发布时间:2023-03-22 17:36:46
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的概率统计论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
历史发生原理认为个体的数学认识过程与人类的数学认识过程具有相似性.概率统计教学可以从概率统计的发展史中寻求指导,从而借鉴历史经验,优化教学设计,加速学生对概率知识和理论的接受过程.概率是一般教材中的基本概念,其处理方式遵循这样的主线:概率是事件发生可能性大小的度量—频率的稳定值—古典概率—几何概率—公理化定义.概率是随机事件发生可能性大小的一种度量,这一直观概念已被普遍认可.但这只是概率的功能性解释,并不是它的数学定义.概率的解释与定义是在争议中发展的.客观概率学派认为任一事件发生的概率是其客观属性;相反,主观学派则认为概率是人的主观判断.客观概率学派以拉普拉斯在1812年出版的《概率的分析理论》中所提出的概率古典定义为代表,即事件的概率等于有利事件的结果数与所有可能的结果数之比.然而,这种定义讨论的范畴有明显的局限性,只适用于随机试验所有可能结果为有限等可能的情形;而且,对于同一事件,从不同的等可能性角度考虑可算出不同的概率,从而会产生悖论.此外,对于概率的概念又有频率学派、贝叶斯学派、信念学派的不同认识和观点.其中频率学派的观点是大多数现行教材所接受的,即概率是频率的稳定值,频率稳定于概率又需要在概率的意义下来刻画.历史上著名的贝特朗悖论使人们对“何为概率”的困惑放大到了极致,这个问题解决不了,当时所有研究成果就不能整合,概率理论成了不体系,也无法形成一个独立的学科.而要解决这个问题,就要给出概率的严格定义,将概率论公理化,并在此基础上推演概率的理论体系.公理化是19世纪末以来数学的各个分支中广泛流传的一股潮流——将一些假定作为无需证明的公理,其它结论则由公理演绎推出.在这种背景下,1933年俄国数学家柯尔莫哥洛夫在测度论的基础上综合了前人的研究结果提出了概率的公理化定义.概率的公理化定义被广泛地接受使概率论成为严谨的数学分支,对近几十年来概率论的迅速发展起到了积极的作用.教学中,教师必须了解并熟悉概率这一概念的发展历史,对概念有清晰准确的认识.在教学时穿插这些内容,不仅可以使学生清晰准确地把握概念,还可以增强学生对概率统计的感性认识,从而加深对概念的理性认识,优化知识接受的衔接过程,体会一个学科知识体系建立的严谨性、辩证性和复杂性,从而培养学生严密的逻辑思维,发展其创新意识,培养其睿智和实事求是的人格.
2还原知识的历史进程,降低新知识的抽象性
现代数学教材普遍都是按照知识的内在逻辑进行编排,很少按照数学问题的研究进程进行著作.这样的安排在逻辑结构上是科学的、严谨的,但却忽略了数学问题研究的历史痕迹.教师在教学过程中,应尽量地还原知识的历史进程,降低新知识的抽象性.正态分布是概率论中最重要的一种连续型分布,它属于概率论的研究领域,但也是解决统计学问题的基石,它的提出具有深刻的理论背景和极其广泛的应用价值.在教学中对正态分布的学习,通常是直接给出概率密度或分布函数,将其称为正态分布.但这会让学生感觉接受生硬,理解抽象,记忆困难.理论背景上,正态分布产生于棣莫弗的p0.5的二项分布极限研究,后来拉普拉斯对p0.5的情况做了更多的分析,并把二项分布的正态近似推广到了任意p的情况.二项分布的极限分布形式被推导出来,由此产生了正态密度函数,相应的结果称为棣莫弗-拉普拉斯中心极限定理.经拉普拉斯等学者的研究,20世纪30年代独立变量和的中心极限定理的一般形式最终完成.此后研究发现,一系列的重要统计量在样本量n时,其极限分布都具有正态形式.数学家进而合理地解释了为什么实际中遇到的许多随机变量或者统计量都近似服从正态分布,可以说这是概率统计中具有里程碑意义的发现.数理统计教材中一般是先认识正态分布,中心极限定理则在此之后学习.在学习正态分布的定义之前,教师可以设计一些具有明显正态性现象的数据,而后进行描述性统计分析,给出频率直方图,并解释这种具有两头小、中间大的分布现象是普遍的,也是常态的.对概率论中常见分布的知识背景的了解和掌握,有助于教师在课程设计和讲授过程中注意课程内容的衔接和承上启下的相互关系.借助数学家研究数学问题的进程史实,可降低新知识的抽象性,使学生易于接受和掌握,并提高应用的灵活性.
