发布时间:2023-03-23 15:13:03
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的中学数学教学论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
传统教育的弊端告诫我们:教育应以学生为本。面对当今新时期的青少年,服务于这样一种充满生气、有真挚情感、有更大可塑性的学习活动主体,教师决不可以越俎代庖,以知识的讲授替代主体的活动。情境教学就是把学生的主动参与具体化在优化的情境中产生动机、充分感受、主动探究。如在复习函数这节课时,教师可以创设以下的教学情境:
案例:“我”在某市购物,甲商店提出的优惠销售方法是所有商品按九五折销售,而乙商店提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”究竟该到哪家商店购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。
曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。
二、强化感受性:
情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
案例:在对“等腰三角形的判定”进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下了一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形重新画出来?学生先画出残余图形并思索着如何画出被墨水涂没的部分。各种画法出现了,有的学生是先量出∠C的度数,再以BC为一边,B点为顶点作∠B=∠C,B与C的边相交得顶点A;也有的是取BC中点D,过D点作BC的垂线,与∠C的一边相交得顶点A,这些画法的正确性要用“判定定理”来判定,而这正是要学的课题。于是教师便抓住“所画的三角形一定是等腰三角形吗?”引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即“ABC中,若∠B=∠C,则AB=AC”。这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思考证明方法。
除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用。”
三、着眼发展性:
数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。
案例:在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理:
1、平行四边形定义:两组对边分别平行的四边形是平行四边形。
2、平行四边形判定定理:
(1)两组对边分别相等的四边形是平行四边形。
(2)对角线相互平分的四边形是平行四边形。
(3)两组对角分别相等的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:
1.一组对边平行且另一组对边相等的四边形是平行四边形。
2.一组对边平行且一组对角相等的四边形是平行四边形。
3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。
4.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。
5.一组对边相等且一组对角相等的四边形是平行四边形。
6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。
7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。
在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的5种判定方法去一一验证这七条猜想结论的正确性。
经过全体师生一齐分析验证,最终得出结论:七条猜想中有四条猜想是错误的,另外三个正确猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。
四、渗透教育性:
教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现。法国著名数学家包罗•朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。
教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学
案例:圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过利用经验数据π修正值,例如古埃及人和古巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外接正多边形来求圆周率π的近似值,得到当时关于π的最好估值约为:3.1409<π<3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024<π<3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数π的值。我国的这一精确度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔•卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明-------火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界纪录”,祖冲之计算出的圆周率就是其中的一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。
为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止。例如1610年德国人路多夫根据古典方法,用262边形计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在它的墓碑上。至今圆周率被德国人称为“路多夫数”。1873年英国的向客斯计算π到707位小数,1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重新算一次。他从1944年5月到1945年5月用了一整年的时间来做这项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
五、贯穿实践性:
情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。
案例:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的“固着点”,但由于它们与“三角形内角和定理”之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境:首先,在回顾三角形概念的基础上,提出:“三角形的三个内角会不会存在某种关系呢?”这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向“三个内角的和是否有一定的规律?”我适时地提出:“请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。”经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:“由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?”学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出“三角形的三个内角之和为180°”的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:“观察拼接图形,从中能得到什么启示?”学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题:
将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。这题是一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。
创设情境教学的主要方式
一,创设应用性情境,引导学生自己发现数学命题(公理、定理、性质、公式)
案例1在“均值不等式”一节的教学中,可设计如下两个实际应用情境,引导学生从中发现关于均值不等式的定理及其推论.
①某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打p折销售,第二次打q折销售;乙方案是第一次打q折销售,第二次找p折销售;丙方案是两次都打(p+q)/2折销售.请问:哪一种方案降价较多?
②今有一台天平两臂之长略有差异,其他均精确.有人要用它称量物体的重量,只须将物体放在左、右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量.你认为这种做法对不对?如果不对的话,你能否找到一种用这台天平称量物体重量的正确方法?
学生通过审题、分析、讨论,对于情境①,大都能归结为比较pq与((p+q)/2)2大小的问题,进而用特殊值法猜测出pq≤((p+q)/2)2,即可得p2+q2≥2pq.对于情境②,可安排一名学生上台讲述:设物体真实重量为G,天平两臂长分别为l1、l2,两次称量结果分别为a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,两式相乘,得G2=ab,由情境①的结论知ab≤((a+b)/2)2,即得(a+b)/2≥,从而回答了实际问题.此时,给出均值不等式的两个定理,已是水到渠成,其证明过程完全可以由学生自己完成.
以上两个应用情境,一个是经济生活中的情境,一个是物理中的情境,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境下,再注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.
二,创设趣味性情境,引发学生自主学习的兴趣
案例2在“等比数列”一节的教学时,可创设如下有趣的情境引入等比数列的概念:
阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当它追到1里处时,乌龟前进了1/10里,当他追到1/10里,乌龟前进了1/100里;当他追到1/100里时,乌龟又前进了1/1000里……
①分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;
②阿基里斯能否追上乌龟?
让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,很快就进入了主动学习的状态.
三,创设开放性情境,引导学生积极思考
案例3直线y=2x+m与抛物线y=x2相交于A、B两点,________,求直线AB的方程.(需要补充恰当的条件,使直线方程得以确定)
此题一出示,学生的思维便很活跃,补充的条件形形.例如:
①|AB|=;②若O为原点,∠AOB=90°;
③AB中点的纵坐标为6;④AB过抛物线的焦点F.
