发布时间:2023-03-24 15:13:58
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的大学生数学建模论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:数学建模竞赛;创新能力;培养
数学建模有利于将数学理论付诸实践应用,在各行业中作用巨大。大学生数学建模教育的实施,也是素质教育创新的重要要求。开展数学建模竞赛,有利于提高大学生创新能力,对提升大学生综合素质也有帮助。研究如何通过大学生数学建模竞赛培养大学生创新能力,具有十分重要的现实价值。
一、通过数学建模竞赛培养大学生创新能力的途径与策略
高校组织开展数学建模比赛,对创新型大学生的选拔机制进行完善,为大学生创新能力的提高提供实战平台。教师不仅要激发学生对数学建模的兴趣,也要培养大学生的创新能力。学校鼓励全体学生共同参与数学建模竞赛,通过竞赛实现大学生各方面能力的培养。竞赛的开展主要分为初期选拔、暑期选拔以及赛前选拔三个阶段。
1.初期选拔阶段。高校于每年的4月开始进行初期选拔的筹备工作,在5月初开始进行动员宣传,采用张贴海报及制作展板等形式进行文件的,全校级别的数学建模竞赛于6月份组织开展。随着近些年数学建模竞赛的不断发展,学生对数学建模的兴趣高涨。数学指导组教师一同进行竞赛论文的评审,遵循一定的评审原则,保证评审的合理性、客观性。获奖人数根据参赛总人数进行合理设置,通常约占总人数的50%。经过校级竞赛选拔部分善于创新的学生进行暑期培训。整体而言,数学建模竞赛具有较大的影响,涉及较多的学校与学生,学生从中也可获得较大的好处,对大学生创新能力的培养有利。
2.暑期选拔以及再次选拔阶段。高校通常在8月开始着手参赛学生的建模专题培训,合理制订数学建模专题的培训计划,对竞赛知识内容进行科学编排,保证理论课与实验课课时的均衡安排,使指导教师的教学优势得到发挥。课程组按照大纲的指示,进行年度教学计划的科学制订。教师也可一同进行备课,以全国竞赛出题为中心进行探讨,促进学生竞赛能力的提高。
在短期集训课的学习完成后,对参训学生进行再次选拔。此时学生的竞争意识将十分强烈,选拔竞争也十分激烈。数模指导组教师需仔细考量选拔的结果,一同进行各小组学生论文的评审,善于发现创新型学生,坚持公正平等的原则对待各个参赛学生,最终选出享有全国大学生数学建模竞赛资格的学生,并且对这些学生的组合进行优化。
3.赛前再选拔以及模拟训练阶段。高校在8月下半月进行赛题模拟训练,模拟训练的要求遵循全国赛的标准,频率为5天一轮。指导教师此时需要在指导工作中投入大量心血与实践,做好学生的指导与点评工作。学生根据全国赛的标准进行论文写作,指导教师共同对学生的作品进行审阅和点评。各小组可选出一名代表作点评,讨论汇报工作,由小组其他成员进行补充。此时学生的讨论将十分激烈,在这个过程中,问题的结果也将逐渐浮现,数学建模理论也逐渐实现提升。
二、数学建模竞赛开展培养大学生创新能力的效果分析
1.大学生参赛积极性高,参赛成绩较为理想。通过以上方法,大学生在数学建模竞赛中的参与十分积极,成绩越来越理想,创新能力也得到阶段性提高。近些年,大学生参赛人数持续上涨,上涨幅度甚至将近20%,学生的参赛成绩也达到新的高度。与此同时,大学生在挑战杯活动中的参与也同样热情高涨。这些学生凭借数学建模竞赛,实现了数学素质与创新能力的提高。
2.大学生创新思维与能力得到有效提高。在数学建模训练的作用下,大学生信息收集与处理的能力得到培养,使学生形成科学的数量观念,能够对事物数量及其变化进行敏锐观察。并且,数学的严谨推导可使学生养成认真、仔细的良好习惯,使学生的逻辑思维能力得到提高,从而思路更加清晰,可以轻松地应对各项事务,使问题能得到有效解决,使数学理论能够付诸实践,从而使大学生的数学素养得到有效提高。
三、结语
总之,大学生数学建模竞赛的开展,对大学生创新能力的培养与提高十分有益,并且能使学生其他素质得到提高,如团队合作能力、竞争能力及表达交流能力等。高校应积极有效地组织和开展数学建模竞赛,使大学生素质教育在此途径中得到发展,促进大学生综合素质的全面提高。
参考文献:
[1]王文发,郝继升,马燕.在数学建模竞赛活动中提高大学生的创新能力和综合素质[J].延安大学学报(自然科学版),2010(1):40-43.
[2]李宝萍.数学建模与大学生创新能力的培养[J].长春理工大学学报,2013(1):143-144.
