4′,7-二甲氧基黄酮。

化合物2:白色颗粒状结晶(CHCl3),mp75~77℃。紫外无吸收。10%硫酸乙醇显紫红色斑点。IR(KBr)cm-1:3313(-OH),2918,2850(-CH2),1464,1380(-CH3),1061,720,红外光谱具备长链脂肪醇的特征吸收。1H-NMR(CDCl3,400MHz)δ:3.64(2H,t,J=6.8Hz,-CH2OH),1.25~1.36(br.s,n×CH2),0.82~0.98(3H,m,-CH3)。13C-NMR(CDCl3,100MHz):63.1为直接与羟基相连的亚甲基碳信号,32.8为羟基β位的亚甲基碳信号。31.9~22.7为一系列的亚甲基碳信号,14.1为末端甲基信号。以上数据与文献[3]报道的正二十八烷醇一致,故确定化合物2为正二十八烷醇。

化合物3:淡黄色针晶(MeOH),mp206~208℃。在紫外365nm下显强烈蓝色荧光推测可能为香豆素类化合物。UVλmax/nm:228,253,298,347(MeOH);240,391(NaOMe);228,253,297,345(AlCl3);228,253,297,345(AlCl3/HCl);226,297,348(NaOAc);226,297,346(NaOAc/H3BO3);由紫外光谱中因加入乙酸钠使吸收峰产生红移且强度增加判断为4,5或7-羟基香豆素。IR(KBr)cm-1:3337(-OH),1703(C=O),1608,1565,1511(Ar),1290,1262,1139,922,861,591。1H-NMR(Acetone-d6,500MHz)δ:8.71(1H,s,-OH),7.84(1H,d,J=9.5Hz,H-4),7.20(1H,s,H-5),6.80(1H,s,H-8),6.17(1H,d,J=9.5Hz,H-3),3.91(3H,s,6-OCH3)。13C-NMR(Acetone-d6,125MHz):161.2(C-2),112.1(C-3),144.6(C-4),109.9(C-5),145.9(C-6),151.8(C-7),103.7(C-8),151.1(C-9),113.3(C-10)。以上数据与文献[4,5]报道的东莨菪内酯基本一致,因此确定化合物3为东莨菪内酯。

化合物4:白色透明方晶(MeOH),mp158~160℃。10%硫酸乙醇显紫色斑点。UVλmaxnm:202(MeOH),203(NaOMe),提示分子中有共轭双键。ESI-MS给出分子量为184。IR(KBr)cm-1:3312(-OH),3000~2500(br.),1680(C=O),1649(C=C),1395,1369(i-pr),1260,1148。1H-NMR(DMSO-d6,400MHz)δ:11.97(1H,s,-COOH),6.85(1H,t,J=2.4Hz,-CH2-CH=C-COOH),4.09(1H,s,-OH),1.05(6H,s,Me2C-O),1.07~2.38(7H,m,H-3,H-4,H-5,H-6)。13C-NMR(DMSO-d6,100MHz):130.2(C-1),139.1(C-2),23.0(C-3),43.8(C-4),24.9(C-5),27.0(C-6),70.2(C-7),27.0(C-8),26.5(C-9),168.1(COOH)。以上数据与文献[6,7]所报道的oleuropeicacid基本一致,故确定化合物4为oleuropeicacid。

化合物5:黄色针晶(MeOH),mp232~234℃。其聚酰胺薄层斑点在紫外灯下呈黄绿色荧光,喷1%醋酸镁甲醇溶液后呈棕黄色。UVλmax/nm:274,354(MeOH);273,383(NaOMe);199,213,268,372(AlCl3);203,338(AlCl3/HCl);205,273,372(NaOAc);205,357(NaOAc/H3BO3);紫外光谱显示含邻二酚羟基。1H-NMR(Acetone-d6+DMSO-d6,400MHz)δ:9.49(1H,s,-OH),9.41(1H,s,-OH),7.88(1H,d,J=9.2Hz,H-4),6.80(1H,s,H-5),6.21(1H,d,J=9.2Hz,H-3),3.83(3H,s,6-OCH3)。氢谱数据和文献[8]报道的秦皮素一致,故确定化合物5为秦皮素。

【参考文献】

[1]黄莹,张德志.细叶杜香乙酸乙酯部位化学成分的研究[J].广东药学院学报,2007,23(6):631-632.

[2]余正文,朱海燕,杨小生,等.毛子草化学成分及其促PC-12细胞的分化作用研究Ⅰ[J].中国中药杂志,2005,30(17):1335-1338.

[3]杜彰礼,殷志奇,叶文才,等.楮叶乙醇提取物石油醚部分的化学成分研究[J].海峡药学,2007,19(5):78.

[4]陈荣,梁敬钰,卢海英,等.青橄榄叶的化学成分研究[J].林产化学与工业,2007,27(2):47.

[5]段朝辉,石宝俊,吴立宏,等.长梗秦艽的化学成分[J].中国天然药物,2007,5(6):418.

[6]PELLEGATAR,VENTURAP,VILLAM,etal.Animprovedprocedureforthesynthesisofoleuropeicacid.I.[J].SyntheticCommunications,1985,15(2):169.

第4篇

针对无机及分析化学实验课程体系的改革对教学内容进行了相应的优化。首先对原有的无机化学实验和分析化学实验内容重新进行整合。对于基础模块和提升模块的实验,保留了原有的经典实验内容,如基本操作实验、化学原理实验、定量分析实验。对于创新模块实验,将原来无机合成和提纯实验与分析测定实验整合为一个综合设计型实验,比如将硫酸铜提纯实验与铜含量测定实验整合,碳酸钠的制备实验与碳酸钠含量测定实验整合。其次,引进了一些贴近生产实际和符合绿色化学理念的新实验。比如,蛋壳中钙、镁含量的测定,茶叶中微量元素的分离与鉴定等。

二、建立小组讨论式实验教学模式,推动学生自主学习

近年来,关于无机及分析化学实验课程教学改革,从理论到实践,各高校都做了大量工作,提出了一系列改革方案,如问题式实验教学模式、研究型实验教学模式、多层次互动型教学模式等,其目的都是为了推动学生自主学习,引导学生主动思考,激发学生的学习积极性。以学生自主学习为主,以教师指导为辅,全面开展面向学生学习的教学设计,把课程学习由课上延伸至课下,融知识传授和能力培养于一体是目前大学课程教学的最新理念。为了把新的教学理念落实到教学实践中去,我校实验班无机及分析化学实验课程采用小组讨论式教学模式开展教学,推动了学生自主学习,实现了知识传授和能力培养的融合,提高了教学质量。小组讨论式教学模式是将学生分为若干小组,从实验预习、实验原理讲解到实验操作、实验报告撰写都由学生自主完成,教师的教学重点放在引导学生思考、深刻理解实验原理和指导学生规范操作上。

1.课前预习

在过去的教学中,学生对预习不积极,走过场,常常把实验教材的内容抄到预习报告上应付了事。由于没有深入思考,对实验原理没有深刻理解,因此难以达到预习的目的。采用小组讨论式教学模式后,小组成员都积极合作,查阅文献,讨论学习实验原理和实验方案,反复演练自己的讲解内容,同时对其他小组可能提出的问题进行分析讨论,分工负责准备解答。这种带着任务去准备的预习模式,激发了学生的学习兴趣,推动了学生自主学习,实现了知识与能力的齐头并进,大幅度提高了预习的效果。

2.课上学生讲解和讨论

课堂上,主讲小组推举一人用10-15分钟时间讲解实验原理和实验方案,同组成员用10分钟的时间回答其他小组提出的问题,最后教师对各组的表现进行点评。这种互动模式,充分调动了学生的学习积极性。因为只有做了充分准备,讲解的同学才能准确地表达,其他小组的同学才能提出问题。老师对各小组表现的点评,更是激发了各小组深刻探讨实验原理和开展实验方案设计的热情和积极性。如在讲解元素性质实验时,各小组需要查阅大量文献,充分讨论每一个反应可能产生的现象和各种产物鉴定的方法等。这样学生才能在实验中知道观察什么,记录什么,实验中的“异常”现象才能被发现,并通过思考找出原因,得出正确结论。教师在这一环节中,需要根据不同实验模块的不同教学目标,有侧重地指导学生学习。如实验课开课初期,学生提不出问题,找不到分析问题切入点,不知理论知识如何在实验中应用。这种情况下,教师要进行具体的引导,使学生学会提出问题和分析问题。在创新模块的教学中,教师应引导学生大胆的提出自己的实验设计方案。