3注重统计思想,引导灵活应用
“概率统计”是一门具有实践性与理论性的重要学科,在不断发展的过程中已经成为数学科目不可或缺的组成部分,并且对此起到重要的作用。在根据课程的相关特点中,利用现代科学进行审视与组织,从而使数学概率统计中融入新鲜元素,在教学内容上引入有趣的应用题目,并且要对科学方法以及相关技术、概率统计知识进行联系。学生在运用“概率统计”知识的基础上们能够建立数学模式,对“概率统计”的知识也会产生兴趣爱好。除此之外,还能促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模的思想积极融入到数学概率统计之中,能够在不打破传统知识的同时,应用案例进行解决。通常情况下,学习通过对案例的学习,能够亲自体验在使用概率统计知识进行数学建模的整个过程,从而加深对概率统计知识的认知与理解,促进学生的学习兴趣与学习习惯。从另一个角度而言,学生在努力学习数学概率知识的同时,能够真正做到“学以致用”,由于数学概率统计是一门重要且复杂的课程,在不影响到教学大纲的情况下利用多种手段进行教学,可以增强学生数学建模的基本能力,从根本上体现数学建模的思想。
二、教学方法得以改进,促进开放式学习方式的形成
(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。
(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。
三、改善教材中的理论学习,加强实践学习
在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。
四、结语
关键词:概率统计;数学建模;教学
数学建模主要是借助调查、数据收集、假设提出,简化抽象等一系列流程构建的反映实际问题数量关系的学科,将数学建模思想融入到概率统计教学中,不仅能够帮助学生更好地理解与掌握理论知识,同时对于提高学生运用数学思想解决实际问题的能力大有裨益。可以说,概率统计教学与数学建模思想的融入具有重要的理论以及现实意义。
1.教学内容实例的侧重
在大学数学教育体系中最为重要的一个目标就是培养学生建模、解模的能力,但是在传统概率统计教学中,教师大多注重学生的计算能力训练以及数学公式推导,而常常忽视利用已学知识进行实际问题的解决,使得大多数学生的应用能力无法得到提高。所以,为了能够在教学中提高学生应用概率与统计的实际能力,教师应在教学内容设计中吸收与融入与实际问题息息相关的题目,使学生在课堂中不仅能够轻松学习概率知识,增加学习主动性,同时能够尝试到数学建模的乐趣,提高自身数学素养。例如,在古典型概率问题的教学中,为了加深学生对于该部分知识的理解,教师可以引入彩票概率的实际问题,通过引导学生分析各等奖的中奖概率,使学生获得极高的建模、解模能力。
2.在教学方法中融入数学建模思想
在概率统计教学中,教师还需要在教学方法中融入数学建模思想。首先,采取启发式教学方法。在课堂教学中,教师应引导学生利用已学知识开展认识活动,在问题发现、分析、解决的一系列锻炼中获得概率统计知识的自觉领悟。其次,采取讲授与讨论相结合的教学方法。在课堂中,讲授是最为基本的教学方式,不过单一的讲授很可能导致课堂的枯燥,所以课堂中还需要适当穿插一些讨论,使学生在活跃的氛围中激活思维,延伸知识面。再次,采取案例分析的教学方法。案例分析是在概率统计教学中融入数学建模思想的一种有效方法。在教学中应用的案例应进行精选,其不仅需要具有典型性,同时还需要具备一定的新颖性以及针对性,通过缩短实际应用与数学方法间的距离,使学生学习数学的兴趣被大大激发。最后,采取现代教育技术的教学方法。在概率统计的问题中常常需要较大的数据处理运算量,所以为了简化问题,使学生掌握一定的统计软件具有重要意义。通过结合具体的概率统计案例,在学生面前演示统计软件中的基本功能,为提高学生掌握统计方法以及实际操作能力奠定坚实基础。知识的获取并不是单纯的认识过程,其更应偏向于创造,在不断强调知识发现的过程中帮助学生认识科学本质、掌握学习方法。