随着科技的快速发展,社会对应用型人才的需求日趋增加,高校教育必须加强对学生创新能力和解决实践问题能力的培养[1]。数学建模正是衔接创造性思维与实际应用的纽带,通过数学建模课程学习及实践训练,学生不仅能了解数学的应用价值,也能锻炼创新实践能力。由于数学建模课程的内容涉及的领域多,案例式授课,实际应用性强,与所学的高等数学、工程数学课程不同,不能形成连贯的系统性知识点,学生很难接受这门课程的学习方式。为了让学生更好地学习数学建模,教师要改进教学模式,根据教学规律的要求,探索数学建模教学方法,将有助于学生掌握数学建模技能,从而提高解决实际问题的能力[2—4]。
二、数学建模的认知
大学开设基础数学课程能让学生体会到数学的严密逻辑体系及高度抽象的思维方法,但对数学的实际应用介绍的甚少,很难将数学与工程技术、经济管理、生物信息等其他领域联系起来。数学建模是用数学语言来描述实际问题,将它变成一个数学问题,再利用现有的数学工具或发展新的数学工具来加以解决的整个过程。通过数学建模学习与实践,学生在体验建模过程的同时提高了思维能力和创造能力。数学建模课程的学习,可以重新认识数学的作用。课程重点就是介绍数学应用到实际领域中的方法,结合案例,应用初等数学、高等数学等数学知识来解决不同领域问题。在现实中许多现象及问题都可以用到数学来解释,如,我们看到一个四条腿椅子经过简单的移动就可以找到合适的位置放稳现象,用高等数学中的“零点存在定理”很容易解释这个问题;若知道某珍稀动物各年龄段数量信息,来推测未来种群是否会灭绝,可以用线性代数中的“矩阵”预测未来动物数量分布。书报供应商订购多少数量的商品才能得到最大收益呢?用概率中的“数学期望”建立报童卖报优化数学模型可解决这类问题。数学建模竞赛实践能更好地培养和提高学生应用数学知识分析问题、解决问题的能力。几年来,数学建模竞赛赛题背景知识广泛,要想取得好成绩,不仅要掌握扎实的数学基础,较好的计算软件使用方法,还需要较强的自学能力,广泛涉猎诸如物理、生物、信息等知识。例如,2012年美国大学生数学建模竞赛A题“树与树叶”,需要了解植物树叶生长特点,涉及到生物学知识;2014年全国大学生数学建模赛题A题“嫦娥三号软着陆轨道设计与控制策略”涉及到万有引力定律知识。数学建模是以数学为基础,综合自然科学和社会科学的实践活动。学生们可以通过多种途径了解数学建模,如,与数学建模课程教师咨询、与参加数学建模系列教学活动的同学交流,浏览数学建模网上的数学建模课程介绍及阅读数学建模书籍等,以获得更多的数学建模知识与信息。
三、数学建模学习过程
在学习过程中不仅要掌握数学建模的基本方法、数学建模思维模式,同时还要能以团队形式自主完成一整套数学建模训练题目,才能体会数学建模的真正内涵。目前,最行之有效的途径就是参加一次数学建模竞赛。可将数学建模过程分解为三个阶段:数学建模课程学习,数学建模综合培训,数学建模竞赛及课外科技活动。
1.数学建模课程学习
(1)掌握数学建模的基本方法。数学建模基本方法介绍是从案例分析开始,首先了解问题的背景、要解决的问题,分析用什么数学方法描述问题符合的规律,建立数学模型,并对模型求解,解释结果合理性。可以紧跟教师思路,积极展开思考,比较自己的解题思路与教师所讲有哪些不同,从简单的初等数学建模方法入手,了解数学建模的全过程。例如,鱼的重量估计问题,在没有称重的条件下如何根据鱼的长度估计鱼的重量呢?在合理的假设下,利用初等比例方法建立鱼重量与长度数学模型,利用鱼的长度能估计出鱼的重量,经验证结果是有效的。然后,要结合所学的数学知识逐步学习一些基本的建模方法,例如,微分方程建立传染病模型可以预测流感流行趋势问题;概率统计方法建立的报童模型可以预测出订购多少报能获得最佳受益。最后,要学会模仿案例建模过程完成作业,掌握建模的基本方法和技巧。数学建模过程不是解应用题,虽然没有唯一途径,但也有一定规律可循,在学习中要善于思考,慢慢形成建模思维方式,有助于建模能力的提高。
(2)养成良好的自学习惯。数学建模课时有限,许多数学建模方法及案例不能在课堂上介绍,在课余时间同学们可以选读一些教材中的案例和在期刊公开发表的建模论文,细致研读案例的建模思想,学会举一反三,重点是学会分析问题,了解更多领域的数学建模的方法、新颖的建模思想,提高用数学方法解决问题的能力。还可以丰富建模信息量,提高建模能力。同时,还可看到同一问题,可以选用不同的数学方法、从不同角度加以解决,这也是数学建模的魅力所在。例如,锁具装箱问题,可以用排列组合方法,也可用图论方法,都能给出减少锁具互开的装箱方案。
2.数学建模综合培训
(1)数学建模方法再学习和建模能力强化训练。随着数学建模解决问题多元化发展,基本的数学建模方法及计算能力远远满足不了实际问题的需求。因此还应学习一些现代数学方法,如,图论,模糊数学,多元统计分析等。学会熟练运用计算机软件技能,如,数学软件MATLAB,EXCEL数据处理,求解数学规划软件及统计软件。
(2)阅读建模论文。通过仔细阅读刊登在杂志或数学建模网站上的数学建模论文,学习论文的整体层次结构,写作技巧,对问题的分析、假设、模型建立和求解过程。寻找论文的优缺点,并比对论文作者对论文的评价。要善于总结所读的论文中解决问题的适用类型,如,优化类,预测类等,对于不同问题采用什么方法更合适,以备后继数学建模中使用。还可以提出自己的一些想法,改进别人做过的模型,或完成其中运算过程。数学建模是一项没有标准答案的数学应用,模型的研究结果大致符合实际就好。
(3)数学建模模拟训练。选作历年数学建模竞赛题目或实际问题中提炼出来的数学建模题目,学习查阅资料、分析问题、建立数学模型、使用软件求解、论文写作来模拟数学建模全过程。请教师对论文的摘要、结构、模型的准确性、论文语言表述、格式规范等方面提出建议,再经过多轮修改,直至满意为止。
3.参加数学建模实践活动
(1)数学建模竞赛。参加数学建模竞赛是培养综合应用数学知识解决实际问题的最有效途径之一,参加一次数学建模竞赛才能体会数学的真正魅力。目前开展的数学建模竞赛可以分为四个层面,一是美国大学生数学建模竞赛(MCM/ICM),是由美国数学及其应用联合会(CO-MAP)主办,并得到了SIAM,NSA,INFORMS等多个组织的赞助,是一项具有世界影响的国际级竞赛,为现今各类数学建模竞赛的鼻祖。二是全国大学生数学建模竞赛(CUMCM),是由教育部高等教育司、中国工业与应用数学学会联合主办,并得到了高等教育出版社、美国COMAP公司的支持与赞助,是一项全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。三是地区级、省级、专业类别赛事,如,东三省数学建模联赛是由黑、吉、辽三省高校联合发起的科技赛事;电工杯数学建模竞赛是由中国电机工程学会电工数学专业委员会主办的科技活动;数学中国数学建模国际赛(小美赛)是由数学学会与数学中国(www.madio.net)和第五维信息技术有限公司协办的全国性数学建模活动。四是由校级开展的数学建模竞赛活动。在竞赛中,调整好心态、应用好文献资源、积极思考、发挥每个队员的长处、合理分工是取得成绩的必要条件。