涉及到的知识有韦达定理、弦长公式、中点坐标公式、抛物线的焦点坐标,两直线相互垂直的充要条件等等,学生实实在在地进入了“状态”.四,创设直观性图形情境,引导学生深刻理解数学概念
案例4“充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.
五,创设新异悬念情境,引导学生自主探究
案例5在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?
此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:
x2=y
x2+y2=y+y2
x2+y2-(1/2)y=y2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.
这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.
六,创设疑惑陷阱情境,引导学生主动参与讨论
案例6双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是().
A.P到左焦点的距离为8
B.P到左焦点的距离为15
C.P到左焦点的距离不确定
D.这样的点P不存在
教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:
错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正确的结论为B.
错解2.设P(x0,y0)为双曲线右支上一点,则
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正确结论为B.
然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.
进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.
通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.
总之,切实掌握好创设情境教学的原则、重视创设情境教学过程的特性,合理应用创设情境教学的方式,充分重视“情境教学”在课堂教学中的作用,通过精心设计问题情境,不断激发学习动机,使学生经常处于“愤悱”的状态中,给学生提供学习的目标和思维的空间,学生自主学习才能真正成为可能.在日常的教学工作中,不忘经常创设数学情境,引导学生自主学习,动机、兴趣、情感、意志、性格等非智力因素起着关键的作用.把智力因素与非智力因素有机地结合起来,充分调动学生认知的、心理的、生理的、情感的、行为的、价值的等方面的因素,让学生进入一种全新的情境境界,学生自主学习才能达到比较好的效果.这就需要在课堂教学中,做到师生融洽,感情交流,充分尊重学生人格,关心学生的发展,营造一个民主、平等、和谐的氛围,在认知和情意两个领域的有机结合上,促进学生的全面发展.
参考文献:
1、皮连生《学与教的心理学》(华东师范大学出版社1997年)
2、柳斌《学校教育科研全书》(九州图书出版社,人民日报出版社1998年)
3、肖柏荣《数学教育设计的艺术》(《数学通报》1996年10月)
4、章建跃《关于课堂教学中设置问题情境的几个问题》(《数学通报》1994年6月)
5、盛志军《今天,我没有完成授课计划》(《数学教学》2004年第11期)
6、冯克诚《中学数学研究:3+x中学成功教法体系⑧、⑨》(内蒙古出版社,2000年9月)
7、钱军光、过大维《从错误中发现、在探索中建构》(《数学教学》2004年第10期)
8、曲培富《数学教学中“教为主导、学为主体”的认识与实践》(《中学数学杂志》1993年第1期)
在以上解析基础上,中职数学教学模式可定位于以下三个环节:
1.建构起学生必需的数学知识体系
中职数学知识体系同样包含代数和几何两大部分,根据中职教育的人才培养目标,在对两大板块的教学中应着力建构起学生必需的数学知识体系来,而不应纠结于题海战术。在抛弃应试教育的基础上,教师在进行数学知识讲解时,还应着手培养学生的探究意识和问题意识,从而为今后专业课程的理论和实训教学建立起前置性能力训练。如针对财务管理类专业而言,需要提升学生的“数感”,并能对企业财务信息做出规律性预测,因此在等差数列的教学中着手应用等差数列的前n项和公式,解决数列的相关计算,培养学生的计算技能;提高学生的归纳能力、预测能力,并在此基础上掌握等差数列前n项和公式的推导思想方法。
2.建立数学知识与专业范畴的关联
增强数学知识与专业范畴的关联,也是建立中职数学有效教学模式的重点。由于受到专业背景的限制,数学教师往往对专业课程方向的行业背景缺少了解。因此,这也在一定层面制约了关联性的实现。针对这一现实问题则可以通过形成数学教师与专业课程教师之间的互动平台来解决。或者说,要打破中职学校在教学中的职能型结构的限制。
3.完善数学教学实践中的评价机制
由于各所中职学校都形成了自身的职业教育目标,所以本文将不详细讨论评价指标的内容,而是就评价主体的构成进行阐述。改变诸多学校忽略学生体验的不足,应增强学生对数学教学实践的评价,而评价的重点在于考查数学知识与专业范畴的联系程度。
