发布时间:2023-03-25 10:49:42
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的新型计算机论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
1有弹性
地安排教学按照教学的实际需要,采用多样灵活的形式调整教学内容,以实训室为中心,灵活地进行排课,实行分段接力教学。理论课程采用模块式教学,实习实训不在固定的时间段进行,结合项目开发的实际需要,灵活地使实习实训贯穿始终,采用弹性学期授课制。
2年级融合教学
为了增强学生的学习信心,调动学习积极性,可将在校学生打乱年级的界限,根据课程开展的先后顺序,共同参与项目开发全过程。依据项目的需求,学生根据自己的能力和水平自愿申报项目,教师根据实际来设计弹性作业,弹性开展课堂提问,根据学生的差异而提问,以便于不同层次的学生都能积极思考学习内容。总之,是要打破传统的年级概念,将教学环节演变为职场锻炼,充分体现出教学过程中的实践性、开放性和职业性。
3教师弹性
备课教学内容的选取需要适合学生认知规律和职业成长规律,要从企业实际需求和案例库中选择各种有利于提升学生项目开发能力的项目作为教学内容。设计教案时,教学时间安排要有足够灵活的调控空间,为学生发挥主体作用和教师评价提供足够的时间。教师备课不仅要备教材、学生、学习情境、学习任务,还要备工作过程。
4教师弹性
上课根据不同学生的不同需求,采用不同的分组形式。以学生为主体,以项目为主导,在不同的时间和不同的地点进行灵活多样的上课方式。问题让学生去发现,结论让学生去总结过程,让学生去经历,让学生真正成为学习活动的主体,实现教学过程的实践性、开放性和职业性。
5教学方法弹性
针对不同的项目、不同的任务、不同的对象和不同的学习场所,灵活地运用教学方法,如:案例分析法、分组讨论法、角色扮演法、启发引导法等。在同一门课程中,同一时间点,对不同的分组对象,可采用不同的教学方法,给予学生充足的发挥空间,鼓励学生积极参与教学活动。始终以学生为主体灵活调控,弹性的教学方法会积极促进师生的互动影响和现场调控,最终课堂氛围可达到最佳。
6弹性评价
在评价环节可弹性进行,不应集中为某一两种形式,从多角度出发,在教学过程中随时开展学生自评、互评,教师点评,项目使用者总评等评价方式。要做到随学随评,实现过程性评价。除了评价学习结果外,还要评价学生的学习方法、学习能力、社会能力和团结协作能力等,最终体现个性化评价。
7课余时间学习
辅导有弹性教师利用课余时间不定期不定时的对学生的学习方法、与人沟通方法、团队精神、创新思维和思想等多个方面进行辅导谈心,达到师生互相了解,从而促进教学更好的开展。
二采用弹性教学面临的风险
1来自教师方面的教师
在弹性教学过程中,面临很大的压力,需要改进和调整的内容很多,教师在思想上的认识很难统一,导致集体奋斗的意识不强。
2来自系部的弹性教学的实施
对于系部和专业来说是一件好事儿,但是在弹性教学的组织和实施过程中,需要考虑的因素也较多,如:课程的时间安排、课程间的衔接、授课地点安排、不同年级的总体协调、教学秩序的保障等。如在某方面的安排上出现屏障,弹性教学就很难开展了。
3来自学生的学生对弹性教学的认同感
需要进一步调研,不同年级学生的适应能力不同,学习方法不同,他们作为弹性教学的主体,势必在思想上、学习上、实践上要做好准分的准备,此项工作才可以开展。
三、总结
论文关键词:3G-EVDO,无线局域网络,税源监控系统