3.在概率统计教学中融入数学建模思想的案例分析
一个完整的数学思维必须经过问题数学化以及数学化问题求解两个方面,只有让学生体验以及掌握到一般的数学思维方法,才能使其真正拥有利用数学知识解决实际问题的能力。而具体分析在概率统计教学中融入数学建模思想的案例,能够为引导学生发现生活中的数学,开拓学生眼界奠定坚实基础。很多概率的实际问题中均存在着随机现象,其可以视作许多独立因素影响的综合结果,近似服从于正态分布。例如,某高校拥有5000名学生,由于每天晚上打开水的人较多,所以开水房经常出现排长队的现象,试问应增加多少个水龙头才能解决该种现象?对于该问题的解决,教师首先应组织学生对开水房现有的水龙头个数进行统计,然后调查每一个学生在晚上需要有多长时间才能占用一个水龙头,最后引导学生分析每一个学生使用水龙头这一情况是否是相互独立的,通过联想中心极限定理以及考虑每个人具有占用水龙头以及不占用水龙头两种情况,得到每人占用水龙头的概率为0.01。所以,每名学生是否占用水龙头能够被视作一次独立试验,其能够看作是一个n=5000的伯努利试验,假设占用水龙头的学生个数为X,那么其满足X~B(5000,0.1),通过借助中心极限定,使得该问题被快速解决。
论文关键词:初中数学,模拟实验,求概率
纵观新课标人教版初中数学统计与概率章节,笔者始终感觉用键盘问题做数学模拟实验的教学载体,学生探究热情低调,究其原因主要是缺乏农村学生数学生活化的体验。通过几年尝试教学与改进,我们发现初中数学模拟实验求概率的设计与应用可从以下角度思考和探索。
一、初中数学模拟实验设计原则。
1、生活性。试验内容要贴近学生生活,有利于学生经验思考与探索,内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情景化与知识化的关系.课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需要.[1]
2、广泛性。避免以点代面,全盘考虑初中数学论文初中数学论文,分点试验。让抽样结果尽可能反映是按研究对象的共性特征。
3、随意性。每次实验方案的实施不提前预设,围绕方案任意活动,并直接获得需要的数据。
4、活动性。有效的数学教学活动是教师教与学生学的统一,学生是数学活动的主体,教师是数学活动的组织者与引导者,通过活动“致力于改变学生学习方式,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去”,才能还学习真正动机――因活动而快乐,因快乐而学习.[2]
二、初中数学模拟实验的适用条件。
由于随机事件的结果具有不可预测性,往往解决相关实际问题难以从根本上把握。分清初中数学模拟实验的适用条件,是进行有效设计和准确应用的关键毕业论文格式范文期刊网。
通过对模拟实验相关事件的综合分析,以及与列举法求概率相关事件的对比,我们不难发现模拟实验求事件的概率适用条件包括每次实验的所有可能结果不是有限个或每次实验的各种结果发生的可能性不相等。[3]
三、初中数学模拟实验的设计程序[4]与过程
1、确定设计方案(如投飞镖、做记号、数数量、抛硬币、掷骰子、转转盘、等)。
2、拟定统计栏目(总数、频数、频率)。
3、统计相关数据, 计算频率与数据规律分析。
在做大量重复试验时,可事先根据概率要达到的精确度确定数据表中频率保留的数位。计算频率一般保留两位或三位小数。
关键词:概率统计;数学软件;Maple
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)31-0083-02
一、传统概率统计教学中的问题
(一)重概率轻统计
我国概率统计教学中普遍存在“重概率轻统计”的问题,具体表现为:(1)大多数工科院校概率统计课程只能讲授到参数估计中的点估计部分。因为学时较少,统计推断中重要的区间估计和假设检验只能作为自学内容。(2)大部分教师对于概率部分内容非常熟练,但是统计部分内容较为生疏。