3.实验操作过程

在实验操作环节,教师首先要演示正确规范的实验操作,学生独立完成实验过程。没有规范的基本操作,科研能力和创新能力就无从谈起。在基础模块实验教学中,技能训练是基础,规范操作是关键。无机及分析化学实验是第一门基础化学实验课程,教师必须重视对学生基本实验技能的训练。如大一学生实验中常见的问题有:不会拿滴管,经常倒置,滴管伸到试管里,试剂用量普遍贪多,移液管用拇指操作,滴定管读数不是俯视就是仰视等等。同时还有很多不良的习惯,如实验仪器随意摆放,实验台面又脏又乱,实验操作手忙脚乱,实验记录随意记载到纸片或书上等。针对上述问题,第一阶段教学重点是教给学生规范的实验基本知识和基本技能。而在后续模块教学中,教师要及时纠正学生的不规范操作,严格管理,使规范操作固定下来,并指导学生注重细节,养成良好习惯,培养学生严谨的科学态度。

4.实验结果的分析讨论

实验结束后,教师要检查学生的实验结果,并要求学生课后以小组为单位分析讨论自己的实验现象和数据,最后形成实验结论。过去学生对实验结果讨论不重视,做完实验就完事大吉,也不管得出的结论是否正确,甚至抄袭他人结论。采用课后小组讨论模式,一方面,学生有兴趣比较各自的实验成果,在比较优劣的过程中对实验内容有了更清晰的认识。另一方面,小组讨论集思广益,能够对实验中的正常和异常的实验现象和数据进行充分的分析和讨论。

5.教师评价

在实验课程考核方面注重学生学习过程的评价,制定了实验课程考核标准,引入了小组学习奖励机制。比如,实验课程考核分为平时成绩和期末考试成绩两部分,平时成绩占70%。平时成绩包括实验预习、实验过程和实验报告三部分内容。实验预习的评价主要根据小组讨论环节和预习报告书写情况给分,规定凡是被小组推荐讲解实验、积极提出问题和回答问题的同学,给予奖励加分,小组学习表现突出的小组集体得到加分。实验过程的评价采用扣分法,也就是先给每位同学实验过程分的满分,实验中如果发现问题,老师提出后让同组同学互相讨论纠错,每一位同学有两次纠错机会,第三次再错就会被扣分。实验报告分是根据报告完成情况给分。平时成绩采用上述评价措施,使学生重视每个实验的学习过程,培养了学生探索精神和团队合作精神,引导学生从注重“考试结果”向注重“学习过程”转变,提高了学生的实验能力和创新能力。

三、无机及分析化学实验课程教学改革面临的问题与对策

在实验班无机及分析化学实验课程教学改革中目前仍存在许多不足和面临一些问题。首先,实验硬件条件有限。比如,由于实验室不足,实验班实验往往与普通班统筹安排,因此难以保证所有实验按预定实验模块顺序进行,也难以保证对实验班学生开放实验室做探索实验。针对这些问题,学校应加大对实验班教学改革的支持力度,采取优先安排实验,延长实验室开放时间等措施。其次,在实验教学内容方面应进一步加大创新模块的比重。另外,实验班的师资建设也亟待加强。目前,教师对实验班教学认识不足。比如,对实验班培养目标和培养模式认识模糊,教师参与实验班教学改革积极性不高等。对此,学校应及时对实验班教师进行培训,让他们明确实验班培养目标和培养模式,以便明确教学改革的方向。学校对实验班教学也要建立考核和奖励机制,鼓励教师积极参与实验班教学改革,提高实验班教学质量。

四、结束语

第5篇

关键词:益智;化学成分;药理作用;研究进展

中图分类号:R285 文献标识码:A 文章编号:1674-0432(2011)-04-0310-3

益智为姜科山姜属植物益智(Alpinia oxyphylla Miq.)的干燥成熟果实。药典记载[1]:本品性温味辛,归脾、肾经,有温脾止泻,摄唾涎,暖肾,固精缩尿的功效。用于脾寒泄泻,腹中冷痛,口多唾涎,肾虚遗尿,小便频数,遗精白浊。本研究对近30年来国内外研究者关于益智药材中分离得到的化学成分及主要药理作用研究进展进行了文献综述。

1 化学成分研究

近些年来,国内外学者从益智中陆续分离得到了一些化合物,下面将分别作以概述。

1.1 萜类化合物

圆柚醇[2],圆柚酮(诺卡酮)[2],香橙烯[3],刺参酮[4],7-表-香科酮[4],oxyphyllol A[5],oxyphyllol B[5],oxyphyllol C[5],isocyperol[5],selin-11-en-4α-ol[5],oxyphyllone A[6],oxyphyllone B[6],oxyphyllenone A[7],oxyphyllenone B[7],oxyphyllenodiol A[7],oxyphyllenodiol B[7],oxyphyllone E[8],oxyphyllone F[8],(9E)-humulene-2,3;6,7diepoxide[9],3(12),7(13),9(E)-humulatriene-2,6-diol[9],(E)-labda-8(17),12-diene-15,16-dial[5]。

1.2 甾醇类化合物

β-谷甾醇[10],胡萝卜苷棕榈酸酯[4],β-胡萝卜苷[4],谷甾醇棕榈酸酯[11],豆甾醇[11]。

1.3 二苯庚烷类

益智酮甲[12],益智酮乙[13],益智醇[3],益智新醇[10]。

1.4 黄酮类化合物

白杨素[3],杨芽黄酮(杨芽黄素)[3],izalpinin[5]。

1.5 酚类化合物

异香草醛[9],原儿茶酸[14]。

1.6 其他化学成分

细辛醚[15],(-)-oplopanone[9],(2E,4E)-6-羟基-2,6-二甲基-2,4-庚二烯醛[9],棕榈酸[14],4-methoxy-1,2-dihydrocyclobutabenzene[14]。另外,益智中还含有锌、铜、铁、锰、镍、钴、镁、钙等多种微量元素[16-18]。以及可溶性总糖、粗脂肪、脂肪酸、多种维生素、蛋白质等化学成分。同时益智含有人体所需的16种氨基酸[19],其中有6种是人体必需的氨基酸,占氨基酸总量的38%。

2 药理作用研究

现代药理研究表明:益智主要具有神经保护、抗癌、强心、舒张血管、提高免疫力、抗氧化等作用。

2.1 神经保护作用

于新宇、安丽佳等(2003)研究发现[20]益智果实乙醇提取物对原代培养的鼠神经细胞具有保护作用,对谷氨酸兴奋毒性引起的神经细胞损伤有显著的减轻作用,并能有效地抑制谷氨酸兴奋毒性诱发的神经细胞凋亡。

Koo等(2004)研究发现[21]益智仁水提物对β-淀粉样蛋白(Aβ)介导及局部缺血导致的神经细胞损伤具有明显的保护作用,认为其作用的机理可能是通过清除NO介导的自由基的形成或抑制其毒性。

Wong等(2004)研究发现[22]益智仁的乙醇提取物对神经细胞tau蛋白的磷酸化有抑制作用,tau蛋白磷酸化是老年痴呆症(AD)病人脑中神经纤维缠结形成的重要标志。

安丽佳、关水等(2006)研究发现[23]益智仁的乙酸乙酯提取物中分离到的具有神经保护作用的活性成分-原儿茶酸可对抗PC12细胞中MPP+诱导的神经毒性。原儿茶酸可能是益智仁的初始活性成分之一,为氧化作用诱导神经性疾病例如帕金森病的治疗提供了一种有用的治疗方法。同年关水、安丽佳等(2006)又研究发现[24]益智中原儿茶酸对由过氧化氢诱导的PC12细胞氧化死亡具有保护作用,提示PCA可能是治疗由氧化应激诱导的神经退化疾病的候选药物。

刘楠等(2007)研究发现[25]益智果实乙醇提取物及乙醇提取物中除正丁醇部位外的氯仿部位,乙酸乙酯部位均具有拮抗谷氨酸兴奋性毒性的作用,表明了这些部位具有神经保护活性。从益智中分离得到的化合物除胡萝卜苷和胡萝卜苷棕榈酸酯外其他化学成分如β-谷甾醇,杨芽黄素,益智酮甲,Oxyphyllol C,Oplopanone,7-Epi-teucrenone都具有神经保护活性,其中β-谷甾醇活性最强。

2.2 抗癌作用

Hidji Itokawa等(1979)研究发现[26]益智的水抽提物对鼠的腹水型肉瘤细胞增长有抑制作用。Lee E等(1998)研究发现[27]益智仁的甲醇提取物可抑制小鼠皮肤癌细胞的增长及诱导HL-60细胞凋亡。