税源监控系统是税务机关利用现代信息技术对税源信息进行全面采集、分析和利用的税务信息化应用系统。一般由企业端和税局端组成。安装在企业的企业端系统功能是用于对企业进行税源信息监控、采集和数据传输;安装在税务机关的税局端系统功能是用于接收所采集的税源信息,并对信息进行分析和利用。税源监控系统是税务机关对重点税源企业进行实时监管的重要工具,应用先进信息技术提高系统功能,对税务机关降低税源监控成本,提高税源监控实效,从源头堵塞税收流失具有重大意义。
一、无线监控技术简介及3G-EVDO优势分析
1. 无线监控技术简介
目前无线监控技术实现上有下面几种方式:
(1)模拟无线数据收发模块实现。该类监控数据传输距离主要由发射机的发射功率来决定,监控范围受发射距离的限制,范围小;数据在空中传播,易受电磁等干扰,数据可靠性不好;模拟传输没有很好的加密模式,安全性不好;数据传输率很低,不能满足税源监控要求的从企业原料采购到成品销售的多个重要环节产生的数据采集及时性、准确性、安全性等要求。
(2)GSM网络实现。这类监控通信方式是依托全球的GSM网络,它的最大特点是打破了距离的限制,从而可以实现远程监控。主要是利用GSM短消息业务或语音业务进行业务监控。语音业务就是利用语音信道进行通信,把各种信息转化成语音信号计算机论文,通过语音信道发送。缺点是:由于网络传输不稳定,短信中心容量等问题,信息发送不可靠,并且缺乏安全性;消息的发送到接受很多情况会有较大时延,加上内容长度限制和GSM上网速度只能达到9.6kbps,这种网络环境无法满足企业税源实时监控和准确性的要求。
(3)GPRS网络实现。GPRS是由中国移动推出的2.5G服务,是在现有的GSM系统上发展出来的一种新的分组数据承载业务论文服务。GPRS与GSM语音的根本区别是,GSM的基础是电路交换,GPRS的基础是分组交换。因此,GPRS特别适用于突发性的、少量的数据传输,也适用于偶尔的大数据量传输。和GSM相比的优点是传输速度较快,缺点是数据传输速度偏低,有跳跃性,只能满足部分视频监控的要求。
(4)3G-EVDO即CDMA2000 1x EVDO,是3G系统CDMA2000的演进版本,基于CDMA的集群技术。3G-EVDO系统设计的基本思想是将高速分组数据业务与低速语音及数据业务分离开来,利用单独载波提供高速分组数据业务,而传统的语音业务和中低速分组数据业务仍由 CDMA2000 1x系统提供,这样可以获得更好的频谱利用效率,网络设计也比较灵活,抗干扰能力强、信号穿透能力强、系统容量大。1x EV-DO 于2001 年被ITU-R 接受为3G 技术标准之一。
2. 3G-EVDO技术优势分析
3G-EVDO是基于CDMA系统的升级,兼容了IS-95系统的空中接口技术,在升级上只需进行软件方面的升级。而CDMA网络经过7年多的建设,通信网络覆盖全国,基础设备完善齐全,将会是最快升级到3G网络的系统。通信过程中不会产生脉冲式射频,当在周围各种强电设备密布的情况下,不会给其他电器设备造成射频破坏。3G-EVDO通信网络覆盖全国,并成为成熟和稳定的网络,为无线局域网络税源监控系统提供一个稳定、安全的接入环境。3G-EVDO系统本身网络的安全性就好,传输过程中满足IP化和多媒体化的需求,系统具备视频编解码处理、网络通信、自动控制等强大功能计算机论文,直接支持网络视频传输和网络管理,使得监控范围达到前所未有的广度。比较符合以后的发展方向。3G-EVDO可提供高达153.6kps的无线数据通讯带宽,采用信道资源分配方式,可确保基于无线局域网络的税源监控系统企业信息传输的实时性。目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势。
