发布时间:2023-03-24 15:14:22
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的人工智能课程论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
关键词:人工智能;教育;新模式;改革;构想
教育是着眼于未来的事业,教育的首要任务就是为未来社会培养相适应的合格人才。随着人工智能的诞生和发展,我国已经开始将人工智能应用于教育领域,并显示出人工智能对于弥补当前教育存在的种种缺陷和不足,推动教学现代化和教育发展改革进程起着越来越重要的作用。在现代医学发展中,工程科学与临床医学不断融合,相互进步。近几年,随着人工智能技术,机器人技术,虚拟与增强现实技术,3D打印技术与医学不断的融合发展,衍生出一系列的医学诊疗技术,仪器,大大推进了医学发展。从2013年到2017年,国务院、发改委、FAD连续发文,多次提及医疗走智能化、云化的趋势,为推动智能医疗领域保驾护航。智能与医学的结合已经是大势所趋,因此,为培养大量智能医学人才极有必要对智能医学教育新模式进行深入研究。
一、目前医学教育以及医学人才培养状况
智能医学工程是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科,研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。
智能医学工程的毕业生掌握了基础医学、临床医学的基础理论,对智慧医院、区域医疗中心、家庭自助健康监护三级网络中的医学现象、医学问题和医疗模式有较深入的理解,能熟练地将电子技术、计算机技术、网络技术、人工智能技术,应用于医疗信息大数据的智能采集、智能分析、智能诊疗、临床实践等各个环节。实验教学正是融合型创新人才的最好培养方式。智能医学人才的培养需要各学科间的相互交融更为紧密,学生的创新应用能力才能得到更好的培养。与此同时,由于绝大部分医工结合的专业大部分归属与工科学院下,缺乏必要的临床经验,因而学生不能很好的把握新技术的应用。
而国内相关人才缺口还非常大,目前,国内仅仅有生物医学工程、医学信息工程等工科专业培养医工结合人才。但是囿于培养时间与培养模式,他们往往只能针对具体某一方向,并且目前的培养体系还多着重于工学技术的研究,缺乏临床实践。
二、智能+医学教育的必要性探究
2.1技术进步对医疗人员的诊疗帮助
以癌症的治疗为例,由于针对癌症药物的研究何药物数量非常巨大,对于普通医生在短时间内难以进行准确的判断针对癌症的研究和药物数量非常巨大,具体来说,目前已有800多种药物和疫苗用于治疗癌症。但是,这对于医生来说却有负面的影响,因为有太多种选择可供选择,使得为病人选择合适的抗癌药物变的更加困难。同样,精确医学的进步也是非常困难的,因为基因规模的知识和推理成为决定癌症和其他复杂疾病的最终瓶颈。今天,许多受过专业训练的医学研究员需要数小时的时间来检查一个病人的基因组数据并作出治疗决定。
上述问题在拥有工学、医学双背景的医生手中已经不是问题,通过目前日渐成熟的AI技术,对于大量的医疗数据进行检索,通过可靠的编程手段,通过人工智能技术,建立完备的医疗数据库,帮助医生进行诊疗。据调查,美国微软公司已经研制出帮助医生治疗癌症的人工智能机器,其原理是对于所有关于癌症的论文进行检索,并提出对于病人治疗最有效的参考方案,它可以通过机器学习来帮助医生找到最有效,最个性化的癌症治疗方案,同时提供可视化的研究数据。
2.2智能医学对于新时代医生培养的影响
人工智能通过计算机可为学生提供图文并茂的丰富信息和数据,一方面加强了学生的感性认识,加强了对所学知识的理解和掌握,从而提高了教学质量。同时,人工智能可帮助教师完成繁杂的、需适应各种教学的教学课程、课件等设计,使教师将更多的精力专注于学与教的行为和过程,从而提高教学效率。正如前面所述例子,智能网络模块化学习平台可使教学摆脱以往对于示教病例的依赖,拓展了学生们的学习空间和时间,可极大地提高医学学习效率和教学质量。
教育与人工智能相结合将会创新教育方式和理念。北京师范大学何克抗教授在《当代教育技术的研究内容与发展趋势》中提到当代教育技术的五大发展趋势之一就是“愈来愈重视人工智能在教育中应用的研究”。结合上述人工结合上述人工智能在医学教育中的创新作用,下面就人工智能结合医学学教育新模式提出一些构想。
三、交叉医学人才的培养
3.1建立智能医学人才培养体系的必要性
目前智能医学的研发和临床还存在隔阂,临床医生并没有很好地理解人工智能,无法从实践出发提出人工智能能够解决的方向,而人工智能的产业界热情高涨,却未必能踩准点,所以产业界需要和临床深度沟通融合,才能真正解决看病难、看病贵的问题,缓解医疗资源紧张。目前,国内仅仅有生物医学工程、醫学信息工程等工科专业培养医工结合人才。
3.2医学人才培养体系初步构想
据悉,目前已经有天津大学、南开大学等几所院校开设了智能方向的医学本科教育,旨在弥补上述缺口,相关院校也在积极探索新型人才培养方案。应当为医学生开设人工智能课程,应当培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。该专业的学生主要学习生命科学、临床医学,电子技术、计算机技术和信息科学的基本理论和基本知识,充分进行计算机技术在医学中的应用的训练,具有智能医学工程领域中的研究和开发的基本能力。
Abstract: Knowledge representation is one of the central topics in artificial intelligence. Conceptual Structure is a new and effective knowledge representation method and Conceptual Graph is a concrete semantic model supported Conceptual Structure thoughts. This paper discussed the relation between Conceptual Structure and Conceptual Graph, the method and features of Knowledge representation about Conceptual Graph. Finally, it elaborated the application of Conceptual Graph in Chinese information processing.