造成这种现象的原因主要有以下几点:(1)公共基础课概率统计学时一般较少,例如安徽理工大学概率统计课一般为48学时;(2)统计推断部分内容,实用性很强,计算量也比较大,动辄数百个数据。因此,如果不借助软件仅靠人工计算确实难度很大。(3)考研概率部分的试题一般不考统计部分内容。
(二)重理论轻应用
概率统计特别是统计推断部分的内容有着很强的应用背景,例如:近些年的全国大学生数学建模大赛的赛题,几乎都涉及到统计学的内容。对已给数据进行初步的检验、分析比较、分类筛选、总结回归等,这些都是评阅要点中明确指出的重要得分点。由于教学中没有涉及统计推断部分的内容,造成很多参赛学生只能临场边学边做,十分被动。
由于长期轻视统计应用的教学,造成很多数学专业的学生在毕业设计时选题范围十分狭小,很难写出高水平的毕业论文。
(三)重解题技巧,轻视对学生动手能力的培养
长期以来概率统计相关习题主要以手工计算为主,因此过分强调解题技巧。例如,古典概型的题型中需要很多排列组合的技巧、计算一些连续型变量的函数型分布和函数型数字特征时需要用到很多积分技巧等。但是很多实际的问题,例如以统计推断为背景的题型,往往更加强调学生的动手能力。包括对大数据的处理能力(分析数据、标准化数据等),以及借助常用软件计算一些常用统计量的值等。由于平时疏于这方面的教学,很多学生遇到一些简单的实际问题往往束手无策。
二、多种数学软件辅助教学的优点
引入多种数学软件辅助教学的优点主要体现在以下方面。
1.概率统计总课时有限,不可能系统地学习某一特定的统计软件。针对不同问题的特点,选择最为有效、最简单的数学软件来解决。这样可以节约大量的时间,增加效率。本文在第四部分会结合实例进一步说明。
2.通过多种软件的使用,可以最大程度地扩展学生的知识面,使学生学到在传统课堂教学中无法获取的实用知识。
三、多种数学软件辅助教学的具体措施
具体如何来改善传统概率统计教学,提高教学效率和学生的实际动手能力?各学校可以根据具体实际情况结和自身条件因地适宜地选择不同的措施。下面给出一些建设性的意见。
1.开设概率统计教学实验课。概率统计总课时并不多,课堂时间在专门介绍应用以及各种软件的使用确实时间不够。因此,可以在原有的课时基础上专门增加3~4次实验课,结合各种软件讨论和解决概率统计别是统计部分内容。
2.录制教学视频或者直接收集相关资料。因为各学校的课时都比较紧张,如果无法开设单独的实验课可以录制视频,或者直接给学生提供相关的资料。最好能够建立相关的监察机制,这样可以更好地引导和督促学生自主学习。
3.开展相关的毕业设计和毕业论文。在高年级学生中的毕业设计和毕业论文选题中有针对性地加入一些统计类型的课题。
4.利用数学建模平台建立跨学科交流平台。每年一次的全国大学生数学建模比赛给各学科提供了一个重要合作契机。统计学在数学建模中有着举足轻重的作用,几乎每年都会有与数据处理、数据检验和分析等相关的题目。可以把历年来有关概率统计内容的题目在学生中进行推广,也能提高学生的概率统计实际应用能力。
五、结束语
通过本文第四部分可以看出,很多概率统计的问题如果借助数学软件来解决可以省去很多烦琐的计算过程,有利于解决更加复杂的实际问题。如果能够在平时教学中加入适当的数学实验课,学习相关软件的使用,不仅可以提高学生的学习兴趣而且还可以一举解决传统教学中的诸多问题。
参考文献:
[1]唐国强.Excel在概率计算中的应用[J].安阳大学学报,2003,3(1):55-57.
[2]李晓毅,徐兆棣.概率统计教学与数学建模思想的融入[J].沈阳师范大学学报,2008,26(2):245-247.
[3]韦程东,唐君兰,陈志强.在概率论与数理统计教学中融入数学建模思想的探索与实践[J].高教论坛,2008,(2):98-100.
[4]阿荣.Maple在概率论与数理统计教学中的应用[J].中央民族大学学报(自然科学版),2012,2(21):67-71.