Chun KS等(2002)研究发现[28],益智酮甲、益智酮乙能够抗十四烷佛波醇酯(一种致皮肤癌物质TPA)引起的炎症,从而抑制表皮鸟氨酸脱羧酶的活性和抑制母鼠皮肤癌细胞的增长。并表明从益智中分到的这些二苯基庚烷类化合物的抗肿瘤活性和它们的抗炎作用密切相关。Chun KS等(2002)进一步研究表明[29],益智酮甲和益智酮乙通过抑制由TPA诱导的皮肤癌恶化过程中存在的NF-KappaB,2-加氧酶和iNOS(诱导型一氧化氮合酶)的活性而达到其抗肿瘤的目的。

2.3 对心血管系统的作用

Shoji N等(1984)研究发现[30]益智的甲醇提取物对豚鼠左心房有很强的正性肌力作用,随后Shoji N等从益智的乙酸乙酯部位分到一个具有强心作用的二苯基庚烷类成分益智酮甲,研究其机理后发现,该化合物具有强心作用可能是因为其可以抑制心肌的钠泵、钾泵。Shoji N等又发现益智的甲醇提取部位在兔的大动脉中有拮抗钙活性作用[31],分到其中的活性成分圆柚醇,并将此化合物申请专利,注册为血管舒张药。

2.4 对免疫系统的影响

Kim S H等(2000)[32]研究发现益智的水提取部位经腹腔或口服给药对免疫球蛋白E介导的过敏性反应有较强的抑制作用,静脉给药则表现一般,同时指出这种现象应与活性成分在人体内的代谢途径有关联。Shin T Y等(2001)研究发现[33]益智的水提取部位对化合物48/80介导的非特异性过敏反应具有抑制作用。

Osamu Muraoka等(2001)研究发现[7]从益智种子甲醇提取部位分离得到的化合物oxyphyllenodiol A和oxyphyllenone A对脂多糖(LPS)活化鼠腹膜巨噬细胞中产生的NO具有抑制作用。

Morikawa等(2002)研究发现[5]益智全果80%丙酮水提取物除对脂多糖(LPS)活化鼠腹膜巨噬细胞中产生的NO具有抑制作用外,还具有抑制由抗原诱导的RBL-2H3细胞脱粒作用。进一步研究其80%丙酮水提取物的乙酸乙酯部位、正丁醇部位和水层部位发现,乙酸乙酯部分具有抑制NO和抑制β-己糖胺酶释放的作用,而正丁醇和水层部位则没有这两种活性。并发现乙酸乙酯部位中可以抑制NO作用的9个活性成分:7个倍半萜类成分包括oxyphyllol A、圆柚酮、selin-11-en-4α-ol、isocyperol、oxyphyllenodiol A、oxyphyllenone A、1个未命名倍半萜类成分,1个二萜类成分为(E)-labda-8(17),12-diene-15,16-dial和1个黄酮类成分为杨芽黄酮;另外,发现可以显著抑制由RBL-2H3细胞释放的β-己糖胺酶的5种活性成分:2个倍半萜类成分为圆柚酮、selin-11-en-4α-ol,1个二萜类成分为(E)-labda-8(17),12-diene-15,16-dial,2个黄酮类成分为杨芽黄酮和izalpinin。

2.5 抗氧化作用

Shirota,Sachiiko等(1994)研究发现[34]益智酮乙、姜黄素可完全抑制酶的活性,二者抑制酪氨酸酶的活性强于益智酮甲和丁香酚。

Kyung-Soo Chun等(1999)研究发现[35]益智酮甲和益智酮乙可抑制人类HL-60细胞中由TPA刺激引起的TBA和超氧阴离子的产生。

彭伟文等(1998)研究分析[36]高良姜、大良姜、益智、砂仁对亚油酸自动空气氧化的抑制作用情况,发现益智有明显的抗氧化作用。

李克才等(1999)研究发现[37]益智仁对水蚤的生长、发育、繁殖均有较为显著的促进作用,对水蚤的寿命有延长作用。

阳辛凤等(2001)研究发现[38]益智及益智酒分别具有较高的清除过氧化氢、羟自由基的活性,并发现发酵有助于提高益智对羟自由基的清除作用。

易美华等(2002)研究发现[39-40]益智仁经提取挥发油后的渣及益智茎、叶的提取物对猪油脂质均有较强的抗氧化作用;对超氧阴离子自由基均有清除作用,清除能力大小顺序为:益智的叶、益智的茎、提取挥发油后的益智种子。

安丽佳、关水等(2006)研究发现[23]原儿茶酸具有提高PC12细胞的SOD和CAT酶活性的作用,也可以减少H2O2或钠硝基氢氰酸盐(SNP)引发PC12细胞的死亡。

刘红等(2006)研究发现[15],益智超临界二氧化碳提取物和正丙醇提取物中的总酚含量最高,抗氧化能力强;乙酸乙酯提取物的黄酮含量最高,清除DPPH自由基和还原力强;益智丙酮提取物清除自由基效果最好的化合物依次为益智酮甲、圆柚酮、细辛醚,且益智酮甲的抗氧化性优于圆柚酮。

3 小结

本文对近三十年来国内外研究者关于益智药材中的化学成分及主要药理作用方面的研究进展进行梳理与总结,发现目前从益智中得到的化学成分不多,主要以倍半萜类成分为主,其次为甾醇类、二苯庚烷类、黄酮类及酚类成分;目前对于益智药理作用的研究主要关注于其具有的神经保护作用,其次还关注于抗癌、强心、舒张血管、提高免疫力、抗氧化等作用。

参考文献

[1] 中国药典委员会.中华人民共和国药典(一部)[S].北京:化学工业出版社,2010:273-274.

[2] Shoji N,Umeyama A,Asakawa Y et al.Structural determination of nootkatol,a new sesquiterpene isolated from Alpinia oxyphylla Miquel possessing calcium-antagonistic activity[J].J Pharm Sci,1984,73(6):843-844.

[3] 罗秀珍,余竞光,徐丽珍,等.中药益智化学成分的研究[J].药学学报,2000,35(3):204-207.

[4] 刘楠,于新宇,赵红,等.益智仁化学成分研究[J].中草药,2009,40(1):29-32.

[5] Toshio Morikawa,Hisashi Matsuda,Iwao Toguchida,et al.Absolute stereostructures of three new sesquiterpenes from the fruit of Alpinia oxyphylla with inhibitory effects on nitric oxide production and degranulation in RBL-2H3 cells[J].J.Nat.Prod.2002,65(10):1468-1474.

[6] Xu Jun Ju,Tan Ning Hua,Xiong Jiang et al.Oxyphyllones A and B,novel sesquiterpenes with an unusual 4,5-secoeudesmane skeleton from Alpinia oxyphylla[J].Chinese Chemical Letters,2009,20(8):945-948.

[7] Osamu Muraoka,Manabu Fujimoto,Genzoh Tanabe et al.Absolute stereostructures of novel norcadinane-and trinoreudesmane-type sesquiterpenes with nitric oxide production inhibitory activity from Alpinia oxyphylla[J].Bioorg Med Chem Lett,2001,11(16):2217-2220.

[8] Xu Junju,Tan Ninghua,Zeng Guangzhi,et al.Two new norsesquiterpenes from the fruits of Alpinia oxyphylla[J].Chinese Journal of Natural Medicines,2010,8(1):0006-0008.

[9] 徐俊驹,谭宁华,曾广智,等.益智仁化学成分的研究[J].中国中药杂志,2009,34(8):990-993.

[10] 张起凤,罗仕德,王惠英,等.中药益智仁化学成分的研究[J].中草药,1997,28(3):131-133.

[11] 王治元.干姜和益智仁化学成分研究[D].安徽大学生物化学与分子生物学硕士学位论文,2010.05.

[12] Hideji Itokawa,Ritsuo Aiyama,Akira Ikuta A.A pungent diarylheptanoid from Alpinia oxyphylla[J].Phytochemistry,1981,20(4),769-771.

[13] Hideji Itokawa,Ritsuo Aiyama,Akira Ikuta A.A pungent principle from Alpinua oxyphylla[J].Phytochemistry,1982,21(3):241-243.

[14] 关水.益智仁中原儿茶酸对PC 12细胞保护作用研究[D].大连理工大学博士学位论文,2006.06.

[15] 刘红.益智的抗氧化作用及成分研究[D].华南理工大学博士学位论文,2006.06.30.

[16] 梁本恒,伍建东,刘闯飞.益智的微量元素含量[J].中国中药杂志,1990,15(4):38-40.

[17] 汪锦邦,付晴鸥,乔太生,等.益智果实的成分分析[J].中国中药杂志,1990,15(8):44-45.