关键词:知识表示;概念结构;概念图;语义
Key words: knowledge representation;conceptual structure;conceptual graph;semantic
中图分类号:TP391 文献标识码:A文章编号:1006-4311(2010)26-0145-02
0引言
知识是人类智能的基础,知识的表示是人工智能学科研究的三个主要问题之一[1]。人工智能经过半个多世纪的发展,研究出了多种知识表示方法,如一阶谓词逻辑、规则、框架、语义网络等。这些方法对于描述特定领域的问题求解已足够了,并已得到广泛的应用,但传统的知识表示方法就不能确切地表达语义问题。因此,传统的知识表达方法能力还很有限,知识表示仍是很久以来人工智能研究的中心课题,还需要相当深入的研究。概念结构理论的出现为知识表示研究带来了一种新的思路。概念结构(Conceptual Structure)是一种以语言学、心理学、哲学、逻辑学和数学为基础的新的知识表示方法,是由美国的计算机科学家John F.Sowa在1984年首先提出的,己被从理论上证明了优于其它传统的知识表达方法。它扩展了人工智能的知识表达方法,对于信息时代从以数据处理为主的低级阶段向以知识处理为主的高级阶段的转变和发展具有决定性的意义[2]。
概念图(Conceptual Graph)是支持概念结构思想的一个具体的语义模型,概念结构理论及应用就是基于概念图发展起来的,也就是说概念图是概念结构思想的载体,通过它来发展、传播、带动知识表示领域、乃至整个人工智能领域的研究与进步。概念图的发展经历了二十几个春秋,“Conceptual Structures: Information Processing in Mind and Machine reading”(sowa1984)揭开了概念结构的序幕,“conceptual graphsfor a database inference”(Sowa1986)奠定了概念图应用的基础。随后,IBM公司投入了大量人力和物力,潜心研究,出现了一个又一个的成果。国内从90年代开始,西北大学、西北工业大学也进行了探索性研究[2]。
1概念图的知识表示
概念图是一种描述复杂对象结构的知识表示工具,其思想来源于C.S.Pierce的存在图和菲尔墨的语义网络,是以图形表示的一种有向连通图,它包括两种结点:概念结点和概念关系结点,弧的方向代表概念结点和概念关系结点之间的联系。概念结点表示问题领域中的一个具体的或抽象的实体,概念关系结点指出一种涉及一个或多个概念结点的关系[3],如动作(AGNT: AGENT),对象(OBJ: OBJECT),材料(MATR: MATERIAL),具有(POSS: POSSESSES),地点(LOC: LOCATE),状态(STAT: STATUS),部分(PART),方式(MANR: MANNER),工具(INST: INSTRUMENT)等。在概念图中,概念结点用一个矩形表示,概念关系结点用椭圆表示,有向弧标出了概念关系结点所邻接的概念结点。每个概念图可以表示一个命题,典型的知识库将包含大量这样的图。例如:A girl, Sue is eating pie fast. 其概念图如下所示。概念图上可以进行拷贝、限制、连接和化简操作,产生新的概念图。
概念图是基于语义网络的逻辑系统,用它来进行知识表达不但直观易懂,而且易于操作,通过对概念图进行各种操作,能产生新的概念关联和推理规则。此外,概念图还能直接和自然语言建立映射关系。概念图所具有的这些优点使它更适合于表达概念结构。
2概念图的特点
概念图使用带标号的结点和连接这些结点间的带标号的弧表示知识,属于语义网络的范畴,其理论建立在谓词逻辑上,能完全与自然语言相互翻译,表示出自然语言的语义[5]。概念图同其他知识表示方法相比,具有更直接的同自然语言之间的映射,图形化表示、可读性更佳,比逻辑公式更直观的特点。概念图具有结构简单、易读、表示范围广、能够确切地表示自然语言的语义、数学基础严密等优点,代表了知识表示的发展趋势。
概念图与经典的知识表示方法相比,更符合人类的思维和语言习惯,但是它只能表达一些简单的概念关系,并不适合于表达包含复杂概念结构的常识性知识。用概念图进行知识表示需要分析知识的结构,所以其获取过程要有领域专家的参与,还不能通过一个智能系统自动获取。此外,对于一个复杂的问题求解而言,这种基于概念图的推理容易产生冗余或者导致推理结果的不一致。因此,基于概念图的智能系统只能进行一些简单的问题求解,而对于包含大量的复杂概念关联的常识性问题求解,概念图还不能胜任。
3概念图的应用
概念图的理论自从被提出来后,受到很多研究者的青睐并将它应用到不同领域,例如知识工程、信息检索等,在自然语言处理方面尤其语义理解方面具有广泛的应用。不少研究者基于概念图进行了研究与探索,并取得了一些成果。例如,殷亚玲[4]提出了一种基于概念图的相关反馈技术,采用概念图的知识表示方式描述概念之间关系,从语义的层次上进行相似度判断,扩展查询式。朱海平[5]以概念图作为语义表示,研究了基于概念图匹配的语义检索。杨选选[6]提出的基于语义角色和概念图的信息抽取模型,是在语义层面上对信息抽取的尝试。它将浅层的语义信息应用于场景识别和抽取模式两个层次上,并通过概念图将句子的语义形式化、可计算化。刘培奇[7]结合主观题中简答题的人工批改过程,提出以概念图理论为基础的模糊含权概念图知识表示方法;从汉语自然语言理解的语义分析角度研究了特定课程主观题自动阅卷问题。
4小结
人工智能领域中绝大多数知识表示方法都直接或间接地涉及到概念结构,概念结构是人类认知能力的重要来源,现代的知识表示方法会越来越重视概念结构。概念图是一种有力的知识表示工具,能完全描述自然语言所表达的意思,实现与自然语言的互译。我们相信对概念结构和概念图的深入研究必将对解决自然语言理解方面的难题产生重要贡献和促进作用。
参考文献:
[1]张仰森,黄改娟.人工智能教程[M].北京:高等教育出版社,2008.03.
[2]张蕾,李学良.概念结构及其应用[D].西北工业大学博士论文,2001.05.