一 引言
概率论与数理统计是定量研究随机现象规律性的数学学科。随着科学技术的发展,概率论与数理统计已广泛引用于农业院校各专业的科学研究中。目前中国的农业院校都开设了概率论与数理统计,虽然课程概念比较抽象,计算繁杂,学起来较困难,但这是应用性最强的大学数学课程之一。不过近年来,伴随着高校课程改革,高等农林院校本科生教学计划中概率论与数理统计课程的教学学时不断减少,所以必须对此课程的教学方式和方法进行改革。
全国大学生数学建模本文由收集整理竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。随着竞赛的推广,数学建模被越来越多的教师与学生所熟悉。所谓数学模型,是指现实世界中的实际问题用数学语言表达出来,即建立数学模型,然后求解,以此解决现实问题的数学知识应用过程。将数学建模运用于数学教学有利于培养学生的洞察能力、联想能力、数学语言翻译能力、综合应用分析能力和创新能力,此教学模式的运用切合新时代培养通专并用,全面发展的高素质人才的需要。笔者认为,在当前的概率论和数理统计课程中可适当增加数学建模思想,培养学生的创新能力和应用能力,激发学生的学习兴趣,这也是本论文的切入点。
二 农业院校概率论与数理统计教学中存在的问题
1.中学与大学数学教育内容的脱节
中学课改后的毕业生开始进入大学,课程改革中对数学课程的知识范围和要求改动了很多,学生们已经学习过部分概率论的知识,但中学时学习概率的思维方式与大学数学不同,很多学生依旧用中学的学习方式学习概率论与数理统计,造成了他们学习上产生挫败感。
2.教师的教育观念缺乏与时俱进
大部分大学数学教师并没有意识到中学课程改革对这门课程和学生们的影响,依旧按照传统教学方式讲授,注重定理、推论、证明、计算,而新一代的大学生很难快速适应新的学习方式,所以增加了学生的学习难度。
3.教学内容缺乏应用性
概率论和数理统计的教学过于强调基本理论,缺乏对农业科学的交叉性应用研究。农科专业的学生普遍感觉学数学对将来的生活工作没有用处,所以导致学生缺乏学习的动力和兴趣,只是为了通过考试而学习。
4.考核方式过于死板
多年来,概率论和数理统计的考核方式始终一成不变,偏重于期末的闭卷考试,试卷主要考查计算和一些固定模式的应用题型,导致学生死记硬背、应付考试,不利于激发学生的创新兴趣。
三 建模思想在概率论和数理统计课程上的应用
针对以上问题,建议改革教学方式,通过引入数学建模思想激发学生的创新思维。
1.改变教学内容,增加应用型教学的引入
首先,提倡教师了解中学课改中影响概率论与数理统计的内容,充分利用学生已学过的概率论知识,避免重复教学,但要强调中学数学与大学数学不同的思考方式。在教学内容中吸收和融入与实际农业科学研究问题有关的应用性题目。历年全国大学生数学建模竞赛题目中不乏农科专业相关的题目,如“作物生长的施肥效果问题”(1992年a题)、“dna序列的分类问题”(2000年a题)、“葡萄酒的评价”(2012年a题)等。这些题目都与现实农业生产生活密切相关,在解决这些问题过程中能很好地锻炼学生自主地、能动地认识、理解问题的能力。
但是,如果直接把数学建模的题引入日常教学中,将面临下列问题:(1)数学建模竞赛的题目一般是涉及面很广,需要很多专业知识和良好的数学功底,而农科院校的学生的数学基础薄弱,在没经过培训的情况下解决竞赛题目困难较大;(2)要较好地解决建模题目需要大量的时间,这在课时有限的概率论与统计课程中不可能实现。
上述两个问题的解决思路:(1)如果直接运用竞赛原题,可以把重点放在(1)(2)两个比较简单的问题上,删除题目中与这两个问题没有关系的条件,或简化题目背景以适应课堂教学;(2)引入一些数学建模集训小题目,这些题目类似于课后习题,但实用性更强,甚至可以留作课后作业,引导学生分组讨论,学生共同完成。
2.改变教学方法,引入相关教学统计软件
教学方法方面,重心不能一味地放在定理、证明、计算上,应抛弃“满堂灌”的教学方法,采用启发、归纳的教学模式,通过建模思想的引入,使学生由浅入深、由直观到抽象地认识概率论和数理统计在实践中的应用,真正掌握数学概念和方法,并从中获得学习上的乐趣。