(2)数学建模实践。要善于发现学习和生活中的诸多问题,要学会用数学的眼光看待问题,要用数学建模的方法来解决。例如,在课程设计、毕业设计中,在校园生活中,可能面临着方方面面的问题。要学会观察实际现象,提炼出要解决的问题。要真正做到学会发现问题、解决问题,这需要一定的练习过程,也是学好数学建模的必要环节,可以提升自身的综合素质和创新能力。
四、数学建模提高学生的综合能力
一次参赛,终身受益。数学建模最能激发人的潜能,数学建模思维方式会影响学生今后的学习和工作方法。数学建模教学内容及教学方法对培养学生的综合能力尤为突出。主要体现在:
(1)培养学生的想象力、洞察力和创新能力。不论是数学建模课程学习还是实践,都是针对实际问题,需要学生主动查阅文献资料和学习新知识,主动探索,提出解决方案,这种学习方式促进了创新能力的形成,也培养了学生从事科研工作的初步能力;同时增强了运用数学知识和计算机技术解决实际问题的能力和团队协作能力。
关键词:数学建模;问题驱动;数学建模竞赛;课程教学改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0143-03
《数学建模》课程具有知识面广、形式多样、教学难度较大等特点。因此,一般认为数学建模的教学是一个不断学习、不断提高、不断探索和改革的过程。我们在广东工业大学《数学建模》课程的具体教学实践过程中的指导思路是:以培养学生对现实世界建立数学模型的能力为目标,以学生通过自学和查阅相关资料解决实际问题为目的来组织教学工作。李大潜院士曾指出“数学教育本质上是一种素质教育,《数学建模》的教学及竞赛是实施素质教育的有效途径”。数学建模课程和竞赛为我校大学生提供了一个运用数学、学习数学、提高数学综合素质的平台,该项活动对提高学生的合作精神、解决问题的能力和自学能力都有很多的帮助。然而,目前传统的课堂授课模式过分注重教师的主体作用,忽视了学生自我探究能力和自主学习能力的培养,压抑了学生的主动性和积极性。要改变这种现状,就必须改革现有的课堂教学状况,探索培养、引发学生主动学习的新型教学模式。美国神经病学教授Howard Barrows于1969年创立了基于问题和项目的学习(Problem Based Learning,简称PBL)理念教学法,这是一种全新高效的教学方法,是以问题驱动为中心的教学模式。近年来,这种理念在澳大利亚的维多利亚大学、美国samford大学、丹麦的奥尔堡大学等世界知名大学得到广泛重视和应用推广,并呈现出不同的形式和多元化的发展特色。在我们国家这种教学理念目前主要实践在医学、市场营销、生物化学、实验教学、毕业论文的写作等领域过程。在数学教学中还很少有人使用这种方法,因此,探索这种教学理念在《数学建模》课程中的实践具有重要的理论价值和实际意义。
一、《数学建模》教学现状及问题
我校是以工科学生为主体的省属重点高校,很多工科院校的大学生对学习数学公共课程的重要性认识不足,对数学公共课在他们后续学习专业课的重要性不够了解。因此逐步提高我校工科大学生对数学公共课的认识水平,加强培养他们的数学综合素质已经十分必要了。令人高兴的是广东工业大学的大学生们对《数学建模》课程和数学建模竞赛活动有着非常浓厚的兴趣和积极性,且已经有不少学生在比赛中获得了不俗的成绩。因此,加强数学建模教学和数学建模培训对我校学生有着重要意义。目前,广东工业大学数学建模课程教学和数学建模竞赛活动分为三个模块:数学建模A,主要针对数学专业的学生;数学建模B,主要针对非数学专业的专业选修课;数学建模公共选修课,专业面向全校对数学建模感兴趣的学生。另外还为应用数学学院的学生开设了“数学建模实验”与“数学建模课程设计”的相关课程,逐步形成了理论与实践相结合的教学模式。由于《数学建模》课程的教材一般有多个知识单元构成,知识的跳跃性较强,因此,我们曾经的教学方法是安排三个老师,每个老师分别负责讲授自己数学的专业领域,这样做的好处是能充分发挥老师的专业特长,让学生了解到该专业方向的最新国内外动态和进展。然而这样做给我们对学生的考核造成了一定的难度,我们曾经尝试过闭卷、开卷和交论文考查等多种方式,这样考核方式各有各的优势和劣势。如何才能找到更好的教学和考核方式,这是我们一直在具体的教学实践中不断探索和努力的方向。这几年我们一直把问题驱动教学法的思想融入我们的数学建模教学活动中,已经取得了初步的成效,这种方式能既考查到学生运用数学知识解决实际问题的能力,又能让学生自己动手解决自己感兴趣的问题,虽然这些问题可能对学生具有一定的难度,但是它能真正考核到学生的实际水平,这正是我们所愿意看到的。在我们以往的数学建模竞赛培训中存在着许多问题,培训上采取以教师为中心、以填鸭式讲授为主的传统教学模式,课时非常有限,而教学内容容量又比较大,学生在很短的时间很难消化这些知识。因此造成开始报名的时候学生积极性很高,课时到培训快结束的时候,剩下来坚持学习的学生就大大减少了。因此,这种填鸭式的培训让学生消磨了学习数学公共课的热情和积极性,而且也不能提高学生的综合数学能力。因此,对数学建模课程教学和竞赛的培训的改革势在必行。
二、《数学建模》教学改革的三个方面
为了解决目前数学建模教学中存在的问题,必须从《数学建模》课程本身特点出发,改革课堂教学模式,加强学生主动学习环节、实际建模训练环节的教学,将问题驱动教学模式运用到《数学建模》课程的教学过程中去。这样不仅对改变《数学建模》这门课程的教学现状有着积极的意义,而且以点带面,对其他相似或相同特点课程的教学改革也具有很好的促进、借鉴作用,切合我校培养高素质应用型人才的定位,也符合我校2010版培养方案的制订要求,更推动了新时期新形势下的大学数学教学改革。下面分别就指导思想、教学方法和培训方法三方面的改革探索进行论述。
1.指导思想的改革。《数学建模》课程和数学建模竞赛活动是培养具有综合数学素质的复合型专业人才的内在要求。在具体教学实践过程中我们应该强调学习数学公共课的重要性,而不是简单地讲授数学知识点;必须强调的是学生通过自己的努力学习自主地解决所面临的实际问题,而不是成为数学解题能手;必须强调学生在数学建模学习中的主体地位和主观能动性的发挥,而不是学生被动的接受知识点。我们教学改革的目标是要突破纯粹的教师讲、学生听、做习题的教学模式,这种教学模式要突破传统的填鸭式教学,要通过有趣的实际例子激发学生学习数学公共课的积极性,要不断提高学生对数学公共课的兴趣,逐步培养学生建立数学模型的能力和利用计算机等其他技术解决生活中的实际问题的能力。《数学建模》课程和数学建模竞赛本身就是一个具有挑战的科学研究和学习过程,无论是数学建模教学还是数学建模比赛,我们做的目的都是要提高我们工科大学生的数学综合素质,为将来学好专业知识打下良好的数学基础。因此,我们提出问题驱动教学法来组织数学建模的教学和培训工作。通过该方法来充分调动学生学习数学公共课的积极性,让学生在全国数学建模比赛的具体实际活动中体会团结合作精神的重要性,通过告诉学生要学会学习、学会思考、学会与人为善,进而提高他们的动手能力、协助能力和沟通能力,为他们将来走上自己的工作岗位奠定基础。