[18] 徐鸿华,邓沛峰,林励,等.我院引种栽培“南药”及其部分品种的药材质量评价[J].广州中医学院学报,1991,8(21):231.

[19] 李远志,简洁莹.益智的主要化学成分分析及毒理学分析[J].华南农业大学学报,1996,17(2):l08-111.

[20] Yu Xinyu,An Lijia,Wang Yongqi,et al.Neuroprotective effect of Alpinia oxyphylla Miq. fruits against glutamate-induced apoptosis in cortical neurons[J].Toxicol Lett,2003,144(2):205-212.

[21] Koo B S,Lee W C,Chang Y C,et al.Protective effects of Alpinae Oxyphyllae Fructus (Alpinia oxyphylla MIQ) water-extracts on neurons from ischemic damage and neuronal cell toxicity[J].Phytother Res,2004,18(2):142-148.

[22] Wong K K,Wan C C,Shaw P C.Ethanol extract of Alpinia oxyphylla fructus shows inhibition of tau protein phosphorylation in cell culture[J].Neurobiol Aging,2004,25(2):595.

[23] An Li Jia,Guan Shui,Shi Gui Fang,et al.Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 ce1ls[J].Food Chem Toxicol.2006,44(3):436-443.

[24] Guan Shui,Bao Yong-Ming,Jiang Bo,et al.Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death[J].European Journal of Pharmacology,2006(538):7379.

[25] 刘楠.益智仁化学成分的研究[D].辽宁中医药大学硕士论文,2007.06.01.

[26] Hidji Itokawa.Screening test for antitumor activity of crude drugs.Shoyakugaku Zasshi,1979,33:95-98.

[27] Lee E,Park KK,Lee JM,et al.Suppression of mouse skin tumor promotion and induction of apoptosis in HL-60 cells by Alpinia oxyphylla Miquel(Zingiberaceae)[J].Carcinogenesis,1998,19(8):1377-1381.

[28] Chun K S,Park K K,Lee J,et al.Inhibition of mouse skin tumor promotion by anti-inflammatory diarylheptanoids derived from Alpinia oxyphylla Miquel(Zingiberaceae)[J].Oncol Res,2002,13(1):37-45.

[29] Chun K S,Kang J Y,Kim O H,et al.Effects of yakuchinone A and yakuchinone B on the phorbol ester-induced expression of COX-2 and iNOS and activation of NF-kappaB in mouse skin[J].J Environ Pathol Toxicol Oncol,2002,21(2):131-139.

[30] Shoji N,Umeyama A,Takemoto T,et al.Isolation of a cardiotonic principle from Alpinia oxyphylla[J].Planta Med.,1984,50(2):186-187.

[31] Shoji N.,Umeyama A.,TakemotoT,et al.Separation of a cardiotonic principle from Alpinia oxyphylla[J].Planta Med.,1984,50:186-187.

[32] Kim S H,Choi Y K,Jeong H J,et al.Suppression of immunoglobulin E-mediated anaphylactic reaction by Alpinia oxyphylla in rats[J].Immunopharmacol Immunotoxicol,2000,22(2):267-277.

[33] Shin T Y,Won J H,Kim H M,et al.Effect of Alpinia oxyphylla fruit extract on Compound 48/80-induced anaphylactic reactions[J].Am J Chin Med,2001,29(2):293-302.

[34] Shirota,Sachiko.Tyrosinase inhibitors from crude drugs[J].Biol.pharm.Bull,1994,17:766-769.

[35] Kyung-Soo Chun,Yeowon Sohn,Ho-Shik kim,et al.Antitumor Promoting potential of naturally occurring diarylheptanoids structurally related to Mutation Research,1999,428:49-57.

[36] 彭伟文,洪晖箐.几味姜科和豆科类中药抗氧化性能的研究[J].时珍国药研究,1998,9(2):146.

[37] 李克才.益智仁对水蚤寿命的影响[J].生物学杂志,1999,

(4):20.

[38] 阳辛凤,利美莲.益智与益智酒抗氧化活性的研究.华南热带农业大学学报,2001,7(3):20-23.

[39] 易美华,薛献明,肖红,等.益智提取物对油脂抗氧化作用研究[J].海南大学学报(自然科学版),2002,(1):28.

[40] 易美华,肖红,尹学琼,等.益智提取物对超氧阴离子自由基清除作用研究.中国食品学报,2002:2(4):21-24.

第6篇

【摘要】 白花泡桐[Paulownia. Fortunei (Seem.) Hemsl.]为玄参科泡桐属(Paulownia)植物,落叶乔木,全国几乎均有分布,野生或栽培,是常用的中草药,其花、叶、皮、根、果古时对其就有药用记载,可用于治疗炎症、病毒感染、跌打损伤等多种疾病。白花泡桐花的化学成分除挥发油部分外,未见报道。本文对泡桐属植物化学成分及生物活性进行总结,为开发利用植物资源、研究植物生物活性提供了一定的科学依据。

【关键词】 泡桐属;化学成分;生物活性

玄参科泡桐属Paulownia植物,全属共有7种,分别是白花泡桐[P.fortunei(Seem.)Hemsl.],毛泡桐[P.tomentosa(Thunb.)Steud.],兰考泡桐(P.elongata S.Y.Hu),椒叶泡桐(P.catalpifolia Gong Tong),台湾泡桐(P.kawakamii Ito),川泡桐(P.fargesii Franch.)和南方泡桐(P.australis Gong Tong),光泡桐[P.tomentosa var. tsinlingensis (Pai)Gong Tong]是毛泡桐的变种。除东北北部、内蒙古、新疆北部、西藏等地区外全国均有分布,栽培或野生。白花泡桐在越南、老挝也有分布,有些种类已在世界许多国家引种栽培。作为一种优质木材,它不仅在工农业方面有广泛用途,同时它还是一种常用的中草药,其花、叶、皮、根、果古时就有其药用记载。如《本草纲目》记述:“桐叶……主恶蚀疮著阴,皮主五痔,杀三虫。花主傅猪疮,消肿生发[1]。” 《药性论》也言:“治五淋,沐发去头风,生发滋润。”近年来医学研究发现其主要作用有:抗菌消炎,止咳利尿,降压止血,同时还具有杀虫作用。

1 化学成分

泡桐属植物的化学成分研究始于20世纪30年代初。日本学者最先对泡桐属植物的化学成分进行了研究,1931年Masco Kazi等从泡桐叶的树皮和树叶中分离得到糖苷类化合物[2,3] 。1959年,Kazutoru Yoneichi研究了桐木中的木脂素成分,分离得到了丁香苷。随着科学技术的发展,各种色谱分离方法和现代波谱技术应用于天然产物的研究,从泡桐属植物中不断发现新化合物。该属植物中所含化学成分类型主要有环烯醚萜苷、苯丙素、木脂素苷、黄酮、倍半萜、三萜等。其中许多化合物被证明具有一定的生物活性。

1.1 苯丙素类化合物 苯丙素类化合物在泡桐属植物中分布较为广泛。主要有:(1)木脂素(四氢呋喃骈四氢呋喃类):细辛素(d-Asarinin)[4],芝麻素(d-Sesamin)[5],泡桐素(Paulownin)[6],异泡桐素(Isopaulownin)、(+)-Piperitol[7]等。(2)苯丙素酚类:Verbascoside[8],Isoverbascoside[9]。

1.2 环烯醚萜类 富含环烯醚萜类成分是泡桐属植物的一大特征,在该属植物中多以成苷的形式出现,广泛分布于桐木、桐皮、桐叶中,花中还未见文献报道。泡桐属中的环烯醚萜成分具有九碳骨架(即C-4去甲基)的环戊烷型、环戊烯型和7,8环氧戊烷型,显示了其在植物分类学上的意义。其取代基位置比较固定,一般1位羟基与1分子葡萄糖成苷,8位为甲基或羟甲基。另外,Soern等从成年毛泡桐的叶部获得两个5,6位为双键的环烯醚萜苷,同时,他还发现成年和幼年的毛泡桐中环烯醚萜苷成分有所不同[10~14]。

1.3 倍半萜类 李志刚等[15]从毛泡桐的花中分到7个落叶酸型的倍半萜,为首次从该属植物中分到倍半萜类化合物,可能与该类激素促进开花,抑制种子发芽有关, 其他部分未发现。