二、定位驱动下的中职数学教学模式构建
根据上文所述并在定位驱动下,中职数学教学模式可从以下四个方面展开构建。
1.考察本校的专业和学科结构
本文始终强调应在校本要求下来构建起中职数学教学的有效模式,而具体体现校本要求的,需要从本校的专业和学科结构出发来进行数学教学内容的重构。为了使考察工作更有收敛性和实效性,数学教研组应根据专业群为单位,以领头专业为代表来进行专业元素的提炼。然后在集体备课下来完成数学知识的首次重构。
2.界定出数学所必需的知识点
对数学知识内容的重构不能脱离数学知识传授的内在规律性和逻辑性,因此需要保持教材的整体体例不变为原则。根据数学教学的第一个层次可知,需要界定出学生所必需的知识点。以数列环节的知识点为例:
(1)了解数列的有关概念;
(2)理解数列的通项(一般项)和通项公式。这两点应构成该知识版块教学的指向,并能建构起学生对该知识点在算法上的一般应用能力。
3.教师合作下设计教学内容
若要推动数学教师能主动与专业课程知识相联系,这不仅依赖于教师自身的自学意识,还需要搭设教师之间的合作平台。这里的合作包括数学教师之间,以及数学教师与专业课教师之间。前者主要反映在集体备课范畴,后者则主要存在于深度的学科联系之间。对于后者而言教务部门应牵头形成数学教研组与其他专业课教研组的定期教研机制,有条件的学校可以考虑编撰数学校本教材。
4.多元主体参与下的教学评价
关键词:初中数学;高效课堂;生活;自主
追求课堂教学的高效是每个教师不断追求的目标,而所谓的高效课堂是指教育教学效率或效果能够有相当高的目标达成的课堂,具体而言是指在有效课堂的基础上,完成教学任务和达成教学目标的效率较高、效果较好并且取得教育教学的较高影响力和社会效益的课堂。所以,在数学教学中,我们在初中数学新课程理念的指导下,采用多样化的教学模式,打造和谐的数学课堂,调动学生的学习积极性,进而打造出高效率、高效益的数学课堂。
一、创设生活情境,调动学习热情
陶行知先生曾说:生活即教育,数学是人们生活、劳动和学习必不可少的工具。所以,在教学中,教师要根据教材内容的需要,将学生熟悉的生活情境引入课堂,使学生在直观形象的情境中激发学习的热情,进而为高效课堂的实现奠定基础。
例如,在教学《实际问题与二次函数》时,函数是中学阶段一个非常重要的内容,初中阶段的函数学习也为学生进入高中阶段的数学打好了基础。因此,为了提高学生的学习效率,在授课的时候,我首先让学生思考了这样一个问题:某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件,请分析,销售单价多少时,获得的利润最大。
对于初中生来说,他们也非常清楚,作为一个商人追求利润最大化是再正常不过的了,但是如何实现利润最大就需要依靠数学知识进行计算获得,所以,在学生熟悉的情境中引入课堂一方面可以调动学生的学习积极性,另一方面可以让学生在思考问题的过程中更好地进入课堂活动当中,从而为实现高效的数学课堂做好前提工作。
二、开展自主学习,激发探究意识
《义务教育数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”所以,在新课程理念的指导下,教师可以开展自主学习课堂,充分发挥学生的主动性,使学生在自主思考、自主分析的过程中找到探究数学的乐趣。因为我们都非常清楚,作为主体的学生如果缺少乐趣,缺少兴趣的话,即便是教师教学方法再丰富多彩要想实现课堂的高效都是非常困难的。因此,在授课的时候,我们要创设自主学习的平台,使学生在这个平台上自由地发挥和展示自己的个性。
高中数学具有很强的实用性,首要的任务就是要利用课本中的数学理论来解决生活中的数学问题,真正的做到“学以致用”。然而高中数学对学生的逻辑思维要求很高,个体差异的存在必然导致一些学生不能深入的领悟数学的内涵。因此,在教学中,就要探索新的教学模式来帮助学生进行快速理解,以实现对数学问题的有效解决。情境教学的应运而生给学生提供了增加交流、共同探索创新的学习环境,充分的激发了学生的主观能动性,灵活的将动手实践、自主探索、合作交流等学习方式有效的融合在一起,将单纯的知识传授转化为对学生的能力、智力、创造力的开发和挖掘。学生在分析、探究、猜想、验证的过程中,提升了自主探究能力,实现对重难点的突破和创新,为其终身学习奠定了基础。
二、深研理论,遵循情境创建的原则
1.生活情境中感受真实性。生活化、真实性的情境能够使学生快速地进入现实环境,结合自身对情景的熟悉程度来挖掘其中存在的问题,唤醒学生强烈的问题意识和求知欲。学生置身于熟悉的情景中,针对其中的一些数学现象,积极的调动原有的知识储备来给予解决和探索,在不断的前行中产生认知冲突,并以此诱导学生质疑猜想,从而顺利的导入对新知的学习。例如在学习“指数函数”时,就可以充分的利用学生所熟悉的“细胞分裂”,让学生以图示的方式来观察细胞分裂的过程,一个变两个、两个变四个……学生对这样的现象既熟悉又陌生,从而拉近了学生与数学之间的距离,逐渐由兴趣转化为理性的思考,并找到其中蕴含的函数表达式,从而实现对数学知识的学习。