[3]贺文,危辉.概念结构研究综述[J].计算机应用与软件,2010,27(1):156-159.
[4]殷亚玲,张蕾.基于概念图的相关反馈系统的研究与实现[D].西北大学硕士论文,2006.07.
[5]朱海平,俞勇.基于概念图匹配的语义搜索[D].上海交通大学博士论文,2006.10.
【关键字】人工智能;教育;进展
【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03
人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。
人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。
一 专家系统
专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。
目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]
教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]
目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。
二 机器人学
机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。
机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。
机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。
三 机器学习
机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]
随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。
四 自然语言理解
自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]
自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]
五 人工神经网络
人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。
人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。
六 分布式人工智能(Distributed Artificial Intelligence,DAI)
分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。
分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。
综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。
技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。
参考文献
[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.
[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.
[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.
[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.
[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.
[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.
[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.
[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.
[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.
[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].
[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.
[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.
[16] 自然语言理解[DB/OL].
[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.
[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].
关键词:智能;决策系统;教学方法
随着信息技术的应用和普及,“智能化”成为信息化后续发展的重要内容之一。在决策领域,20世纪80年代,一种以计算机为工具、应用决策科学及有关学科的理论与方法、以人机交互方式辅助决策者决策的决策支持系统(DSS)应运而生。但是,DSS只能辅助和支持决策者决策,其贡献局限于对可选方案的评价,只能对有量化特性的问题使用数据模型和数值计算方法来辅助决策,不具有表示复杂决策过程的能力,因此,促使人们提出将DSS与专家系统(ES)相结合,以分别发挥DSS的数值分析和ES的符号处理优势,从而将定性分析和定量分析有机结合起来,以既能进行知识处理,又能有效地解决半结构化和非结构化问题,这就是智能决策支持系统(IDSS)的产生背景。
随着人工智能和智能技术的发展,IDSS在广泛的工程技术、经济、管理、医疗和农业科学等诸多领域,得到广泛应用。了解、掌握智能决策的基本知识和技术是计算机科学、智能科学类专业大学生的基本要求,因此,智能决策类课程应运而生,并逐渐发展成为计算机、自动化、管理科学与工程和智能科学技术等专业的专业课之一[1-4]。
在我校,智能决策系统课程作为计算机科学与技术、软件工程、网络工程和其他电子信息类专业的专业限选或选修课程。目前,该课程的教学内容存在如下问题:一是教学内容繁,二是技术更新快,三是涉及的专业知识深,对学生的理论基础知识(特别是数学知识、计算机技术)要求极高,教学难度大。因此,学生在学习过程中不得要领,抓不住课程的核心,只见树木、不见森林,从而影响学生们的学习效果。本文就是在这样背景下,提出并开展教学研究的。
1教学内容改革
智能决策系统是一门计算机科学、管理科学、人工智能和应用数学交叉的新兴专业课程,其学分通常为2~2.5学分,即32~40学时,其中包括0.5学分的实验课程(8学时)。因此,如何在有限学时中容纳下本课程教学内容,完成本课程的教学目标,就成为首要问题。
通过实践和教学改革,我校本课程的理论教学内容主要包括下列6个知识单元。
1) 决策理论概述。主要内容有决策的概念、类型、基础、流程和目标。理论课时数4学时。
2) 决策系统。主要内容有决策支持系统的概念、结构、功能、主要部件与设计要点。理论课时数控制在6学时。
3) 决策模型。主要内容有数据仓库、知识管理、数据挖掘、智能算法和数据处理。理论课时数控制在6学时。