1.4 甘油酯类 杜欣等[16]从毛泡桐的花中还分到了甘油酯类的化合物及其苷。

1.5 其他成分 从该属植物中还分离出黄酮类、二氢黄酮类、三萜(主要为熊果酸及其苷[17])、生物碱、多酚、单糖、鞣酸、脂肪酸等多种成分。另外,栗原滕三郎和宋永芳等[18]对泡桐花的精油成分作了色谱、质谱分析,研究了其中的蛋白质、氨基酸、微量元素等营养成分,利用GC/MS技术鉴定出许多长链及芳香族化合物。

1.6 植物激素 王文芝等[19]对河南兰考泡桐的根、茎、叶中的植物激素进行了研究,利用HPLC技术分离鉴定出了激动素、反式玉米素、激动素核酸等8种激素。

2 生物活性

2.1 抗菌作用 芝麻素对结核杆菌有抑制作用[20],而泡桐花及其果实的注射液(醇提取后用醋酸铅沉淀去杂质制成),体外实验时对金黄色葡萄球菌及伤寒杆菌、痢疾杆菌、大肠杆菌、绿脓杆菌、布氏杆菌、革兰菌、酵母菌等均有一定的抑制作用[4]。从泡桐属植物中分到的紫葳新苷Ⅰ对金黄色葡萄球菌和乳链球菌均有抑制作用,最小浓度为150μg/ml,并认为其角甲基是抗菌必要基团[21]。魏希颖等将泡桐花的黄酮提取物作了体外抑菌实验,发现其对金黄色葡萄球菌作用最强,而对黑曲霉、啤酒酵母、产黄青霉无明显的抑制作用[22]。

2.2 治疗气管炎 泡桐果及花治疗慢性气管炎有一定疗效,临床治疗1341例,有效率为81%,其中临床控制率7%,显效25%[23]。

2.3 消炎作用 泡桐花可用于治疗炎症感染,临床报道用其治疗16种疾病计244例,均有一定疗效,其中对上感、支气管肺炎、急性扁桃体炎、菌痢、急性肠炎、急性结膜炎的疗效较好,治疗中未发现不良反应和副作用[4]。实验中通过观察泡桐花浸膏对哮喘豚鼠肺病理组织学的影响发现泡桐花浸膏能明显延长豚鼠诱喘潜伏期,优于地塞米松(P

2.4 止血作用 泡桐属植物中所含丁香苷有明显止血作用。本品注射液用于手术70例,良效(明显止血)30例,占42.9%,有效(出血减少)26例,占37.1%,无效14例[26]。

2.5 毒性研究 小鼠口服泡桐果乙醇提取物半数致死量为21.4g生药/kg。大鼠口服2g/(kg·d),共21天,一般情况及体重均无异常,内脏病理检查未见中毒性病理形态改变。家兔急性、亚急性毒理实验中,泡桐果煎剂对心、肝、肾、脾、胃均无毒性病理改变。家兔灌服泡桐花浸膏或静脉注射,一般情况及食欲、体重、白细胞等均无明显变化,成人口服上述浸膏或肌肉注射,自觉症状、体温、脉搏及白细胞数等均无明显改变,但有轻度血压下降[4]。已有报道苯丙素苷具有抗菌、抗病毒、抗肿瘤、清除自由基、延缓骨骼肌疲劳、DNA碱基修复、抗凝血、抗血小板凝聚等多种生理活性。从泡桐属植物的树皮和茎部分离得到一个新的呋喃醌酮(methyl-5-hydroxy-dinaphtho[1,2-2′,3′]furan-7,12- dione-6-carboxylate),对hela癌细胞有抑制作用,对polio病毒的brunhildeⅠ型EC50为0.1μg/ml对leonⅢ型EC50为0.1μg/ml[27]。另外,咖啡酸的糖酯类化合物被认为与该植物的颜色改变有关[28]。

2.6 杀虫作用 泡桐素、芝麻素可增强杀虫剂除虫菊酯的杀虫作用,可有效杀灭蚊蝇及其幼体[29]。

2.7 其他作用 泡桐属植物还具有止咳、平喘、祛痰、治手足癣与烧伤、消肿、生发等功效[4]。

从以上可知,泡桐属植物化学成分疗效显著且具多样化,但对该属植物的成分研究多集中于毛泡桐种,其他种涉及较少,而对部位的研究则多为桐叶,皮、根,茎次之,花研究的最少。对生物活性的研究则不够深入,其有效部位及有效成分有待进一步确定。

转贴于 参考文献

1 中国科学院.中国植物志.北京:科学出版社,1979,67(2):28.

2 Masao Kazi,Tokiti Simabayasi.A glucoside from Paulownia. Japan, 1931, 93;735;27.

3 Koiti Iwadare. Lignin.Ⅱ.Ligin of Paulownia imperialis. J Chem Soc Japan, 1941,62:186-189.

4 江苏新医学院编.中药大词典.上海:上海科学技术出版社,1977.

5 Kijjoa A,Kitirattrakarn T,Anantachoke C. Preliminary study of chemical constituents of Paulownia Taiwaniana. Kasetsart J,1991,25(4):430-433.

6 Kotaro Takagawa.Constituents of medical plants Ⅳ structure of paulownin,a component of wood of Paulownia tomentosa.Yakugaku Zasshi, 1963, 83: 1101-1105.

7 Hiroji,Mayumi O,Yutaka S, et al.(+)-Piperitol from Paulownia tomentosa. Planta Medica,1987,53(5):504.

8 Schilling G,Hugel M,Mayer W. Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Z.,Naturforsch ,B:Anorg Chem Org. Chem,1982,37B(12):1633-1635.

9 Sticher I,Lahloub MF.Phenolic glycosides of Paulownia tomentosa bark. Planta Medica,1987,46(3):145-148.

10 Damtoft Soren. Biosyntheses of catalpol. Phytochemistry, 1994, 35(5): 1187-1189.

11 Hegnauer R, Kooiman P. The taxonomic significance of iridoids of tubiflorae sensu wettstein.Planta Medica, 1978,33(1):1-33.

12 Adriani C,Bonini C,Iavarone C,et al. Isolation and characterization of paulownioside,a new highly oxygenated iridoid glucoside from Paulownia tomentosa.J Nat Prod, 1981,44(6):739-744.

13 Soren D,Soren RJ. Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry, 1993, 34(6): 1636-1638.

14 Soeren D.Biosynthesis of catalpol. Phytochemistry, 1994, 35(5): 1187 -1189.

15 李志刚.毛泡桐花化学成分.兰州大学硕士学位论文. 2001.

16 杜欣.毛泡桐花的化学成分研究.兰州大学硕士学位论文,2003.

17 Yoshihisa T,Sadao K,Kotaro T,et al. Constituents of medical plants Ⅲ Constituents of leaves of Paulownia tomentosa and Rhododendron kaempferi. Kauazwa Daigaku Yakugakubu Keukgu Nempo,1962,12:7-14.

18 宋永芳,罗嘉梁,倪善庆,等. 泡桐花的化学成分研究.林产化学与工业, 1990,10(4):269.

19 王文芝.反向高效液相色谱分离泡桐中的植物激素.分析化学,1984, 12(6): 531.

20 国家医药管理局中草药情报中心.植物药有效成分分离手册.北京:人民卫生出版社,1980.

21 White PJ.Separation of K+- and Cl-- selective ion channels from rye roots on a continuous sucrose density gradient.J Exp Bot,1995,46(285):361-376.

22 魏希颖,何悦,蒋立锋,等.泡桐花体外抑菌作用及黄酮含量的测定. 天然产物研究与开发,2006,18:401-404.

23 河南医学院,等.泡桐果及花治疗慢性气管炎的临床疗效和实验研究.河南医学院学报,1975,1:26-28.

24 张永辉,刘宗花,杜红丽,等.中药泡桐花浸膏对哮喘豚鼠肺组织作用的病理学研究.新乡医学院学报,2002,19(6):473-475.

25 李寅超,赵宜红,李寅丽,等. 泡桐花总黄酮抗BALB / c小鼠哮喘气道炎症的实验研究. 中原医刊,2006,33(19):16-17.

26 谢培山,杨赞熹. 救必应化学成分的研究—止血成分救必应乙素的分离、鉴定. 药学学报,1980,15 (5): 3-7.