数学实验课在农业院校中开展的相对较少,大多以选修课的形式出现,笔者建议在概率论与数理统计课程中安排1~2次实验课,讲授统计软件的应用。随着近代计算机技术的迅速发展,软件技术日益成熟,概率论与数理统计中很多计算问题都可以借助于软件操作。农科高校的学生普遍计算能力不强,尤其是建模例子中的数据样本量比较大,计算过程复杂,学生手算起来比较困难。现有的统计软件,如sas、spss等世界通用的软件,可以解决较大数据量的概率与统计方面的题目,如数据处理、数据拟合、参数估计、假设检验、方差分析、回归分析等问题,而且一般的菜单操作就可以解决这类问题。学生学习一些简单的软件应用,可以增强他们的应用意识和动手解决实际问题的能力,反过来促使学生主动学好概率论与数理统计的理论知识。
3.改变学习观念,提高学生的学习兴趣
建模思路的引入,能有效改变大学生的“数学无用论”。作为教师,我们应根据课程的主要知识点,与相关专业教师加强交流合作,搜集整理大量的农科专业问题,并用建模的方法进行解决。当然,课程的教学不一定都需要完整地解决一类问题,只要题目背景来自农科专业或采用农科数据,就能在很大程度上调动学生的学习积极性,让他们知道将来的学习和生活中确实能用到概率论与数理统计的相关知识。
4.改变考核方式和方法
概率论和数理统计是一门实用性较强的学科,特别是数理统计方面的题目,若采用传统的阅卷考核方式考查,只会导致学生用死记硬背、题海战术等方法应付考试,导致学生被动学习,缺乏学习的兴趣。
针对这种现象,笔者认为应让学生在实际中学习,并将所学归还于实际。因此老师平时布置作业时应布置一些实践题型,让学生自己学会去思考。关于考核形式的改革,为了达到“以教为导,以学为主,自主解决”的教学目的,在期末检测时,应采用期末考试(50分)+论文(30分)+平时成绩(20分)的考核方法,其中课程论文要求学生自己找问题,建立模型,利用概率论与数理统计知识解决问题。这样既考查了学生对理论的掌握程度,又能将理论应用于实际中,使得学生在学习过程中更加重视知识的综合运用和创新能力的培养。笔者曾在教学班级中做过类似的尝试,即鼓励学生将建模的思想用到课程学习中,获得了明显的效果。
论文摘要: 测度论是现代数学的一个重要分支,在概率统计、随机过程、微分方程、微分几何中有广泛应用。测度理论是实变函数论的基础。集类知识与单调类定理是测度论中的基础,特别是单调类定理.这个定理是一个很要紧的定理.在后面证明测度唯一性定理,乘积测度存在定理等重要的定理中有涉及。在严加安老师的《测度论讲义》上这个定理有两个版本,目前该书是对单调类方法应用的最多的。有一些看起来很难的问题,也许用这个定理会相当简单.将定义在一个λ族上的概率测度延拓为包含该λ族的一个σ上的概率测度,在许多重要场合,特别是在经济学中有着十分重要的意义.关于这种延拓的存在性、唯一性等,给测度论提出了一系列新的理论课题,本文试图对λ族上概率测度的延拓问题作一些初步探讨.
族性质的引申:设为上的一族非负有界函数,我们用表示非负有界 可测函数全体,则下列二断言等价:
第二步:令 2=
2
(*)
则(a) 2
(b) 2是 族 (证法与上面(a)(b)类似略)
从而 2且 2 2
则
F是 类从而F使 代数
第四步:对有限个的下端运算封闭:
Proof:不妨设 ( 中元素均非负有界)
故
往证:(a) (b)
Proof:(a)依第二步,
第五步:要证从而
由
为可测,对
第六步:往证
【论文摘要】“统计与概率”出现在基础数学教育教学中属于首次。对如何培养小学数学教师的概率统计的教学能力,本文结合自己的教学实践,提出四方面探索,即:引入数学史,激发兴趣;注重随机观念的培养;淡化计算,强化概型理解;联系日常生活应用。
“概率论与数理统计”是一门研究随机现象规律性的学科,它的理论与方法在自然科学、社会科学、工程技术、军事和工农业生产等领域中有着广泛的应用。在新一轮基础教育的数学课程改革中概率统计又受到特别重视,并在新课标中占据重要位置,在课程内容设计上,将概率与统计作为四个模块之一。作为小学师资的培养基地,为小学教育本科生开设概率统计课程就显得尤为重要。结合小学概率统计的内容要求,我们对该课程的教学进行了以下几方面的改革与探索。