4) 智能决策系统。主要内容有计算智能基础、专家系统的概念和结构、智能决策系统的概念和结构、智能决策系统的设计要点。理论课时数控制在8学时。
5) 群体决策系统。主要内容有协同计算概述,群体决策系统的概念、结构、功能、群体决策过程与建模和实现方法。理论课时数控制在6学时。
6)智能决策系统的发展。主要包括基于网络的决策系统技术和应用,网络技术与基于Agent的决策系统,智慧地球与智能化企业。理论课时数控制在2学时。
实践教学内容包括4个实验,学时总数为8学时,其教学内容设置见本文§3。
2教学方法改革
教学方法是为完成一定的教学目的、教学任务所采取的教学途径或教学程序,是以解决教学任务为目的、师生共同进行认识和实践的方法体系。其方法体系主要包含多个基本要素,比如教、学、信息传输载体(包含文字、图形、图像、肢体语言、表情、感知等)和教学辅助设备等。教学过程就是要充分利用具有信息优势、知识优势的教师,将信息、知识、技能、技巧,系统集成地传输给暂时处于低信息状态的学生。决定这个传输过程顺利进行的至关重要因素有:教师的积极性与责任心和学生的求知欲与基础知识及其结构。从教育学和心理学角度看,课程教学方法改革就是围绕这两个因素展开[5],限于篇幅,本文的讨论仅从如何调动学生的求知欲着手。
2.1探索式教学方法
经过多年教学实践,本文实践了“探索式教学法”,此法强调因材施教,在教学全过程创设教学环境、培养学生创新精神。所谓探索式教学方法是指在教学过程中,在教师的启发、诱导下,学生自主学习和合作讨论,以学习课程知识和科学问题为探索目标,以学生熟悉和能接触到生活原型为研究对象,为学生提供自由表达、质疑、探索、讨论问题的环境,学生通过个体、小组、团队等多种形式完成解难、释疑、尝试学习活动,将学生自己所学知识应用于解决实际问题的一种教学程序。探索式教学方法重视发展学生的创造性思维,培养自学能力,力图通过自我探索引导学生学会学习和初步掌握科学研究方法[6],培养学生的文献获取与加工能力、信息分析与加工利用能力、团队协作与沟通能力、语言表达与写作能力,和创新精神。为其终身学习和工作奠定良好基础。
尽管探索式教学法能够给教师的教学提供思想、理念指导,但是,针对不同教学对象和不同课程内容,其实际应用方法也会存在差异,这就是所谓的教无定法之说。本文以智能决策系统课程第1知识单元课外作业为例,尝试说明该法的具体应用方法,为保证该方法的实施效果,本文拟定了如下的教师操作流程:
1) 制定论文目标:培养学生综合利用参考文献和学会表达的能力。首先,要求学生学会获取、理解、过滤和分析信息;其次,要求学生掌握撰写科技论文的基本技巧;最后,要求学生在观众面前表达自己观点,学习说服听众、推销自己观点的技巧。
2) 论文基本要求:①围绕“关于信息技术对决策影响”的主题,学生自拟题目;②2周时间内,学生完成1 000字左右(2页A4幅面)的论文,其中内容需要包括摘要,关键词,问题或观点概述,目前发展状况,结论或结语;③制作演示幻灯片。
3) 提供信息查阅途径:通过网络教师自己已经掌握的文献资源和网络地址资源,指出查询方法和基本技巧。
4) 抽查式演讲:①使用幻灯片;②介绍主要内容;③结论;④点评、提问与回答。
5) 评价标准:①文档编制能力;②问题发现与分析能力;③表达与陈述能力。
在实施中,要防止出现如下情况:①题目太难或太容易,以免挫伤学生积极性;②提前告示和监督,防止学生偷懒或拷贝;③灵活掌握考评手段,鼓励创新,保护学生学习积极性。
2.2案例教学方法
案例教学法是在教师指导下,根据教学目标的要求,创设学生身临案例场境的教学氛围,使用案例来组织学生的学习、研究、实践等活动的教学方法。本课程利用该方法,加强了理论与实际的结合,为学生学习提供模仿案例,提高了学生对理论知识的理解和实践能力,培养学生综合运用所学知识解决实际问题的能力。案例教学法需要掌握好2个重要环节:
1) 案例选编。必须选择学生容易理解、常见的例子,案例选编必须围绕课程某个具体的教学目标,要适当加工,剔除与课程内容关联性小的内容和技术,降低难度,方便学生理解。同时,案例必须来自于实际,并且问题明确。
2) 案例讲解与分析。案例本身只是对实例的某些情况描述,表面上平铺直叙,但是,其中必须隐藏着多个问题,要引导学生积极思考、深入分析,以发现其中隐藏的问题,并找出问题产生的原因,提出解决方案。在思考和分析过程中,既要培养和开发学生智力,又要培养学生综合运用所学理论知识的能力。案例分析不能苛求解决问题的结果如何,而应该重点强调分析过程是否正确、方法是否恰当,案例讲解和分析的主要任务是培养学生发现问题、分析问题和逻辑思维等能力,通常解决问题的能力正是课程后续需要实施的教学目标。
本文在第4知识单元中,以6子棋计算机博弈系统为例,通过对6子棋计算机博弈平台的仿真实验,选择不同的博弈策略,比如不同的估值函数、不同的搜索策略等,获得不同的实验结果,实现人-机对战、机-机对战,让学生切实体会到机器智能的魔力及其智能系统的构造方法,有力地促进了学生对理论知识的理解,并激发了学生的学习兴趣。
3实验教学内容
3.1实验教学内容的设置
实验课是智能决策系统课程的重要环节,由于总课时有限,实验课时也就不多。但是,本校在专业课程中,仍然坚持设置了0.5学分的实验,以使学生能将理论知识与实践联系起来,使抽象的理论不再是深奥,提高学生灵活运用知识的能力。本课程实验学时为8学时,主要设置了表1中的3个实验。
3.2实验课的操作
为提高学生对课程理论知识的理解和应用设计能力,针对课程实验教学课时少和实验复杂特点,需要注意以下几点。
1) 简化平台、降低实验难度。实验教学过程重在是一个训练学生动手、动眼和动脑的过程,旨在培养学生好奇心和操作技能,以及观察问题、分析问题和解决问题能力。因此,在实验中,要尽量将实验平台简化,以将学生注意力集中于实验内容,保证实验效果。比如实验2,提供给学生智能交通灯控仿真平台,它实际上是一个软件模拟平台,能实现固定交管模式的全部功能,学生能通过标准接口建立自己设计的智能交通管理模式;又如实验3,以FIRA机器人足球5vs5比赛项目的仿真平台为实验平台,利用平台已设置的运球、传球、前进、后退、转动等命令,学生能通过这些命令建立足球机器人的路径规划和避障策略。
2) 科学分组、培养协作能力。由于实验3工作量比较大,需要多人协作完成,发挥集体智慧作用,因此,在实验3中,按照3~5人/组,实行组长负责制。组长监督、管理、协调本组实验过程,每个组员都有明确的任务,并对组长负责,组长对教师负责。实验3的课内实验设置4学时/2次,学时主要在课外完成实验3,历时1个月。
3) 设计算法、培养智能意识。引导学生,模仿人类智能,设计智能算法,实现简单的智能决策。由于课时有限,必须注意控制算法的简洁、实效,以使学生能在短时间内模拟实现简单的智能行为,着重引导学生分析业务行为,发现系统流程,构造智能算法,以此培养学生开发信息系统的智能意识。
4结语
智能决策系统是人工智能、计算机科学、自动控制科学交叉结合的一门新兴专业课程,对推动信息化向智能化方向发展具有重要意义。该课程作为在校主要面对电子信息、计算机专业学生,通过该课程学习,学生反映加深了对智能的理解,提高了对计算机技术应用的认识深度,培养了学生的智能化设计意识,激发了学生的求知欲望。本文的研究成果是源于智能决策系统课程,但是,对其他信息技术课程,也具有积极的借鉴意义。
参考文献:
[1] 钟义信. 智能科学技术导论[M]. 北京:北京邮电大学出版社,2006:1-38.
[2] 张彦铎,王海晖,刘昌辉. 地方工科院校智能科学建设的若干思考[J]. 计算机教育,2009(11):39-42.