27 Kang KH,Huh HK,Bak K. An antiviral furanoquinine from Paulownia tomentosa Steud. Phytother,1999,13(7):624-646.

第7篇

【关键词】 姜黄;化学成分;药效;物质基础;综述

姜黄始载于《新修本草》,“叶根都似郁金,花春生于根,与苗并出,夏花烂,无子,根有黄、青、白三色。其做之方法与郁金同尔。西戎人谓之蒁药”。此段记载说明当时姜黄应为姜黄属多种植物。《植物名实图考》载:“姜黄,《唐本草》始录……其形状全似美人蕉而根如姜,色及黄,气微辛。”所述与今之姜黄(Curcuma Longa L.)相符,说明清代姜黄即为Curcuma Longa L.的根茎[1]。2010年版《中华人民共和国药典》(以下简称“《药典》”)规定,姜黄为姜科植物姜黄(Curcuma longa L.)的干燥根茎,冬季茎叶枯萎时采挖,洗净,煮或蒸至透心,晒干,除去须根。中医认为,姜黄性温,味辛、苦,归脾、肝经,具有破血行气、通经止痛的作用;临床用于胸胁剌痛,闭经,癥瘕,风湿肩臂疼痛,跌扑肿痛。主要产于我国四川、广东、福建、江西、广西等地,传统认为四川犍为、双流,广东佛山为道地产区[2]。除我国外,在东南亚国家(如印度、印尼、尼泊尔等)及南美国家(如牙买加、秘鲁等)也作为天然药物或食品添加剂广泛应用。在印度的传统医学(Ayurveda)中,姜黄(Haldi)被认为具有健胃、滋补、净化血液之功,具有治疗皮肤病、调节肝胆等方面的作用[3],与中医对姜黄的认识有许多共同之处。迄今,国内外对姜黄的化学成分、药理活性均具有广泛研究。自19世纪发现姜黄素类成分以来,对姜黄的研究从未中断,尤其是随着高分辨液质、气质分析技术的应用,分析鉴定了姜黄中许多微量成分。笔者现结合国内外有关文献,对姜黄(Curcuma longa L.)的化学成分研究进展进行综述,为姜黄的研究提供参考。

1 姜黄素类

姜黄色素(curcuminoid)类物质是一种从姜黄根茎中提取得到的黄素,其母核结构为二苯基庚烃类,有酚性与非酚性之分。目前认为,姜黄色素类成分是姜黄的主要活性成分,其中姜黄素(Curcumin)是最主要的,约占姜黄色素的70%,这一类化合物还包括脱甲氧基姜黄素(10%~20%)、脱二甲氧基姜黄素(10%)。有研究发现,姜黄素在植物姜黄(Curcuma longa L.)中的分布很不平衡,在根茎(中药姜黄药用部位)中含量较高(大于2%),在块根(黄丝郁金药用部位)中含量较低(0.023%左右)[4]。除以上主要成分之外,一些研究者利用制备液相或液质

联用分析鉴定了姜黄中一系列微量的姜黄素类成分,并对姜黄素类成分的构效关系进行了研究,可归纳为:姜黄色素类成分母核结构有12种(M1~M12),两端的取代基主要有4种(Ar1~Ar4),见图1、表1。图1 姜黄素类化合物母核结构及取代基表1 姜黄中姜黄素类成分

对姜黄素类成分构效关系的研究表明,姜黄素母核结构中β-二酮把两端的不饱和结构连接起来,降低了分子的极性,增加了对细胞膜的渗透性,并且两端苯基上的酚羟基位于苯环的对位时,对于其活性也是十分必要的[10]。在抗炎、抗寄生虫方面,母核中的β-二酮所连接的长链不饱和结构对于其活性具有重要意义[11-12]。

2 萜类化合物

姜黄富含挥发油,被认为是抗炎、杀菌的药效物质基础。《药典》规定,姜黄药材挥发油含量不低于7%(mL/g)。有文献报道,采用水蒸气蒸馏法考察不同产地姜黄挥发油的含量,结果变化范围较大[13],有些样品挥发油含量为2%左右。姜黄挥发油中的主要成分为倍半萜(sesquiterpene)和单萜类化合物(monoterpene),其结构类型主要有:吉马烷型、愈创木烷型、蒈烷型、桉烷型、没药烷型、榄香烷型、苍耳烷型等[14]。

1975年,Malingre等[15]报道了姜黄中p-cymene、b-sesqui phellandrene、turmerone、arturmerone and sesquiterpene等成分,直到现在,国内外还不断有研究者从姜黄中分离得到新的倍半萜或单萜类化合物。王氏等[16]从姜黄的块茎中分离得到7个没药烷型倍半萜2,5-dihydroxybisabola-3,10-diene, 4,5-dihydroxybisabola-2,10-diene,turmeronol A,bisacurone, bisacurone A,b-isacurone B。曾氏等[17]从姜黄中分离得到6个倍半萜类化合物,分别为:turmeronol A,turmeronol B, bisabolone,8-hydroxyl-ar-turmerone,bis abolone-9-one, (6S)-2-methyl-6-[(1R,5S)-(4-methene-5-hydroxyl-2-cyclohexen)-2-hepten-4-one]。李氏等[18]从姜黄乙醇提取物中分离得到2个新的倍半萜和1个新的单萜,分别为2-methoxy-

5-hydroxybisabola-3,10-diene-9-one和2,8-epoxy-5- hydroxybisabola-3,10-diene-9-one和2-(2,5-dihydro xy-4- methylcyclohex-3-enyl)propanoic acid。Yong Chi Zeng等[9]从姜黄根茎中分离得到5个新的倍半萜类化合物,其中一个具有新的骨架,2个骨架为没药烷型,2个为Calebin的衍生物。

此外,更多的报道是,利用GC-MS对姜黄挥发油中的萜类进行定性、定量分析。其中NY Qin等[19]采用GC-MS外标法对姜黄的根茎(中药姜黄)和块根(中药黄丝郁金)中ar-Curcumene、ar-Turmerone、α-Turmerone、β-Turmerone进行了测定。结果显示,姜黄根茎中以上成分含量均高于块根,根茎中4种成分含量范围分别为2~3、7~13、14~22、17~31 mg/g原药材。由于提取方法、样本来源不同,所以,每篇文献中挥发油的分析结果均不尽相同。以下对国内外关于姜黄挥发油的文献进行了归纳,列举了挥发油中主要的萜类成分结构和相对含量,见图2、表2。图2 姜黄中主要萜类化合物结构表2 姜黄中主要萜类化合物及在挥发油中的相对含量

3 其他化合物

3.1 生物碱类

王氏等[16]从姜黄块根中分离得到1个喹啉类生物碱2-(2’-methyl-1’-propenyl)-4,6-dimethyl-7-hydroxyquinoline。

3.2 有机酸类

刘氏[29]从姜黄中分离得到琥珀酸(Butanedioieaci),环二十二酸内酯。

3.3 糖类

Masashi Tomoda[30]采用热水提取,葡聚糖凝胶-琼脂糖凝胶纯化,从姜黄水提液中得到多糖类成分,该类成分具有提高免疫、增强网状内皮组织对碳的清除率作用。通过化学和光谱分析发现姜黄多糖具有以下特点:α-l-arabino-3,6-β-d- galactan,α-1,3-Linked l-arabinopyranose,β-3,4-branched d-xylose,α-1,4-linked d-glucose,α-2,4-branched l-rhamnose and α-1,4-linked d-galacturonic acid。

3.4 微量元素

张氏等[31]对各种郁金中的微量元素进行了分析,其中姜黄的块根(黄丝郁金)中含有人体所需微量元素铜、铁、锌、锰、钴等,与其他品种郁金无明显差异。

此外,易氏等[32]从姜黄的块根(黄丝郁金)中分离得到阿魏酸和阿魏酸乙酯。Majeed[33]研究表明,用热水煎煮姜黄素(curcumin),可使其分解转化为香草醛和阿魏酸。

4 讨论

笔者主要对新发现的微量姜黄素类成分和萜类成分进行了综述,对姜黄素类成分的构效关系、挥发油中主要萜类成分的构成和比例进行了小结。目前认为,这两类成分为姜黄素的主要活性成分。姜黄素的药理活性主要集中在抗病毒、抗肿瘤、抗氧化、利胆、降血脂方面,而挥发油的药理活性主要集中在抗炎、抗菌方面,与中医对姜黄的论述“破血行气、通经止痛,用于胸胁刺痛、经闭、癥瘕、风湿肩臂疼痛、跌扑肿痛”基本一致。姜黄素类成分和挥发油类成分均为脂溶性成分,因此,在中医传统用药方式汤剂中溶出率较低。有文献报道,姜黄中的多糖类成分在免疫系统方面具有明显作用,因此,姜黄多糖也可能为姜黄的主要药效物质基础[30,34]。但由于多糖类成分在化学分离、鉴定方面存在难度,因此,迄今的研究文献相对较少。

参考文献

[1] 国家中医药管理局中华本草编委会.中华本草:第8分册[M].上海:上海科技出版社,1999:632-636.

[2] 郑虎占.中药现代研究与应用[M].北京:学苑出版社,1997:3436.