二、3G-EVDO技术在税源监控中应用的意义
伴随着网络技术3G业务应用范围不断扩大,基于3G系统的无线局域网络监控系统将会用到各个领域,3G技术与税务信息化的结合也是大势所趋。目前国内有关无线局域网税源监控系统产品多数为针对2G无线网络系统进行开发的,由于税源监控图像所包含的信息量非常大,而2G通信系统本身又具有带宽小、抗干扰能力差、衰落严重、误码率高等特点,税源监控数据传输容易掉包的问题没有得到很好解决,无法达到实时监控的作用。如何将远程的监视、系统遥控、监控无线化有机地结合起来,做到既可以基于无线网络进行远程的监视、遥控和图像的传输,又具备通常税源管控的功能,并且投入费用合理,能够更加有效地确保系统运行稳定,将安全防范技术提高到一个新的水平,是目前税源监控信息化的应用的最大需求. 开发基于3G-EVDO无线局域网络的税源监控系统实现税源监控管理网络化、无线化、远程化具有积极的现实意义,主要体现在以下几个方面:
1.有利于实施全方位的税源动态监控
基于3G-EVDO的企业无线局域网络税源监控系统,可深入企业生产经营全部环节,进行实时监控、采集企业生产、经营真实信息,实施全方位的税源动态监控和纳税评估,对提高税源信息采集质量、加强信息共享和综合分析利用、查找和堵塞征管漏洞、提高税源管理实效具有重大意义。
2.有利于解决复杂工业环境下有线网络税源监控技术难题
有关税源监控系统的开发与应用,在国内也已有少量报道,但企业现有的局域网络都是有线网络,在工业环境复杂的企业生产环境中有线网络的应用受到环境的很大限制,存在布局困难、损耗大、传输距离短、分布范围有限、运行成本高的缺陷。无线局域网络监控系统具有无限的无缝扩展能力,可组成非常复杂的监控网络。无线网络监控系统是监控和无线网络传输技术的结合,它可以将不同地点的现场信息实时通过无线通讯手段传送到无线监控中心。
3.有利于降低税源监控成本
目前从技术先进性上来看,3G-EVDO是各种无线网络通讯技术中最新的改良技术,在网络安全、传输、解码、分配、覆盖等方面都有着明显的优势,具有综合成本低计算机论文,只需一次性投资,性能稳定可靠,维护费用低,无需专人管理的特点。建立无线局域网络税源监控系统,有利于提高税收行政管理的效率、降低税源监控成本,解决有线局域网络下监控中存在的监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂的生产环境等技术瓶颈。。
三、基于3G-EVDO的无线局域网络税源监控系统设计
1.总体目标
在目前已有的基于有线网络传输的企业税源监控系统基础之上,以3G-EVDO集群技术替代现有的有线网络监控、数据采集与传输,设计实现基于3G-EVDO集群技术的无线局域网络税源监控系统。相比现有的有线网络税源监控系统,系统功能可在以下方面达到提升:
(1)税源监控范围扩大。基于3G-EVDO集群技术的无线局域网络税源监控系统可实施全方位的动态税源监控,对企业生产经营的采购、生产、库存到销售都进行了全方位的动态监控,实现对企业生产经营的全过程的数据信息进行实时采集传输和分析利用。使税务管理部门能够全面了解企业的实时经营情况,全面掌握税源信息,减少税收流失论文服务。
(2)税源监控能力提高。基于3G-EVDO集群技术的无线局域网络税源监控系统不再受企业地理位置的限制,适合远距离传输,数字信息抗干扰能力强,不易受传输线路信号衰减的影响,能够进行加密传输,可以在数千公里之外实时监控现场。特别是在现场环境恶劣或不便于直接深入现场的情况下,数字视频监控能达到亲临现场的效果。即使现场遭到破坏,也照样能在远处得到现场的真实记录。