[3] 韩力群. 智能科学与技术专业培养规范[R]. 北京:第二届全国智能科学与技术教育学术研讨会.2004.
[4] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.
[5] 杨德广,谢安邦. 高等教育学[M]. 北京:高等教育出版社,2009.6:1-50.
[6] 张伟峰. 本科高年级人工智能教学的几点思考[J]. 计算机教育,2009(11):139-141.
Research on Teaching Reform of Intelligent Decision System Courses
ZHANG Xiao-chuan, CHEN Feng
(School of Computer Science, Chongqing University of Technology, Chongqing 400054, China)
关键词:复杂工程问题;计算机科学与技术专业;课程设计
工程教育认证要求通过认证的工程专业不仅要深入理解和把握复杂工程问题,更要按照国际实质等效原则培养学生具有解决复杂工程问题的能力[1]。目前,针对计算机相关专业解决复杂工程问题能力培养的研究还处于探索阶段。许智宏等人认为可采用半开放式项目驱动教学方法达成目标[2];尚凤军提出课程群建设面向复杂工程设计的方案[3];黄永红等人认为可增设综合训练项目来达到培养目标[4]。刘秀平等人提出了分层实施方案,从知识、实践、设计的维度支撑了解决复杂工程问题的能力[5]。王宏宇等人提出了以学科竞赛主题为对象,遵循工程逻辑设计开发过程的课程建设改革方法[6]。许多研究成果对于分解落实解决复杂工程问题能力的培养缺乏深入探索,对于如何优化课程设计体系和内容来提高学生解决复杂工程问题的能力方面也缺乏深入研究。
1课程设计改革的意义
完备的实践教学体系主要包括课程实验、课程设计、实习、毕业设计(论文)等。通常,国内高校都将毕业设计(论文)环节作为实现解决复杂工程问题的重要载体。但近年来,毕业设计期间应聘、考研等挤占了学生很多时间和精力,设计内容往往弱化甚至忽略难以处理的学科交叉问题和非技术因素,且毕业设计往往采取一人一题,很难达到个人与团队的教学指标。课程实验往往随理论授课逐周分散进行,受学时限制以及学生知识掌握处于积累阶段等因素,一些深度型、探究型、综合型的实验往往很难开展。实习由于受到场地、经费、管理难度、企业技术保密等限制,往往缺乏理论指导下的实践。一些计算机类专业学生到实习单位后,只能接触一些前端页面或模块代码的机械性编写,无法接触软件或硬件的具体设计过程,有些专业实习甚至畸变为企业参观。《计算机类专业教学质量国家标准》要求计算机类专业学生4年的实验当量应不少于2万行代码。在课程设计方面,要求至少完成两个有一定规模和复杂度的系统的设计与开发。调研发现,实践教学体系中提高学生解决复杂工程问题的环节应保证时间的集中性,内容的规模和复杂度要达到国家标准中的要求,且应在理论的指导下开展,课程设计比较符合这一要求,应作为提升学生解决复杂工程问题能力培养的关键突破口。
2课程设计改革宗旨和研究方法
2.1课程设计改革宗旨
第一,以培养学生解决复杂工程问题能力为主线,突出工程技术应用能力的培养,强调自主学习和终身学习意识培养,全面提升学生的能力和素质。第二,使学生能够设计针对复杂工程问题的解决方案,在设计环节中体现创新意识,实现多方案分析与评价,从而全面提升实践教学效果。第三,使学生深入掌握工程原理,结合工程实践,体现综合运用,提升解决复杂工程问题的能力。第四,分解落实解决复杂工程问题能力的培养,课程设计的持续改进逆向推进课程体系的整体优化。第五,构建计算机专业完善的实践教学体系和课程群体系,建立各项实践教学活动的持续改进机制。
2.2基本研究方法
第一,调研法。采取调研问卷调查和访谈的方式,对目前已毕业学生、在校生(包括计算机类专业本科生、研究生)、教师(包括教学管理、教学一线、教辅等多层面)开展调研。同时走访和调研部分高校、IT企业和专业培训机构等。第二,逆向研究法。从实践入手,逆向优化专业类知识体系教学。第三,分析建模法。对调研数据、教学环节统计与考核数据、质量保证监控数据进行科学分析,借助人工智能手段进行建模优化。第四,螺旋优化、研以致用法。杜绝纸上谈兵,形成的专业课程设计内容设置实施方案(含教改方案、教学大纲、课程标准、考核标准等),直接实施于一线教学活动,并通过实施效果的反馈螺旋优化后续方案。
3课程设计改革实践
课程设计计划的实施要求指导教师明确课程设计对应于工程教育认证标准具体的毕业要求指标点,并要在课程设计过程中坚持实施。明晰课程设计对毕业要求指标点的支撑作用,为合理安排课程设计的内容明确了指导思想。本校计算机科学与技术专业培养方案以工程教育专业认证为背景,共设置11门课程设计。一类课程设计在前5学期开设,涉及专业类知识课程门数相对较少,具体包括以下7门课程设计:C语言程序设计课程设计、Java程序设计课程设计、数据结构与算法课程设计、数据库原理课程设计、计算机网络课程设计、C++程序设计课程设计、JavaEE编程技术课程设计。以上课程设计以语言开发为主,是培养学生计算思维、软件工程设计规范、计算机语言开发能力的基础。指导教师面向解决复杂工程问题培养,认真设定课程设计题目和内容。以学生为中心,强调基础性、技能性、应用性、工程性和创新性,采用问题驱动和求解渐进化方式不断提升学生解决复杂工程问题的能力。每门课程设计在具体实施中,指导教师始终探索课程设计如何解决承上(课程实验)启下(毕业设计和实习),并不断思考和探索课程设计如何逆向优化专业类知识课程的教学活动。计算机科学与技术专业另一类课程设计在第6和第7学期设置,综合性较强(在某些高校或专业有时被称为“综合开发实训”或“综合训练项目”等,但通常拘泥于一种开发语言或技术)。