[3] GK Jayaprakasha, L JaganMohan Rao, KK Sakariah. Chemistry and biological activities of C. longa[J]. Trends in Food Science & Technology,2005,16:533-548.

[4] 夏文娟,肖小河,苏中武,等.国产姜黄属植物的化学成分分析[J].中国中药杂志,1999,24(7):423-447.

[5] 李伟,肖红斌,王龙星,等.高效液相色谱-串联质谱法分析姜黄中微量的姜黄素类化合物[J].色谱,2009,27(3):264-269.

[6] Hongliang Jiang, Barbara N Timmermanna, David R Gang. Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome[J]. Journal of Chromatography A,2006,1111:21-31.

[7] So-Young Park and Darrick SHL Kim. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult:A drug discovery effort against Alzheimer’s disease[J]. Journal of Natural Products,2002,65(9):1227-1231.

[8] Kiuchi F, Iwakami S, Shibuya M, et al. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids[J]. Chemical and Pharmaceutical Bulletin,1992,40:387-391.

[9] Yong Chi ZENG, Feng QIU, Kyoko Takahashi, et al. New Sesquiter penes and calebin derivatives from Curcuma longa[J]. Chem Pharm Bull, 2007,55(6):940-943.

[10] Kim, DS HL, Kim, JY. Total synthesis of calebin-A, preparation of its analogues, and their neuronal cell protectivity against b-amyloid insult[J]. Bioorganic and Medicinal Chemistry Letters, 2001,11:2541-2543.

[11] Araujo CA, Alegrio LV, Gomes DC,et al. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis[J]. Mem Inst Oswaldo Cruz,1999,94:791-794.

[12] Claeson P, Pongprayoon U, Sematong, et al. Non-phenolic linear diarylheptanoids from Curcuma xanthorrhiza:A novel type of topical anti-inflammatory agents:Structure activity relation ship[J]. Planta Medica,1996,62:236-240.

[13] 陈晋红,李伟荣,刘大伟,等.姜黄药材中有效成分含量测定[J].中药新药与临床药理,2009,20(3):253-255.

[14] 葛跃伟,高慧敏,王智民.姜黄属药用植物研究进展[J].中国中药杂志, 2007,32(23):2461-2467.

[15] Malingre TR. Curcuma xanthorrhiza roxb., temoe lawak, als plant met galdrijrende werking[J]. Pharmaceutisch Weekblad,1975,110, 601-606.

[16] 王丽瑶,张勉,张朝凤,等.黄丝郁金中的生物碱和倍半萜类成分[J].药学学报,2008,43(7):724-727.

[17] 曾永篪,梁键谋,曲戈霞,等.姜黄的化学成分研究Ⅰ:没药烷型倍半萜[J].中国药物化学杂志,2007,17(4):238-239.

[18] Wei Li, Jia-Tao Feng, Yuan-Sheng Xiao, et al. Three novel terpenoids from the rhizomes of Curcuma longa[J]. Journal of Asian Natural Products Research,2009,11(6):567.

[19] NY Qin, FQ Yang, YT Wang, et al. Quantitative determination of eight components in rhizome (Jianghuang) and tuberous root (Yujin) of Curcuma longa using pressurized liquid extraction and gas chromatography-mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43:486-492.

[20] Kojima H, Yanai T, Toyota A, et al. Essential oil constituents from Curcuma aromatica, C. longa and C. xanthorrhiza rhizomes[M]// HH. Ageta, N Aimi, Y Ebizaka, et al. Towards natural medicine research in the 21st century. Amsterdam: Elsevier,1998:531-539.

[21] 刘红星,陈福北,黄初升,等.从姜黄及姜黄浸膏中提取的挥发油化学成分研究[J].分析测试学报,2007,26(增刊):146-148.

[22] 陈毓亨,余竞光,方洪钜.我国姜黄属植物的研究Ⅲ.姜黄Curcuma longa根茎和块根挥发油和酚性成分的比较[J].中药通报,1983,8(1):27-29.

[23] Nigam MC, Ahmed A. Curcuma longa:Terpenoid composition of its essential oil[J]. Indian Perfumer,1991,3:201-205.

[24] 张萍,张桂芝,樊晴月,等.GC-MS法分析姜黄饮片挥发油的特征性化学成分[J].现代中药研究与实践,2008,22(3):41-44.

[25] 吴惠勤,张桂英,史志强,等.超临界CO2萃取姜油及其成分的GC/MS分析[J].质谱学报,21(3/4):85-87.

[26] 胡永狮,杜青云,汤秋华.气相色谱-质谱法测定姜黄挥发油化学成分[J].色谱,1998,16(6):528-530.

[27] 唐课文,陈国斌.气相色谱-质谱法分析姜黄挥发油化学成分[J].质谱学报,2004,25(3):163-165.

[28] 汤敏燕,汪洪武,孙凌峰.中药姜黄挥发油化学成分研究[J].江西师范大学学报,2000,24(3):274-276.

[29] 刘春燕.姜黄的化学成分研究[D].沈阳:沈阳药科大学硕士论文, 2008.

[30] Masashi Tomoda, Ryoko Gonda, Noriko Shimizu, et al. A reticule oendothelial system activating glycan from the rhizomes of Curcuma longa[J]. Phytochemistry,1990,29(4):1083-1086.

[31] 张浩,谢成科,焦文旭.中药郁金中姜黄素类成分及微量元素分析[J].天然产物研究与开发,1997(4):37-40

[32] 易进海,陈燕,李伯刚,等.郁金化学成分的研究[J].天然产物研究与开发,2003,15(2):98.

第8篇

[关键词]桔梗;生理活性;研究

一、前言

桔梗为桔梗科多年生植物桔梗[platycodon grandiflomm(Jacp.)A.DC.]的干燥根,又名四叶菜、土人参、苦梗菜、梗草等。用桔梗加工的桔梗菜、桔梗丝、桔梗果脯等食品美味可口。桔梗菜是我国朝鲜族的名菜。把桔梗作为食用的地区已从朝鲜族居住的延边及其周边地区辐射到吉林长春、吉林通化、黑龙江、北京、天津等地区。而国外对桔梗的需求量最大的国家应以日本、韩国为主,如今遍及美国和东南亚各国Ⅲ。

桔梗为我国传统中药,其作为药材,国内年需求量在10000t以上,其性微温,味苦、辛、平,归肺经,有开宣肺气,祛痰排脓之功效,主要是通过桔梗中含有的皂甙类化学成分,从而使桔梗具有一定的抗氧化及抗疲劳活性,对人体起保健作用。常用于外感咳嗽、咳痰不清、咽喉肿痛、胸闷腹胀、痢疾腹痛、血淤水肿、癃闭等症;桔梗又是一种很好的保健和功能食品。它食药兼用,国内外需求量大。现代药理学表明它具有降血脂,降血糖,抗肥胖,镇静,降低胆固醇等多种生理理活性。

二、桔梗化学成分的研究

桔梗的化学研究始于二十世纪四十年代,由日本学者最早开始研究。随着现代分离分析技术的发展与应用,近十年来,桔梗的化学成分研究取得了长足的发展。据文献检索:尤其近几年来,从桔梗中先后获得10余种新化合物,桔梗的化学成分之谜才逐渐被揭开。迄今为止,对桔梗的化学研究表明;其主要成分为齐墩果酸型五环三萜皂苷,另外还含有黄酮、聚炔、甾体、酚酸、脂肪酸等类型的化合物。

1.皂苷类

桔梗中含有大量的三萜皂苷,是其主要活性成分。桔梗皂苷的种类繁多,迄今已分离出18种,主要有桔梗皂苷D、A、B、D、D、远志苷D、D、桔梗皂酸A甲酯等。据报道一种新的皂苷一桔梗皂苷E,被分离出来。

2.多聚糖

桔梗根中含有大量由果糖组成的桔梗聚糖,已鉴定结构的有桔梗聚糖GF2~GF9。此外,桔梗中还含有大量的聚糖。

3.甾醇类

桔梗含有菠菜甾醇,a-菠菜甾醇-B-D-葡萄糖苷,A7-豆甾烯醇,白桦脂醇以及B-谷甾醇等。

4.醇苷、黄酮及其苷类

从桔梗的种子中分离出:黄杉素,黄杉素7-0-吡喃鼠李糖-基-(1-6)-B-D-喃葡萄糖苷,槲皮素-7-0-葡萄糖苷,槲皮素-7-0-芸香糖苷,木犀草素,木犀草苷,芹菜素,芹菜素-7-0-葡萄糖苷,黄烷酮醇糖苷和3-甲基-1-丁醇糖苷。从花中提到了桔-梗花色苷:飞燕草索一二咖啡酰芦丁醇糖苷和飞燕草素-3-二啡酰-芦丁糖5-葡萄糖苷。