2.模型情境中直观形象美。表面看似枯燥、乏味的高中数学,其内在却体现着数学特有的严谨、冷峻之美。教具模型直观形象的显示了数学中抽象的知识概念,引导学生来挖掘、体验、感悟、欣赏其中蕴含的数学美,积极的利用自己的智慧来实现图形和理论之间的交流。例如数学函数图形的平移、旋转彰显了其中的运动之美;圆和椭圆都显示了模型中的曲线之美;立体几何中点、线、面之间的纵横交错,强调了数学中的线条美。这些教具模型的应用,为数学课堂注入了新鲜的元素,刺激了学生的感官,使之对这种看得见、摸得到的情景产生愉悦之感。学生在观赏和自制的过程中,联想、想象、情感和思维被激活了,从而进入持续稳定的学习状态中。
3.质疑情境中思维探究性。激励使学生产生积极的思维,进而对现象、问题进行质疑;引导学生理性思考,训练学生分析、推理等严密的思维,以提高学生判断和计算能力;给学生预留足够的思维空间,使学生在掌握知识、形成能力的同时,培养学生的创新意识。例如在学习“正弦定理”时,教师就可以利用一些典型而有趣的问题让学生进行探究:我国核潜艇A在海上巡逻,突然发现正东处有一艘敌艇B正以30海里/小时向北偏西40°行驶,试问,已知鱼雷的速度为60海里/小时,怎样发射才可以击中敌舰?通过这样的情景让学生绘制图形进行探究,通过大胆地质疑以激发学生的思维,唤起学生对问题的激烈讨论,实现学生思维之间的交流。
4.激励情境中学生主动性。教学的最终目的是对学生能力的培养,引导学生积极主动的参与,激发学生内在的潜动力。在情境的创建中,要能够顺畅的将学生带入情境,使学生主动的动脑思考、动手操作;在对数学的体验中,体会学习所带来的快乐,品味数学中的无穷魅力,以使学生由感性的、暂时的兴趣,进入持续、稳定的学习状态。在热烈的情绪的带动下,学生主动的参与探究、表达、体验、评价、鉴别、操作等课堂活动,能够促使学生的语言、操作和理解达到一个新的高度,从而避免“重知识,轻能力”的教学弊端。
三、优化课堂,灵活情境教学的实施
1.贴近生活,激发学生的学习兴趣。生活化的情境将学生置于一个熟悉的环境中,由学生感性的认知来顺利导入理性的思考。例如在学习“函数的单调性”时,教师就可以通过函数图像来创建情境,让学生观察不同的函数图像,利用成语来描述函数图像的变化。这一情境使得数学问题充分与语文成语相结合,极大的提高了学生的兴趣,纷纷利用自己熟悉的、生活中学过的成语来进行描述。学生在描述上升趋势的增函数时想到了蒸蒸日上、节节高升等成语;在描述下降趋势的减函数时想到了每况愈下、直线下降等成语;在描述三角函数的图像时想到了此起彼伏。讨论使得学生很兴奋,教师就可以顺势提出问题:观察y=x和y=-x函数图像的变化趋势,这两种变化趋势有什么不同?如何利用数学的方式进行描述?学生由感性的描述上升到了理性的变化分析,使学生顺利的理解了“y随x的增大而增大”的特征,对函数的单调性有了逐步的认识,进而顺利的导入了对单调性的深层学习。通过这样贴近生活的情境建立,激发了学生的兴趣,使学生建立了对本节课所学知识的兴趣,并逐层加深了对知识的认识,提高了课堂的效率。
2.教具应用,彰显数学的对称之美。教具模型的情境建立,将抽象的数学知识直观形象的展示在学生面前,降低了学生的思考难度。在教学中,教师可以让学生参与教具的制作,使学生能够体验从建立到生成的整个过程,从而理解知识的成因。例如在学习有关“椭圆及其标准方程”时,教师就可以让学生亲自来创设情境。让学生准备一定长的细绳,将绳子的两个端点固定在黑板的两个端点上(绳子的长度要大于两点之间的距离),然后利用铅笔拉紧绳子,沿绳子旋转一周,笔尖就会在纸上画出一个完美的椭圆形。学生对这样的操作很是兴奋,纷纷的画出不同的椭圆形,从中体会到了椭圆带来的美感。
3.问题创建,建立数学的开放探究。问题能够直接点燃学生的思维。学生积极调动原有的认知来尝试解决问题,在对问题的探究中实现对新知的融入和学习。在教学中,教师可以结合教材的内容和学生的特点,来创建问题情境,利用开放式的探究来促进学生的思维碰撞。
由于高中数学教学一直处于应试教育的环境里,为了升学不得不以考试为指挥棒指挥教学活动。在这样的背景下,必然会产生一种围绕考试的教学模式,这种模式就是“满堂灌”的教学模式。在这种教学模式里,学生处于一种被动的接受地位,而教师是课堂的话语权威,是课堂教学的主体。这种教学模式不能很好地促进师生的有效交流,不能发挥学生的主体能动性,进而导致了学生在课堂学习中的依赖性和厌倦心理,由于缺乏兴趣的支持,学生并没有真正参与到学习中来。
二、在高中数学教学中进行合作教学的意义
所谓合作实际上是一种双赢互惠的行为,既有利于自己的同伴,又有利于自己。在教育教学中,积极地采用合作方式进行教学,其目的在于弥补学生和教师之间没有有效的互动交流。在高中数学教学中进行合作教学可以有效地在学生和教师之间架起一座良好的沟通桥梁,一个彼此交流思想的桥梁。在交流中,学生可以向教师提出自己遇到的问题,让学生的困惑及时得到解决。同时将自己的一些缺点、不足暴露给教师,加深教师对自己的进一步认识,比如哪些地方需要弥补,哪些地方需要有效的强化等。进而让教师能够及时准确地掌握学生学习的动向,为制订下一步合理的教学计划奠定基础。所以,在教学中进行探究合作,可以有效地促进课堂教学效率的提高。另外,在合作教学中学生之间的交流不仅包括课堂上的分组教学,同时也包括学生之间学习心得的分享和交流。在合作中,学生之间的交流合作可以有效地增强学生之间的感情,有效地提升学生的学习兴趣,培养他们的主观能动性,促使学生积极主动地投身到数学探究中。在交流合作中,在对学习心得的分享中让学生对自己的不足和优势能够有一个清楚的认识,同时让学生可以有效地学习别人的优点,进而能够弥补自己的不足。