综合类课程设计有4门:A.体系结构课程设计。专业类知识课程涉及体系结构、计算机组成原理、编译原理、汇编与接口技术、计算机网络等硬件类和系统类课程。B.操作系统课程设计。专业类知识课程涉及操作系统、Linux系统等系统软件类课程和部分高级语言类课程。C.软件开发综合课程设计。专业类知识课程涉及各种高级语言类课程(如Java、C、C++)、软件工程、数据结构与算法、数据库原理等软件开发类课程。D.Python与人工智能课程设计。专业类知识课程涉及各种高级语言类课程(如Python、Java、C、C++)、数据结构与算法、人工智能导论等课程。综合类课程设计涉及大量通识类知识和学科基础知识,具有较高的综合性,包含多个相互关联的子问题,体现问题和系统的规模、难度、复杂度、综合性。课程设计更强调培养学生的系统观,使学生能够站在系统的高度,以系统的视角去看问题,去适应错综复杂的应用场景,最终实现问题的系统化、科学化求解。“软件开发综合课程设计”综合了之前的.NET综合课程设计、Java综合课程设计等软件开发类课程设计。根据工程教育专业认证要求,这门课程设计并不拘泥于某一种语言或技术要求,要求学生能够针对复杂工程问题,选择与使用恰当的技术、资源、现代工程工具和信息技术工具等设计开发一套软件系统,并通过对比得到有效结论。“Python与人工智能课程设计”以解决复杂工程问题入手,学生首先分析问题建立模型,然后给出解决方案和算法设计,通过Python语言及其扩展库编程实现系统,最后通过设计方案、模型、算法、开发语言等多个角度对比分析给出所设计系统的客观性评价。在2017版培养方案中该课程设计为“Python程序设计课程设计”,设计内容包含了软件开发、大数据、人工智能、深度学习等。2019版培养方案中,专业增设了1门48学时的人工智能导论理论课,Python程序设计和人工智能导论合并为1门2周的“Python与人工智能课程设计”。“体系结构课程设计”和“操作系统课程设计”是专业认真研究工程教育认证标准后于2019版人才培养方案中新设置的2门课程设计。在学时紧张的情况下,专业仍增设了这2门综合类课程设计,力图保证学生硬件系统、组成原理、体系结构、操作系统方面的综合设计能力培养质量,保证人才培养的系统性和专业性。课程设计具体实施过程中,指导教师以突破解决复杂工程问题能力培养为核心安排课程设计内容,使学生的能力培养达到工程教育认证标准的培养要求,反复思考和尝试解决以下关键问题:第一,课程设计内容重点覆盖了《华盛顿协议》7个特征中的哪些特征?课程设计的规模、难度、复杂度、综合性是否能满足工程教育认证背景下的解决复杂工程问题的要求?第二,课程设计中,如何运用深入的而不是浅显的工程原理,经过什么样的分析,而不是直接套用原理、公式来解决设计目标?第三,课程设计中学生在哪些理论指导下进行实践?加深对哪些原理的理解?第四,为了突出复杂工程问题的解决,与课程设计相关的一门或多门相关课程的讲授环节中,将对传统的授课方式、方法和内容采取哪些变化?与课程设计相关的理论知识讲授和基本实验环节能否为学生完成课程设计奠定扎实基础?第五,课程设计是否要引入混合式教学?如果引入,混合式教学将如何提高课程设计效果?第六,从以学生为中心的角度分析学生如何通过课程设计和相关理论的学习,实现从“学了”到“学会”再到“会应用”?第七,课程设计“能力培养”如何量化考核,“复杂度”如何评价?以产出为导向,如何建立持续的人才培养改进机制?通过指导教师的不断思考和改革尝试,使各门课程设计实现了设计理念的转变、从简单到综合的转变、从单一系统到增加对比分析、综合评价等突破常规的转变。
4课程设计改革效果
课程设计改革使计算机科学与技术专业逐步形成一套课程设计内容设置实施方案(含教改方案、教学大纲、课程标准、形成性考核标准等),并直接实施于现有教学活动。通过培训和专家辅导讲座等形式,指导教师深刻理解了工程教育认证的本质和内涵,改变了传统的课程设计理念。以复杂工程问题的提出和解决为课程设计核心,突出产出导向,精心设计课程设计题目,优化课程设计考核指标,建立了课程设计持续改进机制。课程设计改革在人才培养方面取得了切实效果。第一,以培养学生解决复杂工程问题能力为主线,突出工程技术应用能力的培养,增强了学生自主学习和终身学习意识培养,设计理念更符合学科发展趋势。第二,使学生能够设计针对复杂工程问题的解决方案,在设计环节中体现创新意识,养成了多方案分析、对比和评价的设计习惯。第三,使学生逐步掌握深入的工程原理,结合工程实践,综合运用,提升了解决复杂工程问题的能力。第四,以课程设计内容设置为突破口,逆向推进课程体系设置整体优化,使学生通过实践逆向推动理论课学习的兴趣和动力,学生的理论素质进一步提升。课程设计改革首先在省级一流本科专业“计算机科学与技术”专业实施,并推广至软件工程、数据科学与大数据技术、物联网工程三个计算机类本科专业。与信息技术密切且相关的电子商务、电子信息工程、机器人工程等专业也逐步开展了面向复杂工程问题能力培养的课程设计改革,取得了切实有效的实施效果。
5结语
截至2018年,计算机类专业已达3349个专业点,培养学生复杂工程问题的解决能力,是工程教育专业认证对工程类专业人才培养的核心要求,也是一流本科专业建设的核心目标之一。随着工程教育认证的普及开展,面向OBE理念,突出解决复杂工程问题能力培养的课程设计改革越发迫切和必要。只有不断改革,建立持续改进机制,才能不断优化计算机教育教学工作,为信息技术产业培养更多优秀人才,推动我国信息技术产业的蓬勃发展。
参考文献:
[1]林健.如何理解和解决复杂工程问题:基于《华盛顿协议》的界定和要求[J].高等工程教育研究,2016,(05):17-26,38.