5.挥发油

采用气相色谱一质谱一计算机联用分析仪检测分离出75种化合物,有44.495%为不饱和化合物。其化学成分的组成:①有机酸和酯类化合物,,总含量20.746%;②烃类化合物,总含量19.233%③醇、酚、醚、醛和酮类,总含量为15.971%。

6.脂肪油、脂肪酸

桔梗根中含油0.92%,且不饱和化合物含量较高。脂肪中亚油酸、软脂酸的含量较大,亚油酸含量达63.24%,软脂酸为29.51%,此外还含有亚麻酸、硬脂酸、油酸及棕榈酸等。

7.聚炔类

化合物从桔梗的须根中鉴别出2种聚炔类化合物lobetyol和lobetyolin,从其培养物中还鉴别出另一种聚炔类化合物lobetyolinin这些聚炔类化合物被作为桔梗植物化学分类的重要依据标准。

8.其他

桔梗根中维生素含量丰富,含有16种以上的氨基酸,包括8种必需氨基酸,含有17种以上无机元素,包括铜,锌,镍,锰,铬,锶,铁,钡等8种必需微量元素闭。

三、桔梗的生理活性研究进展

研究表明,桔梗具有抗炎、祛痰、镇咳、抗溃疡、降血压、扩张血管、解热镇痛、镇静、降血糖、抗胆碱、促进胆酸分泌、抗过敏及增强人体免疫力等广泛的药理作用。

1.抗炎活性

研究表明,桔梗的水提取物具有较好的体外抗炎活性对脂多糖所致炎症模型的分子生物学研究表明,其抗炎活性的机制是调控NF-kB因子活性及抗炎基因的表达。桔梗的抗炎活性主要是由于其中含有桔梗皂苷。最近的动物实验已证实,桔梗皂苷D和D3具有抗炎活性。其抗炎活性的机理是调控炎症早期介质,如对佛波酯(TPA)所致炎症模型,桔梗皂苷D能抑制前列腺素E2产生;对脂多糖(LPS)所致炎症模型,桔梗皂苷D和D3能抑制NO产生和增加TNF-a(肿瘤坏死因子)的分泌。最近对单体皂苷的祛痰活性研究表明桔梗皂苷D和D,通过雾化给药,能增加大鼠上皮细胞中黏液素的释放;桔梗皂苷D3的作用更强,因而桔梗皂苷D和D3都可作为一种有效的化痰药来应用。桔梗皂苷对四丁基过氧化物(t-BHP)所致的鼠肝损伤具有保护作用。体内动物实验及体外肝-细胞模型实验证实,桔梗皂苷能明显降低四丁基过氧化物所致的肝氧化损伤,清除,1一二苯基2-三硝基苯肼(DPPH)过氧化物自由基。进而也证实了桔梗皂苷具有抗氧化作用。

2.抗肿瘤及免疫调节活性

桔梗多糖不同于香菇多糖、裂裥菌素等其他多糖免疫调节剂。桔梗多糖能激活巨噬细胞。从而诱导NO的产生和INOS的mRNA表达。研究表明,桔梗多糖所致巨噬细胞活化作用与MAPKs(丝裂原活化蛋白激酶)和AP-1(激活蛋白-1)有关。桔梗的水提取物具有抗肿瘤和免疫调节作用。这些活性可通过潜在效应细胞如巨噬细胞来实现。桔梗水提取物还能刺激巨噬细胞的增生、撒布能力、噬菌作用、细胞抑制活性增强,是一种潜在的巨噬细胞功能增强剂。桔梗水提取物可导致体外培养的人肺癌细胞A549生长抑制和凋亡,分子生物学的研究表明,桔梗水提取物引起的细胞凋亡机制与端粒酶活性的降低和Bel-2表达的下调有关。

3.促胰外分泌腺分泌的活性

桔梗皂苷D刺激胰外分泌腺的分泌机理是引起胃肠道激素特别是CCK从十二指肠释放。桔梗皂苷D能促进CCK的释放,因而一些含桔梗的制剂可用于胰腺炎的治疗”。

4.抑制胰脂肪酶活性

仅桔梗总皂苷有抑制胰脂肪酶活性。证实桔梗皂苷D能以一种竞争的方式抑制胰脂肪酶的活性。体外验证实,桔梗总皂苷和桔梗皂苷D、桔梗皂苷A和桔梗皂苷C均能不同程度抑制胰脂肪酶活性。

5.降脂作用

桔梗皂苷能影响血清和肝中的脂质含量。对桔梗总皂苷降血脂作用的研究表明,不同剂量的桔梗总皂苷对高血脂的降低作用差异较为显著。大剂量可以显著性地降低高脂血症TC、LDL-C、HDL-C,其作用程度超过阳性药物组(绞股蓝);小剂量组和中剂量组仅对血脂的部分指标有影响。

6.改善胰岛素抵抗作用

研究结果表明,对于诸如非胰岛素依赖性糖尿病并发症;综合症及冠心病等以血胰岛素增多为特征的代谢紊乱患者,桔梗能有效地阻止和改善这些症状。

7.镇痛作用

研究结果表明,桔梗皂苷D产生的镇疼效果与脊椎上的GABA(A)、GA-BA(B)(y-氨基丁酸)、NMDAIlnon-NMDA(N-甲基D-天门冬氨酸)受体有关。其镇疼作用由于刺激减弱了去甲肾上腺素和五羟色胺通路,与吗啡通路无关。进一步研究发现,桔梗皂苷D脑室或膜内注射给药时,在甩尾、扭体和福尔马林等不同类型疼痛模型实验中均显示了强的镇疼作用,其作用主要在中枢神经系统,不受鸦片受体影响。

8.其他活性

抗RSV(呼吸道合胞病毒)活性:研究表明,皂苷为其活性成分。另外还发现桔梗的沸水提取物具有杀虫活性、抗诱变活性、抗氧化活性及较好的抑制酪氨酸酶活性。抗氧化活性:在桔梗的石油醚萃取物中得到棕榈酸松柏醇酯和十八烯酸松柏醇酯,通过与二苯代苦味酰肼(DPPH)、超氧化物及一氧化氮等的抗自由基能力对比,发现这两种化合物的抗自由基能力比抗氧剂Bh或BHA高。

桔梗作为一种药食两用的植物,资源丰富,皂苷类为其主要化学成分,生物活性多样,且无毒副作用,在临床上具有广泛的用途和良好的疗效,是一种很具开发潜力的常用食品药品。

参考文献

[1]宫光前,桔梗药食兼用市场广[J],农村新技术,2009,22:14

[2]郭丽,张村,李丽,肖永庆,中药桔梗的研究进展[J],中国中药杂志,2007,32(3):181-186

[3]郭文杰,许旭东,魏建和,杨俊山,桔梗中三萜皂苷类化学成分研究进展[J],中国医药学杂志,2008,43(11):801-804

[4]舒娈,高山林,桔梗研究进展[J],中国野生植物资源,2002,20(2):4-7

[5]付文卫,侯文彬,窦德强,桔梗中远志酸型皂苷的化学研究[J],药学学报,2006,41(4):358-360

[6]付文卫,窦德强,裴月湖,桔梗的化学成分和生物活性研究进展[J],2006,23(3):184-190

[7]丁长江,卫永第,安占元,等,桔梗中挥发油化学成分分析[J],白求恩医科大学学报,1996,22(5):471-473

[8]李伟,桔梗皂苷类化学成分及药理活性研究[D],吉林农业大学硕士论文,2007

[9]Lee J H,Choi Y H,Kang H S,et a],An aqueous extractOf platycodi radix inhibits LPS-induced NF-kappa B nucleartuanslocationin human cultured airway epithelial cells[J],Int J MolMed,2004,13(6):843-847

[10]Kim Y P,Lee E B,Kim S Y,et a1,0huchi K Inhibition 0fprostaglandin F2 production by platycodin D[J],Planta Med,2001,67(4):362-364

[11]Shin C Y,Lee W J,Lee E B,et a1,Platycodin D and D3increase airway mucin release 1n vivo and 1n vitro 1n rats andhamsters[J],Planta Med,2002,68(3):221-225

[12]Lee J H,Choi Y H,Kang H S,et a1,Protective effect ofsaponins derived from roots Of Platycodon grandiflorum On tert-butyl hudroperoxide Inducedoxidative hepatotoxicity[J],ToxicolLett,2004,147(3):271-282

[13]丁元庆,桔梗的功效与应用述要[J],中国中药杂志,1998,23(5):308-309