2.教学方法的改革。选择正确的有效的教学方法能更好地确立教学内容,实现教学目标和培养学生的创新能力。鉴于传统的数学建模教学模式无法达到大幅提高学生综合能力的预期目标,我们提出了以问题驱动为指导思想的新的教学方法――问题驱动教学法。问题驱动教学模式的特点是以学生为学习主体,教师通过问题驱动,引导学生自主学习课程内容,并利用学过的理论知识来解决这些实际问题,最后总结归纳和评价。问题驱动是一种让学生以小组形式共同学习和解决问题的教学策略,通过这样的教学策略,可以让学生们在学习知识和解决问题的过程中培养探究问题解决的技能以及自主学习的技能,实现知识意义的建构。这种教学模式无疑对创新型人才的培养有着积极的意义。黄东明等人还在问题驱动教学理念的基础上提出了双环互动教学模式。在具体的教学实践过程中,我们经常把问题布置给学生,要求他们在一周的时间内自己去收集相关资料,寻求问题的解决方法,这种教学模式不再是传统的填鸭式教学过程,而是以学生自己为主体,要求学生充分发挥主观能动性和积极性。并且我们要求学生把自己准备好的解决问题的方法在讲台上给所有的同学讲解,并且要回答同学的提问。整个学习过程好像一个论文答辩过程,这样的教学模式既能充分调动学生的主观能动性和学习积极性,又能充分发挥学生自己的聪明才智,在实践中体会团队合作的重要性。
3.培训方法的改革。全国大学生数学建模竞赛所涉及的内容相当广泛,常用到的数学理论包括高等数学、线性代数、概率论与数理统计、数学规划、微分方程、离散数学等,常用到的软件有Matlab、Lingo、Mathematics等。在建模过程中常常需要用到学生从未学习的知识来解决实际问题。因此,我们在培训过程中必须要训练学生快速学习新知识并立即运用新知识解决问题的能力。数学建模竞赛是以提交论文的方式进行结果评定的,故在培训的过程中还应该特别注重论文撰写的能力。为了适用数学建模比赛的要求,结合我们在《数学建模》课程教学的改革实际情况,把“问题驱动教学法”运用到竞赛培训中去。在提出驱动问题时,教师可以根据现阶段学生所掌握的知识情况,挑选一个具体的实际问题,学生根据所给问题首先进行归纳分析,然后查阅相关新知识和准备可能要用到的软件。在这个过程中学生需要主动学习可能没有接触到的新知识和软件的新功能,并进行参考文献的泛读和优秀论文的精读。通过对优秀论文的细节把握,提高学生处理实际问题的能力和论文撰写的能力。最后学生建立数学模型并撰写论文。最后由老师对论文进行点评,指出其优点和不足,并提出修改意见。经过近年来教学方法与培训方法的改革试验,学生对数学建模的兴趣大大提高,竞赛成绩稳步上升,取得较好的成果。
三、其他方面的探索
1.加强教师队伍的建设。“问题驱动法”的教学,特别是在学生自主学习阶段需要的一个教学团队。所以加强师资队伍建设是《数学建模》课程教学改革成功与否的关键。一方面,教师应加强学习,提高自身素养,掌握先进的教学理念,同时还要对教学内容进行深刻研究,能从现实生活的各种社会经济现象中发现数学问题,并且用数学语言加以描述。另一方面,各个教师应在教学方法创新上不断实践。传统的数学教学活动都是沿袭着“定义―定理―推论―例题”的模式进行,这种模式既使学生感到数学乏味,也使得原来对数学感兴趣的学生易生厌倦,因此,加强探索新的教学方法迫在眉睫。如何进行高水平的教学,吸引更多的学生热爱和喜欢数学,把学到的数学知识用得更广、更深入,是我们教师不得不思索的问题,更是我们教师要做的主要工作。
2.教材建设的改革。目前的《数学建模》教材多种多样,不过大多数太注重数学的理论性和完整性,这样就使得实用性不强,与实际问题脱节,常常让学生无所适从,很难培养学生运用知识解决问题的能力。经过我们对这门课程的改革常识,我们深刻体会到教材建设应遵循的原则如下:①实用性。教师将要教学的内容强调数学公共知识在实际问题中的作用,在教材的深度和广度上应尽量符合工科大学生的实际需要,适时对数学定理和推论进行删减,增加一些与当前实际问题相关的教学内容,由现实生活中的热点经济、工程实际问题引入数学模型。②可读性。根据该门课程的特点和教学改革的需要,教材中的主要内容要用简单的教学语言表达抽象概念,越简单的越好,这样一般学生容易理解和掌握,尽量使枯涩的数学知识变得生动趣味。③前沿性。教材中的内容既要兼顾传统知识又要引入前沿热点问题,既要强调数学推理又要重视数学工具软件和其他计算机技术的运用。综上所述,教材建设是今后我们在该门课程改革实践中要重点解决的问题。
3.考核方法的改革。目前大多数的数学建模考核方法是闭卷考试,而一般数学考试题目侧重证明与计算,忽略了对实际问题的应用,没有达到《数学建模》课程建设的目标,无法考核学生运用知识解决问题的能力。这与《数学建模》课程设置的初衷相违背。因此,采用多种考核方法相结合。例如,让学生做一些小的开放性课题,撰写类似数学建模比赛的论文,在对工科学生专业知识结合的同时,讲授数学建模的特点和应用领域,这样既可以激发学生对数学建模的兴趣,又能增加他们对数学的理解。在考核过程中我们可以适当加大平时分的力度,淡化对试题的考核,加强学生对具体问题解决能力的考核。
今年恰逢我国数学建模竞赛开展20周年,数学建模竞赛活动的规模得到了空前的发展。数学建模教学和数学建模竞赛活动是我们工科院校的一门重要课程,它为提高工科大学生的数学综合素质和数学在其他专业的应用发挥了重要作用。实践证明,通过进行数学建模竞赛活动,可以大大拓展学生的知识面;充分发挥学生的主观能动性,强化学生自主学习的意识和能力;提高学生的创新能力和解决问题的实际能力;还可以促进学生的团队合作精神。总的来说,问题驱动教学模式在数学建模教学和数学建模竞赛的培训过程中的实践表明:这种教学理念和数学建模的本身的特点是十分吻合的,而这种教学模式对于指导我们进行教学改革具有重要的理论意义和实践价值。
参考文献:
[1]Barrows HS,Tamblyn RM.The portable patient problem pack:a problem based learning unit[J].J of Med Edu,1977,52(12):1002-1004.
[2]杜祥云,Anette Kolmos,Jette Egelund Holgaard.PBL:大学课程的改革与创新[J].高等工程教育研究.2009,3:29-35.
[3]鲍立军,邹余粮,韩小兵,苟文丽,安芳.PBL教学法在妇产科学临床实习教学中的应用与实践[J].中国医学教育技术,2010,24(1):81-83.