(3)税源监控实效提升。系统采用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行信息采集与传输,由于对视频图像进行了数字化,可以充分利用计算机的快速处理能力,对其进行压缩、分析、存储和显示。通过视频分析,可以及时发现异常情况并进行联动报警,从而实现无人值守。提高税源监控范围、质量和效率。
2.技术路线与技术关键
(1)技术路线:系统从设计到开发采用基于无线局域网络税源管理思想,利用3G-EVDO集群技术、视频压缩编码等诸多先进的信息化技术进行数据无线网络传输的新型系统,运用H.264视频压缩编码技术和3G-EVDO无线网络数据传输解决方案,通过建立统一的信息采集机制、统一的数据信息监控机制,构建面向应用监控、预警的信息化系统。采用跨平台跨数据库的设计技术、J2EE技术、三层/多层结构技术、3G通讯标准、TCP/IP协议等技术进行分析设计和数据交换标准。
(2)技术关键:基于3g-EVDO无线局域网络技术税源监控应用研究,提供3G网络接口实现数据传输、共享、分析、预警;网络带宽自适应技术,根据网络带宽自动调整视频帧率计算机论文,适应爆发性、大容量数据传输;基于无线网络的点对点、点对多点、多点对多点的远程实时企业生产经营现场监视;具有面向异构网络环境的综合管理能力。
3.技术创新
(1)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术,实现企业生产经营“购、产、存、销”关键经营环节监控,解决传统网络传输方式的无法适应监控点多、传输距离远、覆盖范围宽、实时性强、适应复杂等网络税收监控瓶颈问题,实现实时数据传输、接收,保证信息的安全性、稳定性、准确性、及时性;
(2)采用3G-EVDO 、H.264视频压缩编码技术等网络通讯新技术在企业生产关键环节实现实时的税源信息采集,从源头控制发票开票信息的不实,通过技术手段对企业真实的经营信息的分析,测算销售数据,与纳税申报信息比对,实现异常预警。
(3)采用3G-EVDO网络通讯新技术通过一个系统将多种系统整合在一起,将信息自动化,财务分析,税源监控功能集于一身,实现对各类税源信息的传递、交流、共享、存储、协同,实现数据集成及数据的集中展现,做到全方位税源实时控管,有效解决企业,税务机关,政府,生产者之间信息不对称问题。真正实现了监控系统的数字化、网络化和智能化。
【参考文献】
[1]尹逊政,路勇.一种基于GPRS技术的远程监控解决方案[J].计算机应用,2006,Vol.15(5):27-30.
[2]任雷.固定监控与移动无线图像传输技术[J].赤子, Vol.2009(16).
[3]范文博,姚远,张其善.基于GPRS技术的数据采集远程网络监控系统.无线电工程[J],2004,Vol.34(1):21-24.
[4]林国镜.科学化税源管理[M].北京:中国税务出版社,2009:18-19.
软件开发论文2900字(一):动调式陀螺仪数据处理解释软件开发与应用论文
摘要:动调式陀螺测斜仪是一种新型精密陀螺测斜系统,适用于有磁性干扰的丛式井、加密井的钻探测量及在完井后的套管内或钻杆内进行测量。该仪器漂移很小,有效地提高了井眼轨迹测量结果的准确性。为了匹配仪器测量精度,测试数据处理采用空间曲线积分法,实现井眼轨迹空间展布的精细描述,开发出对应测斜资料分析方法与解释平台,为老井轨迹复测、侧钻井等提供实施依据。
关键词:动调式陀螺;井眼轨迹;空间曲线积分法;陀螺测斜解释平台