一、 引入概率史料,激发学生学习概率的兴趣
同其它学科的发展一样,概率论的发展有其自身不断发展和完善的历史,以及为此做出巨大贡献的众多数学家的趣闻、轶事和智慧的思想,这些历史不仅反映了概率论的主要内容,也介绍了概率的一般规律和思想方法。
例如,帕斯卡和费马对梅雷提出的掷骰子及赌资分配问题的研究史实,就引起学生对概率问题的极大兴趣。而将诸多数学家所做的抛硬币试验的历史引入课堂,有助于学生了解统计定义产生的过程、条件,加深对统计定义的理解。
二、 注重随机观念的培养,真正把握概率的思想实质
概率研究的对象是随机现象,它是偶然的,但又有一定的规律,偶然中蕴含着必然;它总是通过对事件外显的数据研究,达到对事件本质的把握。概率并不提供确定无误的结论,这是由随机现象的本质所造成的。
例如,天气预报明天下雨的概率是10%,后天下雨的概率为90%,但实际上却有可能明天下雨而后天没有下雨。这并不是预报不准,而是我们对概率的理解有问题,我们不能在试验之前预知试验的确切结果,只能知道每个结果的概率,这有什么意义呢?事实上,如果天气预报“明天下雨的概率是90%”,那么明天你“带雨具出门”与“不带雨具出门”相比,“带雨具出门”是更明智的选择,尽管明天根本没有下雨。
随机性和确定性一样,也是一种科学方法。许多现象,都要从随机的角度探索。教学中应当注意转变学生的思维方式,帮助学生应该建立随机观念。
三、强化基本概型的理解,提高学习效率
教学中最为关键的是讲清模型,淡化复杂计算,让学生在遇到问题时,知道该如何选择模型,然后运算求解。在古典概型中,很多问题所涉及的模型在本质上是一样的,比如抽签、抽奖及抓阄等问题都是同一个概率模型。我们可以讲清楚一个模型,再给出一些相关的题目,让学生通过思索自己去发现这些题目在本质上是一样的,从而从本质上理解这一模型。
例如随机投球模型,假设把n个球随机投入到m只盒子中,如果盒子可放球数不限,显然有mn种等可能结果,如果每只盒子只能放一球,显然有个结果(m≥n)。很多问题都属于这一模型,如r个人从29层高楼的电梯中走出的所有可能结果,相当于把r个球投入29只盒子,共有29r个可能结果。又例如求50个人生日都不相同的概率,仔细分析50个人的生日所有可能的分布情况,相当于把50个球投入365(闰年为366)只盒子,每只盒子投球数不限,即有36550种投法。由此得到50个人的生日都不同的概率为≈0.03。当然,这一实例贴近生活,能激发学生应用概率的兴趣,也巩固了随机投球模型的理解。
四、联系日常生活、其它学科间的联系,加强应用意识
概率论与数理统计是建立在现实生活的基础上的一门应用性很强的学科。布置一些灵活的紧密联系实际的题目,让学生利用概率统计方法解决相应的问题,体味生活中的数学,这可以使学生得以深刻理解随机性、统计的本质和原貌。
例如关于抓阄公平性问题,有5个人抓阄,仅有一个有物的阄,问先抓后抓是否一样公平,我们就可以利用概率的乘法公式,分别计算每一个人抓到有物阄的概率,发现都是,由此知道先抓后抓一样公平。
又如,利用学生都有在计算机房上网的经历,会碰到网速非常慢的情况,是为什么呢?而局域网络的最大吞吐量问题,就是运用概率的思想和方法分析解决。引入这样一些实际问题,让学生自己分析解决问题,比较锻炼学生的能力。
在为小学教育本科生开设概率统计课程中,笔者在教学中进行了这四个方面的探索,经过该课程的学习,学生随机思维,应用概率统计方法提出问题、解决问题的能力都有明显提高,为其今后的教学工作做了有益的准备。
参考文献:
[1]中华人民共和国教育部.全日制义务教育数学课程标准(实验稿)[S].北京:北京师范大学出版社,2001.
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,2(1).
[3]徐清振,侯传志.传统概率统计教学的反思及其研究式教学初探[J].高教论坛,2007,6(3).
[4]陆丽萍.小学数学“概率”教学的尴尬及归因探寻[J].江苏教育,2008(4):30.