[4]鄂筱曼.PBL在市场营销双语教学中的应用[J].科技信息,2009,5(30):309-310.
[5]伊艳杰,张长付,李欢庆.运用PBL教学檩式提高工科生物化学教学质量[J].科技信息,2009,8(3):19-21.
[6]李晓华,黄衍强,赵丽娟,等.PBL教学模式在“医学微生物学”设计性实验教学中的应用与探讨[J].右江民族医学院学报,2009,31(5):901-902.
[7]Adele M,Jennifer S,Suzanne T,eta1.Problem-based learning in the fourth year of the Mpharm at Manchester[J].The Pharmaceutical Journal,2005,(274):119.
[8]汤丰林,申继亮.基于问题的学习与我国的教育现实[J].比较教育研究,2005,26(1):73-77.
[9]黄冬明,聂振雯.基于PBL双环互动教学模式的研究[J].宁波大学学报(教育科学版).2010,32(1):119-122.
数学建模大赛策划书
一、活动引言:
创新意识、团队精神、重在参与、公平竞争。
通过竞赛,更好地发展数学建模,扩大数学建模的影响力,活跃校园学习气氛,进一步推进长沙理工校园学风建设,促建和谐校园;让学生亲身体验处理数模的过程,取得课堂和书本所无法替代的宝贵经验;传播数学建模知识,培养学生应用数学知识处理实际问题的能力,认识到数学对现代化社会发展的重要作用;增强学生的数学、计算机、文学等三方面的交互能力,团队配合的协作能力,以及自身的逻辑思维能力、处变能力;培养学生的创新精神、提高学生的修养和素质。
二、活动主题
本次活动以“数模有你,精彩无限”为主题,旨在让数学建模得到广大数学爱好者的支持
三、活动主办单位及承办单位
主办单位:湖北省教育厅 策划承办单位:长沙理工大学数学建模协会
四、竞赛形式
本次竞赛采用统一竞赛题目(二选一),通讯竞赛,并以相对集中的形式进行,最后提交竞赛论文。大学生以队为单位报名参赛,一队为2-3人,专业不限。
五、报名时间和地点
数模协会将统一于xx年4月17号中午在甘怡园前坪进行现场报名。请各参赛者事先组好队伍,并且填写相关信息,按照华中数模组委会的要求,每队收取15元参赛费。
xx年4月26日至xx年4月28日为报名信息公示期,届时将在华中数模网上公布成功报名参赛队伍信息,请大家认真核对报名信息并获取竞赛统一编号。
六、正式比赛时间及收题方式
本次竞赛的正式比赛时间为:xx年4月28日上午9:00至xx年5月2日上午6:00,为期四天。各参赛队在比赛时间结束前需要上交电子档和纸质档。电子版论文发送至长沙理工大学数模协会所指定的电子邮箱2xx4@kxx0.xxm,文件命名方式为竞赛编号+所选题号。例如,长沙理工大学的001 号队,所选作的题为a题。它的竞赛编号为10xxx,其中,10536为长沙理工大学的普通高校代码。长沙理工大学数模协会将提交的所有电子档论文整理,按a、b题分装在两个文件夹中,并一同打包发送至电子档收卷邮箱为hxxxx@kt250.xxxm。纸质档论文在5月2号10点前交至理科楼学工办a405,数模协会将纸质档整理后将其快递或邮寄至:xxxxx校区,邮编为43xxx,郭刚正,联系电话为18xxxx。
如有参赛队伍晚交电子档论文和纸质档论文,逾期不候,责任自负
七、活动具体流程及工作安排
1. 活动前准备
此次由湖北省教育厅主办的华中地区数学建模邀请赛具体通知将会下发至各大高校,在长沙理工大学赛区,由数学建模协会承办此次竞赛。前期必须搞好宣传工作。主办单位届时将会以多种形式进行宣传,包括张贴宣传海报,网上宣传
2. 报名阶段
(1)参赛对象:长沙理工大学在读本科生、研究生
(2)报名时间:xx年4月17日
(3)报名形式:直接报名
3. 报名注意事项:
1)本次比赛是三个人组队的团队比赛,每个队有且只能有三个人,自由组队,包含队长1名、队员2名。
【关键词】数学建模 应用型人才培养 教学改革
1 背景
进入20世纪80年代以后,国际高教界逐渐形成了一股新的潮流,那就是普遍重视实践教学、强化应用型人才培养。国内的诸多高校近年也纷纷在教育教学改革的探索中注重实践环境的强化,因为人们已越来越清醒的认识到,实践教学是培养学生实践能力和创新能力的重要环节,也是提高学生社会职业素养和就业竞争力的重要途径。
应用型人才培养是对新型的高等教育和新层次的高职教育相结合的教育模式的探索。要求各专业紧密结合地方特色,注重学生实践能力,培养应用型人才,从教学体系建设体现“应用”二字,其核心环节是实践教学。
数学教育作为大学教育的基础,不仅要注重培养学生良好的数学理论基础,更重要的是培养学生数学知识的学习能力、综合运用能力以及创新思维。数学建模课程正是一门运用数学知识作为工具解决社会生活实践中问题的一门“综合”课程。
河南师范大学新联学院始终坚持培养高层次应用型人才,重视各学科教学与实践相结合。与时俱进更新教育方式及评价方式。 数学建模课程能够培养学生的科学素质,创新能力和应用能力。因此在各高校向应用型人才培养模式转移的情况下,较好的数学建模课程教学体系改革具有十分重要的意义。本文根据教学实践中出现的问题对数学建模课程教学改革与实践进行探索。为应用型人才培养提供指导。
2 数学建模课程教学现状分析
河南师范大学新联学院是在2012年开始参加全国大学生数学建模大赛。参赛作品多次获得国家及省级奖项。教师团队在授课时所面临及突出的问题如下:
2.1涉及数学知识薄弱
数学建模课程难度较大,问题灵活,涉及到的数学课程比较多,而学生的数学功底不够扎实,课程进行缓慢,一些新的数学基础内容有些专业没有进行开课。
2.2教学模式
数学建模课程的开课是以培训的方式进行开课。课时设计有限,而内容又比较多。学生上手比较慢。同时课程的安排也比较单一,不够系统。
2.3学生软件操作能力较差
数学建模过程中需要用的多种软件进行运算,数据处理及模型仿真实验。学生对数学软件接触较少,有些同学在进行论文写作时甚至不会进行公式编辑。
就当前数学建模课程中出现的问题,在教学手段,授课方式等方面还有十足的进步空间。
3 应用型院校数学建模课程教学内容的改革
为全面培养培养学生的有效思维能力和应用数学知识解决相关问题的能力,在授课方式以及教学内容以及考核方式上进行优化改革。
3.1开设基础选修课
应用型本科院校学生的数学知识要相当的广泛。除了必修课程高等数学,线性代数,概率论数理统计以外,还应使学生涉猎一些其它数学课程。如:常微分方程,运筹学,空间解析几何,数值分析,离散数学等。同时开设一些模型课程,如优化模型,回归模型以及微分方程模型等。课程安排可以以选修课程的方式进行开设,循环开课,提高学生的学习兴趣和数学知识的储备能力,为数学建模培训打下基础。
3.2系统教学
数学建模培训期间授课方式应该多元化,多媒体与软件互相结合,改变传统的纯碎黑板和多媒体教学。培训期间多以案例引导为主,通过具体的案例培养学生发现问题,解决问题的能力,并在解决问题中学习新知识。
3.3增加软件操作课程
在教学过程中发现学生对软件操作兴趣很大,但是受限于各种因素的影响,不能够系统全面的了解及学习,所以可以在平时课堂教学中采用软件提交作业的形式进行。激发学生的学习热情与软件操作能力。
3.4成立数学建模社团
借鉴其它成熟高校的经验,在大学生社团联合会里成立大学生数学建模社团。大学生数学建模社团可以面向全校学生进行宣传,让学生了解什么是数学建模,激发学生的原始兴趣。同时数学建模开展的相关活动会对我们的讲学进行一定的辅助作用。
3.5考核方式
变更以往的考核方式,统一提交论文与答辩。在以往的参赛过程中发现学生的写作功底比较薄弱,好多同学的思路与方案很是不错,但是不能很好的表述出来导致与奖项失之交臂。
所以我们把培训期间的考核方式变更为论文的写作与答辩,注重写作规范,落实到实处。
4 结语
在多次的实践培训中,通过系统的基础知识培训以及多方位的案例引导教学,加以数学软件的辅助教学,可以使得数学建模比较抽象的课程变得生动有趣,提高学生的学习热情,全面提高学生的建模能力。
【参考文献】
[1]金玉子.大学数学教学中融入数学文化的研究与实践[J].科技经济市场,2016,06:196-197.