三、在高中数学教学中进行合作教学的有效性
1.在合作教学中,积极发挥教师的主导作用在高中数学教学中进行合作教学,其中一个重要的组成部分就是学生之间的合作。学生之间的合作尽管是学生自主的学习活动,但是如果缺少了教师在学生活动中的有效指导,学生的合作探究活动也就缺乏了目的性。那么如何促使学生很好地进行合作呢?在学生的合作中,一定要充分地发挥好教师在教学活动中的主导作用。对学生科学合理地进行分组,或者在教师的指导下让学生进行自主分组。在这一过程中,作为教师应该有目的地引导学生进行有效的分组合作学习。教师应该对学生分组合作学习的方向给予充分的、明确的指导,只有这样才能促使学生积极主动地进行合作探讨学习而不迷失合作学习的最终目的。比如在讲授几何知识的时候,可以对空间向量法进行简单的铺垫讲解,而后提出一些问题,将这些问题分别发给各个小组的学生进行讨论。为了保证学生能够解决问题,在学生合作学习的过程中,教师要给予学生一定的提示和引导,积极地让学生进行讨论,寻求各种方法解答问题。在学生的学习讨论中,作为教师应该对学生的讨论给予充分的关注,及时发现学生在讨论中出现的问题和困惑。教师要给予及时的指导和帮助,保证学生的合作交流能顺利开展下去。在合作交流中,教师的指导可以保证学生保持正确的学习方向。
2.关注学生的个体特点,提高合作学习的成效在合作学习模式中,教师的主导作用是不可忽视的,但如果只是一味地要求教师主导也是不对的。在学生的合作学习活动中,教师主导是前提,学生是学习活动中的主体,忽略了学生的主体地位,就无法达到对学生进行教学的根本目的。在教学过程中,教师应该充分凸显学生的学习主体地位,给他们充足的讨论时间,允许学生出现错误,积极地鼓励学生进行有创造性的学习活动。只要他们有一点创新,教师都应该及时给予表扬,对于学生犯的错误应多包容,指导学生发现在哪里出现了问题,并给予引导,帮助学生解决问题。
3.让学生体验成功,提高合作学习的效率在新的课程标准中,教师的教学工作量有所增加,作为高中数学教师,在上课之前要花费大量的时间查阅资料,然后进行教学设计。而在课后又要花费许多时间批阅学生的作业,还要进行一定量的辅导和答疑。与此同时,由于当下高中教学面临的高考压力比较大,教师在思想上还没有对合作学习重视起来,常常在表面上承认合作学习的方式有利于学生的学习,但在实际教学中却拒绝采用这种学习模式,认为合作学习耗时太多。故而课堂上的合作学习活动常常出现“综合网络资源”和“综合教案”的状况,这俨然是一种流于形式的教学活动。因此,一方面要让教师从合作教学中体验到合作学习活动对教学质量的促进作用;另一方面要让学生感受到集体的力量,积极地改变师生之间的关系,促进高中数学课堂教学质量的提高。
四、结语
(一)美术课对促进学生全面发展有着不可估量的作用
研究表明,美术课开的早晚、是否全面到位,在很大程度上影响着学生的全面发展。因为美术课不单单是培养学生的美感、审美意识和审美情趣,还对培养学生的想象力/观察力和创造力有着十分重要的作用。历史上,苏联在科技方面远远领先于美国,就在于苏联在小学阶段就开设了美术课,并一直延续到大学,而美国在初中阶段才开始美术课程。这就充分证明了美术课在培养学生各种能力方面的重要作用。
(二)通过欣赏美术作品可陶冶学生情操
美术作品凝聚着作者的个性和想象力。通过欣赏美术作品,学生可以唤起自己的审美意识和想象力,从而激发创造潜能,陶冶情操。因此,在日常教学中,教师要通过多种形式,或展览名家名作,或张贴学生的优秀作品,拓宽学生的视野,让学生学会鉴赏,提高审美能力。另外,教师还可以有效结合其他学科内容,让学生展开想象的翅膀,使其思维有一定的拓展和提升。
(三)美术教学可培养学生善于实践的优秀品质
学习贵在实践。书本知识的真正吸收,主要体现在运用和实践上面,美术课程的学习同样如此。无论是思想上的感悟、精神上的理解,还是心理上的认识都不能单单依靠文字表达出来,还可以依靠画笔、工艺等美术手段表现出来,从而体现美术情趣和美术意境。学生学习中对其他学科知识的理解和领悟,往往和美术知识、美术作品的展现是息息相关的,当然也会对学生的生活和将来从事的工作产生一定的影响。
二、美术教学对中职学生身心发展有促进作用
中职学校的美术教育,并不是让学生在美术上必须有一定的造诣,而是要让学生通过对美术的学习,培养各种能力,陶冶情操,能够借助美术来认识生活和社会中的各种美。鉴于美术范围较广,分为工艺美术、绘画、雕塑和建筑艺术。学生可以根据自己的喜好和特长做出选择,了解其不同特点和艺术作品的感染力。这种发自内心的感悟和体验,对学生的身心发展有着很大的促进作用,可以有效培养学生的感知能力和形象思维。比如,学生在学习过程中接触到的课程大多是一些抽象的知识,而美术课程可以让学生触碰到实际存在的事物和具体可感的环境,这对发展学生的感知能力和形象思维是十分有益的。久而久之,必定可以大大提高学生的综合思维水平。