[2]许智宏,李妍,董永峰,等.半开放式项目驱动复杂工程问题能力培养实践[J].计算机教育,2019,(02):37-40.
[3]尚凤军.面向复杂工程问题的计算机人才创新能力培养体系研究[J].计算机教育,2016,(09):70-73.
[4]黄永红,蔡晓磊,刘国海,等.电气类专业“复杂工程问题”的理解与实践[J].电气电子教学学报,2018,40(06):15-18,22.
[5]刘秀平,韩丽丽,胡新煜,等.基于工程教育专业认证的自动化专业复杂工程问题实践探索[J].中国现代教育装备,2021,(21):67-69.
论文摘要:根据全国控制工程领域工程硕士教育协作组颁布的控制工程领域工程硕士专业学位标准(试行),结合军械工程学院研究生生源的特点以及培养要求,对控制工程领域工程硕士专业学位标准实施细则进行了修订,就培养方案中的研究方向、课程设置等内容进行了重点的思考,使培养方案在符合学科内涵的基础上兼顾学院行业需求,切实使培养的控制工程领域工程硕士在相应的工作岗位发挥应有的作用。
论文关键词:工程硕士;培养方案;课程设置;教育改革
工程硕士专业学位是我国研究生教育体系中的一个重要组成部分,其设置适应了国家经济体制的改革,适应了在岗人员进一步提高自身能力素质的需要。工程硕士与工学硕士相比,它们虽然处于同一层次,但由于其生源的显著差异,其培养目标、知识结构、能力结构和培养模式等均有较大不同。要使工程硕士成为高层次技术和管理人才,符合未来社会发展的需要,就必须贯彻“以人为本,因材施教”的教育原则,制订一套科学、合理的培养方案,并建立与之相适应的培养模式。
为了提高工程硕士培养质量、规范培养模式和培养流程、明确评估办法等,2005年7月召开了第二届全国工程领域教育协作组组长全体会议,提出“建立规范化的工程硕士学位标准”的设想,并选择了控制工程等五个领域,以课题研究的形式,率先开展工作。2007年全国控制工程领域工程硕士教育协作组颁布了“控制工程领域工程硕士专业学位标准(试行)”,对我院控制工程领域工程硕士的培养起到了很好的指导性作用。考虑我院控制工程领域工程硕士的培养主要是面向部队、基地等情况,在对“专业学位标准实施细则”修订中,培养方案在符合学科内涵的基础上,要兼顾生源单位需求,在研究方向的确定、课程设置等方面突出应用性、针对性,切实使培养的工程硕士在相应的工作岗位上发挥应有的作用。
一、以武器控制系统为中心确定培养方案的主要研究方向
现代兵器装备的特点是精确化、远程化、智能化,以导弹、无人机、指挥系统等为代表的武器装备更突出了这一特点,这些特点的基础之一是自动化技术。根据我院生源主要分别来自武器装备论证、武器装备试验、军代表、部队技术保障、部队装备管理单位等岗位特点,依托控制工程领域培养工程硕士,应该以武器装备为大背景,在控制工程学科内涵的基础上紧紧以武器控制系统为中心,来确定相应的研究方向,因此我院控制工程领域工程硕士专业研究方向确定的基本思路是:涵盖我军武器控制系统分析论证、试验优化与质量监控、武器控制系统性能测试与故障诊断、武器控制系统信息化管理等方面,为军代表系统、武器装备试验基地、部队修理所、部队装备管理等单位培养具有我军特色的高层次应用型、复合型工程技术和管理人才。具体如下:
1.武器控制系统分析论证、试验优化与质量监控
该方向以提高复杂武器控制系统综合战术技术性能为目标,以数学、力学、控制理论、系统科学、计算机技术为基础,研究武器控制系统分析论证、试验优化与质量监控的方法。主要研究内容包括:火控、指控、无人机和导弹等复杂武器控制系统分析论证、试验优化与质量监控的方法及武器系统作战效能评估等。
2.武器控制系统性能测试与故障诊断
该方向以提高武器系统技术保障人员的装备保障能力、试验技术人员的工程实践能力为目标,以自动测试技术、故障诊断技术、信号处理技术和计算机技术等为基础,研究武器系统的性能检测、故障诊断的技术与方法及靶场试验中技术保障的关键技术。主要研究内容包括:新标准测试总线的应用、测试系统模块化设计、武器系统运行状态监测与诊断、测试诊断设备研制等。
3.武器系统信息化管理
该方向以提高各级装备保障管理人员的管理自动化、信息化、智能化水平为目标,以人工智能、装备保障理论、计算机技术、数据库技术、多媒体技术、网络技术等为基础,研究装备保障管理的自动化、信息化、智能化技术和系统。主要研究内容包括:研究制订适合装备保障信息化管理的标准体系,研究建立统一的适合装备保障管理信息化的数据交换代码,基于装备的状态信息、故障信息、维修信息等进行研究装备保障领域的全程可视化信息管理系统。
二、以适应培养方向要求为出发点确定适宜的课程体系
课程教学是工程硕士培养的一个重要环节,它对于构建合理的知识结构、打下扎实的基础理论和系统的专业知识起着相当重要的作用。当今社会,科学技术迅猛发展,知识更新不断加快,只有打下牢固的基础,才能自如地实现向新领域的转变,才具有可靠的应变能力的坚实后劲;只有在头脑中存储了大量的知识、事例和经验,才能运用它们来进行创造性思维。课程设置在整个课程教学工作中起着基石性和原本性的作用,只有合理的课程设置才有可能使研究生具有合理的知识结构,才有可能在课程学习过程中激发研究生的创新意识与创新能力。
考虑到工程硕士的培养模式是“进校不离岗”,边工作边学习,在职攻读学位的特点,在课程学习上,我院采取的是“两阶段”学习方式,即第一阶段主要学习公共和领域必修课程,在学院集中学习;第二阶段主要学习选修课,采取先寄发教材供学员自学,再到学院集中辅导两次,每次为期两周,最后集中进行考试。因此课程设置一方面要充分考虑这些特点、安排,另一方面更要考虑所设置课程应与各培养方向相适宜。对控制工程领域工程硕士研究生来说,应具备以控制论、系统论、信息论原理为核心的知识结构。同时,还要具备基于与数学方法、计算机技术、网络技术、通信技术、各种传感器和执行器等相结合的、针对具体应用方向的知识面。这些知识结构、知识面要通过一类课程群的设置来落实。由于培养时间、教学时数的限制,课程的门数设置受到了约束,这样就要求对课程的选择必须反复斟酌,切实使选择的课程具有较强的针对性,有利于学生建立合理的知识结构,有利于学生进行后续的学位论文研究工作。我院工程硕士专业学位课程设置包含两大部分。一部分是适用各个研究方向的必修课,包括公共必修课和领域必修课。公共必修课主要包含自然辩证法、英语、数理统计、科技信息检索。领域必修课主要有线性系统理论、计算机控制系统、自动测试系统。另一部分是为不同研究方向设置的选修课。选修课设置的基本思想是在保证对一个控制工程领域工程硕士研究生而言,至少应掌握一个课程群的知识要求的基础上,引入专题讲座形式来开阔学生视野,增大学生知识面。根据学科培养方案设置的三个研究方向,结合部队岗位需求,我们按优化、控制类课程群、控制系统故障检测与诊断课程群、信息传输与处理类课程群的要求设置领域专业技术类选修课课程。
具体地讲,为三个研究方向设置的选修课程分别是:
为武器控制系统分析论证、试验优化与质量监控研究方向设置了优化、控制类为主的课程,包含军事运筹分析、系统决策与建模、智能控制、人工神经网络、防空武器系统效能分析以及专题讲座。
为武器控制系统性能测试与故障诊断研究方向设置了故障检测与诊断为中心的课程,包含测试与接口技术、军用电子系统测试、电子系统故障诊断、故障分析与预测、人工智能原理以及专题讲座。
为武器系统信息化管理研究方向设置了信息传输与处理为中心的课程,包含数字信号处理、战术互联网及其应用、图像工程、多媒体技术、人工智能原理以及专题讲座。
据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。
第一部分人工智能行业发展概述
1.人工智能概念及发展
人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。
自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能发展历程
2.人工智能产业链图谱
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。
A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。
B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。
C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
人工智能产业链
资料来源:创业邦研究中心
第二部分人工智能行业巨头布局
巨头积极寻找人工智能落地场景,B、C 端全面发力。
资料来源:券商报告、互联网公开信息,创业邦研究中心整理
第三部分机器视觉技术解读及行业分析
1.机器视觉技术概念
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
机器视觉的两个组成部分
资料来源:互联网公开信息,创业邦研究中心整理
2.发展关键要素:数据、算力和算法
数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
3.商业模式分析
机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口
这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。
此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
国内外基础算法应用对比
资料来源:互联网公开信息,创业邦研究中心整理
(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口
软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
4.投资方向
(1)前端智能化,低成本的视觉解决模块或设备
从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。
机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。
(2)深度学习解决视觉算法场景的专用芯片
以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。
(3)新兴服务领域的特殊应用
前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。
(4)数据是争夺要点,应用场景是着力关键