[2]刘志扬.应用型本科数学教师教学素养的培养与思考[J].教育教学论坛,2016,35:19-20.
[3]李艳馥,李晓鹏.加强数学建模课程建设 推进优质课程资源共享[J].高等数学研究,2016,03:45-48.
[4]郑薇,聂玉峰,梁育科.独立学院数学类课程教学现状的调查分析[J].高等数学研究,2016,03:52-55.
[关键词]数学建模 数学实验 教育改革
数学建模教学针对传统数学教育过于抽象化,不重视数学知识和学生实际生活的联系而提出,对于培养学生的应用意识和创新精神是一个很好的途径。开展数学建模活动,使学生对数学知识与应用有整体的了解,从教学内容上扩大学生的知识范围与应用能力,其目的让学生在学校学习阶段就接触一些实际问题,树立理论联系实际的思想和具有初步的发现问题、分析问题和解决问题的能力,提高整体素质。
一、数学建模对学生素质培养的意义
将数学建模思想融入大学数学课程教学中,很多学校的数学建模工作是以培训少数学生参加全国大学生数学建模竞赛为主,而在平时的数学课堂教学中却忽视了将数学建模融入数学课程教学,这就导致不能让全体学生都接受数学建模的教育。
通过一系列与数学建模有关的活动,可以培养学生以下几个方面的能力:
1.培养学生的数学能力。数学建模的研究对象是一些实际问题,要把这些实际问题用数学语言表述出来并转化成抽象的数学问题并非易事。这就要求人们在建模过程中经过分析与综合、抽象与概括、比较与类比、系统化与具体化等阶段,这些阶段中能培养学生们的分析综合能力、抽象概括能力、想象洞察能力、运用能数学工具的能力、通过实践验证数学模型的能力。
2.激发学生学习数学的兴趣。数学建模改变了以教师为中心,只注重数学概念、定理的推理和证明,而忽视了数学知识的应用性的传统的数学教学模式,打造以学生为中心的全新的数学教学模式.培养学生的创造性,激发学生学习数学的兴趣。
3.培养学生知识的综合运用能力。在建立数学模型过程中,对于不同的实际问题,常常要用到不同的数学知识,如:高等数学、常微分方程、概率论与数理统计、运筹学、差分方程、随即过程、计算方法、计算机模拟等等,在这就要求学生全面掌握并灵活运用这些数学知识。
4.锻炼学生的动手能力。由于数学建模研究的是实际问题,传统的一根笔、一张纸已不能满足现实的需要,随着计算机的发展,各种数学软件包也随之产生,学生利用这些软件包把抽象的数学模型形象化、可视化,锻炼了学生的动手操作能力,激发了学生学习数学的兴趣。
5.培养学生的自学能力。由于数学建模是对数学知识的综合应用,需要学生了解不同的数学类的知识,而高校普遍的数学课时都不能满足这种需求,这就需要教师挖掘学生的自学能力。教师在课堂上做引导,对数学知识做“串线式”的讲解,让学生在课下对这些知识在做进一步的研究、探讨,以培养学生的自学能力。
6.培养学生的创造性能力。由于数学建模的题目都来源于实际问题,解题的过程没有标准答案,这就需要教师鼓励学生提出自己的想法,大胆质疑,打破习惯的思维模式,利用自己已经学过的数学知识,展开联想,发挥个人的创造性,使问题得以解决。
二、数学建模系列活动介绍
1.举办主题讲座。题为《什么是数学建模》,介绍什么是数学建模,中国数学建模竞赛和国际数学额建模竞赛概况;题为《数学方法在数学建模中的应用》,以著名的人口模型为背景,介绍常见的数学模型及典型处理方法;题为《数学建模与计算机模拟》,主要介绍数学模型如何通过计算机实现数值计算。另外,可邀请在国内外大赛获奖的学生与学生交流经验,介绍如何从问题开始分析,如何建立合理的模型,如何计算模型等。
2.成立数学建模社团,进行主题活动。社团每周定期活动,活动形式为讨论班,活动的内容为建模竞赛的真题。社团活动借鉴研究生讨论班的模式,让学生亲历从分析问题、处理问题和解决问题全过程。学会如何利用各种资源查找全面的资料,对优秀论文报告提出自己的真知灼见。通过活动,学生们深切感受到数学建模的魅力所在,没有最好的只有更好的,激发了学生学习的主动性和创造力。学习“活”起来了!