三、美术教学能帮助学生心智发展趋向于成熟
美术教育的功效不仅限于培养学生的审美能力和想象力,还能帮助学生的心智发展趋向于成熟。随着时代的进步,社会对劳动者提出了更高的要求——做一个德智体全面发展的21世纪新型人才。如果在人才培养的过程中,欠失了美术教育,就会或多或少地造成精神和行动能力的差异,使个体人格和性格普遍化,使生产劳动者的感官意识和审美功能不协调,从而妨碍整个民族素质的提高。如果重视美术教育,可以使中职学生发现自己的优势和才能,积极展现自己的爱好和特长。实际上,现行的应试教育已经限制了学生的全面发展。面对这样的情况,教师在教学中应尽量利用一切有效的教学手段,有目的地培养学生的美术意识,激发学生学习美术的兴趣,挖掘学生内在的美术潜能,让学生掌握一些美术技能,从而培养学生的艺术创造力。只有这样,学生才能在相对轻松、活泼的教学氛围中发现美、感受美和创造美,为其心智的健康发展添砖加瓦。
四、美术教学能培养学生的自主探究意识
教学过程中,教师大都会十分注重培养学生的自主探究意识。美术教学同样如此。教师应该让学生自己去发现,自己去感知,自己去判断,这样学生从中获得的体验和认识才会更加深刻。为了在美术教育中培养学生的自主探索意识,我让学生自己组成合作小组,要求他们通过相互合作完成一种以生活废品为原料的工艺品制作。作业布置下去后,学生兴趣高涨,纷纷商讨、构思。有的用布的下脚料做成了“奥运娃娃”,有的用易拉罐做成了“树”型的工艺品,有的用各种颜色的废纸粘贴成了一条“大鲤鱼”……通过学生的动手合作,不但练习了学生的动手能力,还培养了学生的合作意识,更重要的是学生对美术产生了浓厚的兴趣,懂得了美术的实践意义。中职学生正处在青春期,也是思想的叛逆时期,无论是意志还是兴趣,都还缺乏一定的稳定性,对生活中的善恶、是非也缺乏足够的辨别能力,极易表面化、肤浅化。因此,在中职美术教学中,教师应该着眼于学生审美能力的培养,想方设法地激发学生对美术的兴趣,有意识地让学生多参与美术活动,帮助他们形成积极健康的审美观念,提高审美意识,升华审美情趣。
要切实推进高中数学课程改革,教师必须要更新观念,过去传统的教学观念已经不适应新时期社会对于教育教学的需要,教师必须要勇于打破常规,摒弃传统的教学理念的束缚,应用新的教学理念,指导教育教学工作。对于这一点我们要做到的是做好新课程理念的培训,积极主动地学习和应用新的教学理念,同时我们更要用勇气和毅力抛弃旧的、传统的教学理念和教学方法,这对教师来说是必须要克服的一个挑战。我们要勇于接受这样的挑战,不能拈轻怕重,要有所担当。在教学改革的初期,我们要打破传统的教学方法,应用新课程理念指导教学,同时会遇到各种意想不到的困难,对于这些困难我们要有所准备,不能遇到困难就退缩不前,所谓“开弓没有回头箭”,教学改革也是如此,我们要在实际教学中不断发现问题,解决问题,不断进行完善。
二、做好课前准备工作,上好每一节高中数学课
在实际教学过程中,我们要按照新教学理念的要求备课,进行课前准备,对教学中可能出现的问题做好充足的准备,力求给高中生呈现一堂高品质的数学课。为此,我们要着重在以下几个方面进行积极的尝试。
(一)利用教学情境激发高中生的学习兴趣
高中生往往对一些单调的教学不感兴趣,而提高高中生的学习兴趣又是新课程理念中培养高中生学习自主性的重要内容。为此,我们可以根据教学的内容创设教学情境,通过情境的创设把高中生引入到教学中,让高中生在情境中思考,引导高中生开动脑筋,解决问题,这样可以有效地调动高中生的学习兴趣,让高中生产生探究的兴趣和持久的学习激情。教学情境的创设要根据教学的内容和高中生的实际学习情况,可以用一些小故事作为知识学习的切入点,突出了数学与现实世界、与其他学科之间的联系,使高中生感受到数学的现实意义和应用价值,为教学内容的展开奠定了比较好的基础。
(二)发挥评价的作用,促进高中生的全面发展
新课程理念下的高中生评价,注重高中生的全面发展。相对于传统教学中只注重高中生的学习成绩的单一评价,有了质的进步。新课程理念的学生观承认高中生的差异性,也承认学生发展的多样性。所以,在新课程理念下,我们就要摒弃传统教学中的评价高中生的方法,变单一的成绩评价为全方位的发展性评价,只有这样才符合高中生全面发展的需要。我们要充分发挥高中生评价的作用,引导不同的高中生发挥特长,鼓励他们在不同方面得到发展和进步。这样的高中生评价有利于培养高中生的自信心,有利于高中生的健康成长和全面发展,从根本上杜绝传统教学中高分低能现象的出现。
(三)对不同的高中生提出不同的要求,实施分层教学
新课程承认高中生的差异性,对不同的高中生我们要制定不同的学习目标,在课堂教学中要进行分层教学,具体操作中我们要注意以下几点。
1.按高中生的不同层次,制定教学目标。教学目标是我们课堂教学要达到的结果。教学目标是否科学直接影响着教学的实际效果。教学目标的制定必须根据教材特点和高中生的实际,对不同的知识内容、类型采取不同的教学方法,要根据教学内容制定不同层次的教学目标。
关键词:新课程标准,教材编写,教师教学,学生评价,教育观念。