机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。
第四部分智能语言技术解读及行业分析
1.语音识别技术
(1)语音识别技术已趋成熟,全球应用持续升温
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
(3)语音识别技术发展瓶颈与趋势
低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。
在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
2.自然语言处理(NLP)发展现状
(1)多技术融合应用促进NLP技术及应用的发展
深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。
深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。
(2)NLP主要应用场景
问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。
图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。
机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。
对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。
(3)创业公司的机遇
1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。
2)应用于垂直领域的自然语言处理技术
避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。
第五部分人工智能在金融行业的应用分析
人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。
人工智能在金融行业的典型应用情况
资料来源:创业邦研究中心
第六部分人工智能在医疗行业的应用分析
1.人工智能在医疗行业的应用图谱
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
图 人工智能在医疗行业的应用图谱
资料来源:创业邦研究中心
2.人工智能在医疗行业的具体应用场景
医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
第七部分智能驾驶行业分析
1.智能驾驶行业产业链
智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。
产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。
智能驾驶产业链图谱
资料来源:创业邦研究中心
2.智能驾驶市场分析
伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。
第八部分中国人工智能企业画像分析
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。
地域分布
全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
行业分布
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。
收入情况
收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。
最新估值
企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必
选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)
第九部分典型企业案例分析
1.Atman
企业概述
Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。
目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。
企业团队
创始人&CEO:马磊
清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。
Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。
核心技术与产品
技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。
Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。
机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。
知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。
2.黑芝麻
企业概述
黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。
目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。
企业团队
团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。
创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。
核心技术和产品
在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。
3.乂学教育
企业概述
乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。
企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。
主要产品
学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。
智适应学习人工智能系统
智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。
业务模式
线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。
4.云从科技
企业概述
云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。
云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。
企业核心团队
创始人
周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。
周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。
核心技术团队
云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。
技术优势
全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。
云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。
在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。
正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。
行业应用
目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。
5.Yi+
企业概述
北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。
旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。
目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。
企业团队
团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。
创始人&CEO:张默
北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。
核心技术与产品
技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。
公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:
行业解决方案
针对营销、安防、相机和电视的不同特点,推出相应解决方案。
营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。
智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。
电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。
相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。
新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。
6.擎创科技
企业简介
擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。
核心团队
擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。
主要产品
“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。
“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。
“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。
商业模式
目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。
核心优势