三、全面培养学生的综合素质
以数学建模为契机,我们尝试对大学数学的教育进行改革。第一个阶段为普及教育,将计算机融入到高等数学的课程中。第二阶段是提高教育,开设数学实验课。主要以实验为基础,以学生为中心,以问题为载体,以计算机为手段,以数学软件为工具,以教师为指导,以培养能力为目标组织教学工作。第三阶段为精英教育,通过各类数学竞赛的选拔、教师推荐等途径,择优选择一批有团队精神、创新能力、知识扎实的学生参加全国大学生数学建模竞赛。
经过这三个阶段,营造了更加良好的数学学习的风气,提高了学生的综合素质,体现在以下几个方面:
1.将数学建模思想融入到大学数学教学中,促使学生“学”而后知“不足”。改革后的数学教育改善了以教为主的应试教育模式,以学为主,教学相辅,调动了学生学习的积极性。由于数学建模教学的特点,往往对一个实际问题建立一个合理的数学模型需要涉及很多领域的很多知识。数学建模内容的广泛性,使学生接触到许多不曾遇到的难题;数学建模的适应性,使学生可以在教师引导下适当增加一些必要的数学知识或某些方面的专业知识,从而攻克这些难题。在这样的学习中,学生真切地感到“书到用时方恨少”,看到了自己的不足,了解到自己应该学什么,怎样学,又能通过不断克服困难来增强自信心,扩大了知识面,逐步掌握了如何获取知识的能力。
2.将数学建模思想融入到大学数学教学中,有利于提高大学生科研能力。科学研究是探索性的工作,科研选题是科学研究的起始步骤,需要进行大量的文献调研。文献调研的目的是继承前人已有的研究成果,并在新的起点上选出研究课题。而数学建模则表现得更为直接, 即学生直接从竞赛题目入手开始文献调研, 包括搜集、整理和学习在课内从未接触过的数学知识、计算机软件技术以及有关数据资料。这一点能有效地培养学生的自学能力和资料的使用能力。而科研工作的最后一个阶段就是撰写科研报告或论文,对于学生而言,实在是一个难题。用历年来的数学建模竞赛优秀作品来熏陶学生,让他们了解完成科学论文所应持有的严谨态度,认识到好的作品在表达上的诚实与流畅,避免浮夸所带来的行文乃至逻辑上的纰漏。用数学符号提高论文的可读性,时刻注意维持符号的无歧义性和明确性,同时还要引导学生学会合理假设。因为它是删繁就简、设置变量、搭建模型的最重要的一个依据。所以合理假设是通向成功模型的桥梁。在对未知领域的科学知识和事实材料不够充分的条件下,可以凭借合理大胆的假设,提出准可行的方案,然后推动该方案不断检验,不断修正,最后形成性能良好的数学模型。
数学教育本质上是一种素质教育。要体现素质教育的要求,数学的教学不能完全和外部世界隔离开来,关起门来在数学的概念、方法和理论中打圈子,处于自我封闭状态, 以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不怎么会应用或无法应用。联合国教科文组织公布的《国际21世纪教育委员会报告综述》提出:学知、学做、学会生存和学会共处乃是教育的四大支柱,第一就是“学会认知”,即学会学习。可见教学生学会学习的重要性。
[参考文献]
[1]魏丽侠,王昕.高等学校数学建模的创新与深入[J],教育与职业,2009(11);
[2]段勇,傅英定.浅谈数学建模思想在大学数学教学中的应用[J],中国大学教学,2007(10);
[3]付军,朱宏,王宪昌.在数学建模教学中培养学生创新能力的实践与思考[J],数学教育学报,2007,16(4);
[4]王英霞.高校学生数学应用能力的培养与探索[J],沈阳师范大学学报,2010,28(2);
教育国的核心是培养创新型人才。全国大学生数学建模竞赛是高校中参加人数最多、影响最广泛的学科竞赛之一,此项赛事由教育部高教司和中国工业与应用数学学会联合主办,迄今已举办21届,它对创新型人才的培养起到了不可估量的作用,未来也将日益显现它这方面的作用。长春理工大学从1996年开始参赛,成绩斐然,已累计获得国家级奖40余项,年均3项,2013年我校共有51队153人参加全国赛,是吉林省除吉林大学外参赛队数最多的高校。其中9队获得国家一等奖,11队获得省一等奖,21队获省二等奖,8队获省三等奖,获奖率位居吉林省参赛高校前列。这主要归益于以下几方面:
一、赛前的动员及组织情况
赛前周密的宣传组织工作是本次大赛取得成功关键因素之一。我校一直把组织数模竞赛作为一项重要的教学活动纳入了全年工作日程,专门成立了数学建模竞赛领导小组,协调、督促、组织数学建模竞赛各项准备活动。通过海报、课堂、网站等多种形式宣传开展数学建模活动,鼓励各学院学生踊跃报名。
二、竞赛具体过程管理和实施情况
由专人统筹负责竞赛工作。从每年四、五月份开始采取校级、省级竞赛层层选拔的制度,把最优秀、最渴望参赛、最有能力的队员吸纳进来组成国家赛参赛队伍。对于国赛队员将认真组织赛前培训和辅导工作。
三、本年度竞赛获奖情况分析
今年我校共有51个队参加了全国大学生数学建模竞赛,获得国家奖9项,省级奖40项,获奖率几近100%。
四、竞赛过程中存在的问题及拟解决的措施
1.竞赛过程中存在的主要问题还是数学软件使用和写作两方面,在今后的培训和其他级竞赛中应加强这两方面的训练。另外宣传力度也有待加强。
2.今年全国赛我校51队中有35支代表队选择了A题,此题是交通占道问题对城市交通能力的影响问题,实质是利用数学方法建立模型,需要学生有较好的微积分、常微分方程、运筹学等课程基础,正是由于我校平时对大一大二的数学基础课的精心讲解和严格要求才使得我校学生有信心也有能力作出此题并取得了如此好的成绩,今后我们将继续加强数学基础科的教学工作,同时注意在教学中渗透数学建模的思想、方法,培养学生参加建模的兴趣。并希望以数学建模工作为平台,通过多种形式大力开展数学建模教学与研究活动,以赛促学、以赛促教,以竞赛推动教学研究,以教学研究提高竞赛质量。B题选择队数相对较少,原因主要是该题是关于碎纸文字的拼接复原模型,需要队员熟悉算法,精于编程,大多数同学不敢碰此题原因就是编程能力过弱。
3.国家赛获奖结果反映出理学院、计算机科学与技术学院、光电工程学院、电子信息工程学院的学生获奖人数占到98%,创新实验班参赛人数并不多,仅占总人数的33%,特别是计算机科学与技术学院的创新实验班仅有8人参加,不及总人数的6%。
五、对学校的建议和意见