0引言
为提高油气井利用率和开发效果,地质部门在开发过程中,经常在原井眼基础上进行开窗侧钻,对井眼轨迹的准确性提出了更高的要求。以往由于受仪器精度及设备技术条件限制,井眼轨迹的测量结果往往存在较大偏差,从而影响了对地层的正确评估。所以,为了提高侧钻井的成功率,就需对某些老井复测井眼轨迹[1-2]。本文采用动调式陀螺仪进行井眼轨迹测量,为匹配仪器测量精度,测试数据处理采用空间曲线积分法,实现井眼轨迹空间展布的精细描述,开发出对应测斜资料分析方法与解释平台,为老井轨迹复测、侧钻井等提供实施依据。
1陀螺测斜仪
常用2种陀螺测斜仪测量井眼轨迹。一种是框架式陀螺测斜仪[3],其原理是利用高速旋转的物体具有定轴性的原则实现方位测量,由于高速旋转的运动存在摩擦力,容易产生漂移,而且这种因漂移而产生的偏差会随着时间而增大。另外,框架式陀螺无法直接测量方位,需要在开始测量前用人工确定正北作为基准,这样容易带来人为误差。由于框架式陀螺测斜仪的漂移偏差无法预测和克服,导致井眼轨迹测量结果不稳定。而动调式陀螺仪采用了更为先进的挠性支撑,因而漂移很小,有效地提高了井眼轨迹测量结果的准确性。动调式陀螺测斜仪是一种精密陀螺测斜系统,采用惯性导航原理,利用挠性陀螺仪和石英挠性加速度计作为主要测量元件,通过定点测量仪器各轴的地球自转角速度和加速度分量,经过系统解算后得到当前位置的井斜度、方位角。然后,根据各测量点的方位、倾斜角确定井眼轴线的空间位置,同时为了与钻具配合,必须随时得到工具面角[4]。特别适用于有磁性干扰的丛式井、加密井的钻探测量及在完井后的套管内或钻杆内进行测量。
2井眼轨迹曲线算法优化
井眼轨迹算法有很多种,常用方法有平均角法、圆柱螺线法、最小曲率法和曲率半径法[5-6]。这些计算方法大多是将测量段内的井眼轨迹假设为直线、折线、圆柱螺线和斜面圆弧曲线等简单曲线模型[8]。井眼轨迹计算是通过测量井眼的斜深、井斜角和方位角,然后,再用一定的计算方法将这些测量数据解释为XYZ空间坐标数据[9]。
井眼轨迹计算的积分法是一种基于空间曲线的方法,它将相邻的2个井斜测点的连线视为一渐变空间曲线[5-8],这更符合钻井工作的实际,其精度高于常用的井眼轨迹计算方法。在实际井眼轨迹测试时,通过优化工艺方案,制定合理资料录取方案,采取连续测斜或加密测点方案,可以最大程度地逼近轨迹空间曲线形态。
3处理解释系统设计
陀螺测斜解释平台采用C#开发完成,充分利用人工智能,与上游基础数据库紧密衔接,用户仅需进行简单输入工作便可完成井眼轨迹评价,大大提高了单井处理效率。软件设计3个功能模块,主要实现数据处理、图表绘制、报告生成(见图1)。
3.1数据处理
动调式陀螺测井仪主要采取点测方式进行,在开窗侧钻位置或最大井斜位置采取加密测点或重复测试某深度点的工艺提高测试数据精度。在数据处理上实现数据质量自动检查,如果相邻测点测深增量ΔL=0,说明这2点为重复测试数据,需要计算其平均井斜角和方位角。再采用空间曲线积分法依次计算相邻测点垂深增量ΔH、水平位移增量ΔS、东西位移增量ΔE、南北位移增量ΔN,并对n个测点位移累积求和就是某点的垂深、水平位移、东西位移和南北位移。
3.2图表绘制
对井眼轨迹的描述主要采用水平投影图、垂直剖面图和三维轨迹图方式。绘制水平投影图和垂直剖面图时,需要考虑实现新老井眼轨迹对比功能。因为早期的陀螺测井测量和分析误差相对较大,在开展动调式陀螺仪对老井数据进行普查,落实真正的井眼轨迹时,进行新老井眼轨迹对比绘图(见图2)。
三维轨迹图主要利用计算机图形化计算,采用OPENGL绘图方式,实现井眼轨迹的三维缩放、旋转等功能,使用户对井眼轨迹走向更能直观准确地观察和掌握(见图3)。