现代中学数学教育是基础教育非常重要的一部分,对于培养中学生独立思考能力、分析能力、推理能力、计算能力、空间想象能力等都是非常重要的,是“素质教育”的内涵之一。
几年前,我国数学教育工作者提出:中学数学的素质教育或者说中学数学素质的教育是——人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。[1]
对于现代中学数学教育的现状,美国内布拉其斯加大学数学教授史蒂文·邓巴认为:“之所以杜克大学的篮球水平始终能够保持在美国顶尖位置上,就是因为学校、教师以及家长们的通力合作,才造就出一批又一批篮球精英。然而目前美国中学的多数学生只知道把数字填进公式里,而不去理解怎样运用这些数据去解决实际问题。这正是我们在中学数学教育方面失败的所在。”
美国官方和教育专家们认为,一些亚洲和东欧国家在中学数学教学中,注意培养学生的分析、论证和解决问题的能力。而美国则把注意力放在一般的书本练习方面。这些完全不同的方法使得美国中学生数学成绩不佳。美国数学教育专家们呼吁,重新制定数学教学大纲。把解决问题、理解概念和实际应用三者结合起来,设计和安排教学内容,以尽快提高美国学生的数学水平。
20世纪以来,数学发生了巨大的变化,与计算机的结合,使数学在研究领域、研究方式和应用范围等方面得到了空前的发展。现代中学数学教育地的观念和内容也与以往有所不同了,解决问题、理解概念和实际应用三者结合起来就是现代数学教育的主旋律。
当前我国中学数学教育的大致情况是,学校里爱好数学、成绩好、又觉得比较轻松的学生不太多,多数学生对学习数学缺乏兴趣。花的力气不少,但成绩并不好,数学成了学习的负担,拦路虎。大多数学生很难达到理想的数学水平和能力。其中有课程标准要求过高的原因;有教材内容过多过繁的原因;有教师水平不整齐,教得不够活的原因;更有现行评价体制的原因,因为数学是主科,总归是要考的,应试、要考高分的牵制力是很大的。
随着新的课程标准的出台,将会逐渐改变这种局面,但是执行新课程标准的人数以万计,我们必须统一认识,为我国中学数学教育发展,为培养新一代人才而达成共识。
一、关于课程标准的思考
由美国数学教育家的呼吁可见,课程标准是左右一代人的数学素质的行动性纲领,不可不高度重视,不可不认真制订,不同的课程标准培养出不同的人。在重视数学素质教育的课程下,培养出来的人雨季一定比注重数学分数的应试教育的课程标准下的人才要多而且精。可以说课程标准是指挥教材编写、教师教学、学生学习、社会和家长形成数学教育观念的魔棒。在教育普遍受重视的今天,课程标准的制订更是关乎一代人的成长与发展的最重要的纲领性文件。
我国现行的课程新标准较以往的课程标准,显然是先进了不少,更符合国性和现代化建设的需要,其制订的基本理念是突出体现基础性、普及性、应用性、发展性、创造性,现阶段看来是合理的,课程新标准要求数学教育要面向全体学生,这也是完全正确的,也完全符合数学文化素质的内涵。
课程新标准界定了数学素质的内涵,其中不同的人在数学上得到不同的发展更是精华;把数学看成是工具,用以处理数据、进行计算、推理和证明等;把数学看成是为其它科学提供语言、思想和方法的基础学科;把数学看成是培养推理能力、抽象能力、想象能力和创造能力的手段;把数学看成是人类文化的组成部分。后二者是十分重要的理念,这就为数学的素质教育各个环节拓宽了视野,开启了思路。
如果要求大部分人都掌握高深的数学计算、推理和证明,把数学当作是人人都必须掌握的接受进一步教育的敲门砖。当然会使有的青少年把数学当作拦路虎而不当作培养能力的手段和数学文化,从而使在其它领域本的所发展和创造的人才。因为数学的缘故而失去信心、失去机会,这当然是课程标准的罪过而不是数学的缘故。但是,课程新标准也存在一些问题,如从实践的角度考虑,如何解决“个体化教学”与班级授课制这一现实之间的矛盾[2]。课程标准的制订应是一个长期的探索的过程,不可能几个专家一挥而蹴,要反复实践,不断修改,不断更新,以适应新时期发展的需要。
总之,有了新的课程标准,便会有相应的新教材,相应的新教法,相应的新学法,相应的新评价,相应的新理念,也会改变现代中学数学教育的现状。
二、关于教材编写的思考
教材为学生的学习活动提供了基本的线索和工具,是实现课程标准、提高数学素质、实施数学教学的重要资源。教材和课程标准一样是造就一代人的数学素质的工具,不可不高度重视,在班级授课制的教学体制下,一定程度上,可以说用什么样的教材就能培养什么样的人才,毫无疑问,在课程新标准下的教材的编写,已不再是过去那种单一化的版本,而是百花齐放的局面,这为各类学校提供了比较和选择的余地。可以根据校情、班情进行选择,这是一大进步。
新教材所选择的数学素材,就来源于自然、社会与科学中的现象,是密切联系当前生活实际的问题,把数学问题生活化,让数学知识回到现实生活中,将其产生和发展的过程返璞归真,给学生创设问题情境[3],不要为问题而脱离实际,使数学纯化,与生活产生隔阂,但也要反映一定的数学价值,将数学本来的魅力充分展现出来。
新教材的内容编排和呈现突出了知识形成与应用过程,轻结果重过程,体现了螺旋上升的原则,采用逐步加深的方式,引导学生对数学知识、思想和方法的理解,这比以往的教材改进了许多。