1.认真组织各级数学建模竞赛,建议提前到3月中旬组织校数学建模竞赛,改进选拔方式,通过评审、教师推荐、答辩精选国赛参赛队员,加大对数学软件、算法的培训;5月下旬到7月中旬,利用周六对选拔出的学生进行实战培训,建议全体队员模拟实战,完成3-4道往年的竞赛题目,并提交论文,指定专门教师负责指导。
2.进一步宣传发动,动员更多的学生参加数学建模竞赛,特别是加大对计算机学院的宣传力度,争取更多的计算机科学与技术学院,特别是动员计算机科学与技术学院创新实验班的同学参赛。
3.继续举办大学生数学建模培训,切磋技艺,交流经验,提高水平。组织教师精讲获国家奖的学生论文。同时每年选派2至3名指导教师参加建模交流会议及理论学习,也让更多教师参与数学建模类教改科研项目,将数学建模作为一件可持续发展的项目开展。
4.抓好数学建模基地建设,定期做讲座和研讨,打造一支高素质建模指导教师队伍。
1.非智力因素的相关理论
1.1非智力因素的定义
“非智力因素是指除智力与能力之外的又同智力活动效益发生交互作用的一切心理因素”(林崇德,1992),这是广义的非智力因素的涵义;狭义的是指由5种基本的心理因素所组成,即动机、兴趣、情感、意志、性格;第三种是具体的非智力因素,由12种心理因素组成,即成就动机、求知欲望、学习热情、责任感、义务感、荣誉感、自尊心、自信心、好胜心、自制性、坚持性、独立性等。本文所说的“非智力因素”是指狭义层面上的。
1.2非智力因素的功能及学习意义
非智力因素具有动力功能、定向功能、引导功能、维持功能、调节功能、强化功能等。与上述六大功能相应,可以将非智力因素的学习意义概括为:形成学习动机,激发学习动力;明确学习目标,安排学习进度;导向学习目标,有的放矢学习;维持学习活动,以免时学时辍;调节学习行动,注意有张有弛;强化学习行为,克服消极心态。
2.数学建模的涵义和特点
2.1数学建模的涵义
数学建模是指大学生在教师的指导下,从社会生活中选择和确定研究专题,用类似于科学研究的方式,主动地获取知识并应用知识去解决问题的实践活动。是“对实际的现象通过心智活动构造出能抓住其主要且有用的特征的表示,常常是形象化的或符号化的数学表示”。其基本流程为:实际问题—数学模型—数学解—实际解—交付使用。
2.2数学建模的特点
(1)创造性是“数学建模”培养的核心目标。数学建模的培养目标有:①让大学生获得亲身参与研究探索的体验;②培养大学生发现问题和解决问题的能力;③培养大学生收集、分析和利用消息的能力;④使大学生学会分享与合作;⑤培养大学生的科学态度和科学道德;⑥培养大学生对社会的责任感和使命感。这一切,都是为了培养大学生健全的人格,而培养健全人格的核心就是培养创造性。
(2)学习过程中,大学生需要的是“指导”,而不是“传授”。教师的主要职责是给予方法上的指导,大学生在探索的过程中自己提出问题并解决问题。
(3)数学建模具有开放性、探究性和实践性,突出大学生的主体性,重过程,重应用,重体验,具有全员性和合作性。
3.非智力因素在数学建模中的作用
3.1动机在数学建模中的作用
数学建模强调大学生的主观能动性,重视主动参与。如果不能激发大学生的求知欲望,或不能维持强烈的探究欲、参与欲,那么数学建模将无法展开。因此,要开展数学建模,首先要注重动机在教学指导中的作用,如在选题时,要让大学生看得见,摸得着,与他们的生活具有一定的相关性,又需要努力才能解决。只有调动了大学生的积极性,激发其继续探究的动机,才能为下一步开展数学建模奠定基础。
3.2兴趣在数学建模中的作用
兴趣是最好的老师。有效地激发大学生的学习兴趣,比教师苦口婆心地讲解要强得多。这里要注意三个问题:一是数学建模的选题要切合实际,要有“人情味”,切莫选择一些枯燥无味,抽象难懂的课题。二是选题要循序渐进,从简单的问题入手,让大学生有成就感,千万不要好高骛远,开始就选择较难的题目,使学生无从下手,打击学生的积极性;三是要注意指导的方法,《学记》中说“道而弗牵,强而弗抑,开而弗达”,就是讲要注重启发式教学,教师的作用重在引导,提高大学生的兴趣是最终的目的。
3.3情感在数学建模中的作用
数学来源于生活,又服务于生活。数学建模的形式是:实践—数学—实践。因此,要激发大学生热爱生活,热爱生活中的数学问题,并对数学问题产生浓厚的感情,同时要努力挖掘数学中的美,如和谐美、对称美、简洁美和奇异美,使大学生在探究数学问题时能充分感受到乐趣,而不是“谈虎色变”。
3.4意志在数学建模中的作用
数学建模是大学生自主探究,发现问题和解决问题的过程。而这样的问题又不是显而易见的问题,绝不是“得来全不费工夫”的问题。因此,要发现、探究,就要付出努力,对于一些颇为复杂的问题,其付出的努力甚至很大。这时,教师的作用就不仅仅是思想和方式的指导,也要包括意志力的培养;不仅要培养大学生不怕困难,遇难而上的勇力,还要树立战胜困难的信心。科学上的发现,哪一个不是付出艰辛的、常人难以预料的困难呢?只有不畏难险,才能走到光辉的顶点。
3.5性格在数学建模中的作用
性格无好坏之分,每种性格都有各自的优点和缺点,但不同性格的人在处理事情时会表现出不同的方式。在数学建模活动中,教师要着力培养大学生的“四心”,即自尊心、自信心、责任心和好胜心。数学建模是一个探索、研究、发现的过程,在这个过程中,充满了失败和困惑,教师要尊重学生,爱护学生,关心学生,帮助大学生树立自信心。相信经过大家的共同努力,一定会解决问题。同时要培养大学生的责任心,探究、研究要实事求是,踏踏实实,不要好高骛远,想着一劳永逸,要勇于负责,勇于承担责任,还要适度培养学生的好胜心,形成良好的竞争氛围,通过比、学、赶、帮、超,出色地完成数学建模的课题。
3.6合作在数学建模中的作用
数学建模活动一般由三人组成,各有特点,往往来自不同专业,在几天几夜的比赛中,各种各样的问题会随时出现,包括知识的困惑、程序的编制、论文的撰写等,同时还要与疲劳作斗争,联合国教科文组织编写的《教育——财富蕴藏其中》指出,未来教育的四大支柱是:学会认知;学会生存;学会共同生活;学会去做。在数学建模活动中,还要教育学生互相关心,互相爱护,互相帮助,共同实现目标。
综上所述,我们不仅仅要重视智力因素在数学建模中的应用,也要重视非智力因素的作用。只有处理好这两者关系,才能在积极地开展数学建模活动同时发展大学生的非智力因素。
参考文献:
[1]燕国材.学习心理学[M].警官教育出版社,1998.8,(第1版).