新教材的最重要的一个特点是关注了学生人文精神的培养,介绍了有关的数学背景,特别是设计上先进了许多,这是很好的。作为数学教师应深入领会教材的编写意图,摈弃传统的教育理念,以提高学生的数学素养为最终目的,充分发挥教材的教育和教学功能[4]。
但是,在众多执行新课程标准的人中,教材编写者是第一批执行者,若他们偏离轨道。真可以说是差之毫厘,谬以千里,事实上,从目前的教材看就有此嫌疑,分明新课程标准不作要求的内容或者说已过时的内容,不在正文中出现,便要在教材的习题中出现,于是下面教学者,进一步扩大其力度,再走几步,可想而知,课程新标准也就新不了了,和原来列二致,这当然是指少数内容了。所以,好的教材应是以课程新标准为依据的,不偏不倚,恰如其分,带头执行课程新标准的。
总之,的了新教材,便会的相应的新素材,相应的新教法,相应的新学法,也会改变现代中学数学教育的现状。
三、关于教师教学的思考
数学教学是数学活动的教学,是数学思维过程的教学,是师生之间、同学之间交往互动与共同发展的过程。
数学教学应根据所要完成的教材内容,从学情出发,在课堂教学中创设有助于学生自主学习的问题情境,发挥学生的主体性,课堂上教师要摒弃师道尊严,发扬教学民主。激发学生的学习潜能,鼓励学生大胆创新与实践,同时发挥教师的主导地位,组织、引导学生的数学学习活动,与学生合作,努力引导学生从已有的知识和经验出发,进行自主探索现合作交流,并在学习过程中逐步学习、渐渐进步,引导学生通过实践、思考、探索、交流,获取知识,形成技能,锻炼思维,发展能力,学会学习,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习,不仅学到知道,更学到方法、思想。从目前的情况看,数学教学的情况远非如此,估且不论教师的水平是否可以达到,就教师的态度就值得怀疑,有的教师想如此却不敢如此,这与社会的教育观念相关。
教师教学离不开数学教材,数学教材是数学教学的媒体,是学生学习活动的主线,教材不可能适应每个班每个人,教师要发挥主动性和积极性,创造性地使用教材,进行创造性教学,结合学情利用教材,在课堂上,关注学生要多于关注教材,教育是一种关注,关注学生的成长,关注学生的学习目的,学习内容,学习方式,学习环境,关注学生的个体差异[5],适时地实施有差异的教学,使每个学生得到充分的发展。事实上,关注教材比关注学生多的情况还存在,忽略学生的学习目的,学习内容,学习方式,学习环境,忽略个体差异的情况更是比比皆是,教师的教育观念也有待改变。
教师教学还要好紧跟时代,利用现代教育技术在教学中的应用,有效地使用多媒体技术,多媒体技术可以使学习的内容图文并茂,栩栩如生,自然增加了教学的魅力,使学习者保持良好的学习兴趣,提高教学效益[6]。从目前的情况看,现代教育技术还停留在纸上者居多,现代教育技术的培训也是走过堂,没有真正落实,甚至有的地方现代教育技术的设备只是不动产而已,这是相当可惜的资源浪费。可以说,今天让学生使用坏一台电脑,将来他会创造出若干台电脑,教育要舍得投资。
四、关于学生评价的思考
教与学都要评价,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展,评价也是教师反思和改进教学的有力手段。
对学生数学学习的评价,传统的评价手段比较单一,主要是测验与考试,只关注学习对知识与技能的理解与掌握,只关注学生数学学习的结果,事实上对学生数学学习的评价还要关注他们的情感和态度的形成和发展,还要关注学生的学习过程,评价以定性描述为主,充分关注学生的个性差异,不要把学生理想化。对学生数学学习的评价手段和形式要多样化,要重视数学学习过程的评价,课堂上适时对学生进行评价,保护学生的自尊心和自信心,发挥评价的激励作用。
对学生数学学习的评价,不仅仅是评价学生,还应评价教师的教学,教师要善于利用评价所提供的大量信息,适时调整和改进教学方法。有部分教师还认为对学生数学学习的评价只是评价学生,这中、是不对的。
五、关于教育观念的思考
现在,家长和社会的教育观念一定程度上还停留在应试教育观念上,甚至一部分教师也不例外,之所以出现这种现象,不在于课程标准,也不在于教材,而在于教师的教学和对学生的评价上。
首先,现在对学生评价的手段单一,还是定量评价为主的唯分数论英雄,在高考的指挥棒下,学生要当英雄就昼拿高分,学生的学习热情不是被激励出来的,而是利益驱动下产生的。
其次,现在教师教学也并未脱离应试教育,素质教育还停留在口头上,对教师而言,不是不想进行素质教育,这里有水平、观念的原因,也有其它原因,还有社会观念的原因。
素质教育观念的形成,光靠课程新标准的制订和执行,光靠新教材的开发利用,光靠教师和新教法,靠新的学生评价机制,都不足以形成,必须一步一步地走,中一个漫长而复杂的过程。为了尽快缩短这个过程的时间,的有利于国家和民族的强大,多出人才,必须大家都行动起来。
参考文献:
[1]《数学课程标准(实验稿)》北京师范大学出版社2002
[2]《改革热潮中的冷思考》郑毓信《中学数教学参考》9/2002
[3]《新教材中的问题情境创设》陈辉志大才疏《湖南教育》6/2003
[4]《引言教学的心理学意义》刘吉存/孔令夯《中学数教学参考》12/2002