3.3报告生成
陀螺测试井眼轨迹报告内容包括井基础数据、现场测试情况、井的三维轨迹图、垂直剖面图、水平投影图、解释结论表等。井基础数据或轨迹对比所需老井井眼数据直接通过油田上游信息系统A2数据库中获取,只需输入正确的井号,便可连接A2系统。
报告形式以Word格式表现,利用MicrosoftOffice系统中word模板编辑功能,可以预先对报告内容进行整体编辑排版。系统以word标签查找方式,完成计算结果、各种表格、图件等内容对应添加到Word文档中,实现一键自动生成报告的功能,满足不同用户、不同地质需求,大大降低了单井处理解释时间。
4陀螺测井技术应用
4.1克服磁性干扰,指导加密井钻进
油田开发后期,依靠打定向井、加密井或老井侧钻稳产增效[8]。动调式陀螺测井仪由于其不受磁性干扰的特点,可以在井距较小:磁性干扰强烈的环境下,准确测取井筒的倾斜角、方位角、工具面角等参数,进一步计算可得出垂深、南北偏移、东西偏移、闭合方位等参数,指导新井钻进。
TJH油田计划在的G71井附近打1口水平井,由于该区块为低渗透区块,井距普遍较小。为了保证侧钻顺利完成,该井在侧钻过程中,对本井及邻井均分别进行了陀螺定向及测斜,发现水平井设计井眼轨迹存在问题,该井与水平井的最小距离只有18.58m,存在安全隐患,随后根据计算结果及时调整钻井方案,保证了水平井顺利施工,投入正常生产后初期日产油近50t。
4.2应用陀螺定向,提高侧钻中靶成功率
在剩余油富集区实施侧钻井是老井产能建设的重要手段,陀螺定向在油田广泛用于老井开窗侧钻,减少定向时间,提高了侧钻中靶率[9-10]。
BQ油田B19-1断块计划在高部位部署BS24-7K井,实施前对BS24-7井进行陀螺测试,总水平位移与原来的认识相差204.2m(见图4、图5),根据结果及时进行调整钻井方案,避免井位落空。该井投产后,初期日产油9.8t。
5结论
(1)动调式陀螺测斜仪不受铁磁物质的影响,适用于有磁性干扰的丛式井、加密井的钻探测量及在完井后的套管内或钻杆内进行测量。无需人工校北并且采用先进的挠性支撑,更有效地提高了井眼轨迹测量结果的准确性。
(2)开发了井眼轨迹分析平台,采用与动调式陀螺测斜仪测量精度相匹配的空间曲线积分法,能够更加精细描述井眼曲线空间展布。
(3)动调式陀螺测井技术在油田落实井眼轨迹、判断油水井在油层中具置、指导加密井部署、提高侧钻中靶率等方面提供可靠了依据,能够取得很好的地质应用效果。
软件开发毕业论文范文模板(二):随采地震监测数据采集控制软件开发论文
摘要:随采地震能够对工作面前方地质异常体进行连续探测和实时预报,成为近几年的研究热点,但是目前还没有能够在煤矿井下开展随采地震长期连续监测的装备及配套软件。为了解决这个问题,基于MicrosoftFoundationClasses(MFC)开发框架,开发了一套随采地震监测数据采集软件,在室内、野外进行了为期3个月的联调测试,并且在贵州岩脚煤矿与井下随采地震监测设备开展了为期3个月的全面试运行。测试表明,软件实现了随采地震信号的高效采集、完全存储和处理软件的实时通信功能,具有运行稳定、操作便捷、处理高效、便于维护、无人值守等优点。
关键词:随采地震监测;数据采集;软件设计
我国的煤矿以井下开采为主,与国外相比,我国煤炭行业的信息化水平较低,矿山空间信息仍然以图表和文字作为主要的存储介质,信息基础设施未能跟上时代变化的脚步,使得煤矿企业的竞争力受到严重的制约[1]。煤矿井下危险具有多变性、隐蔽性,导致安全问题成为威胁煤矿工人生命的核心问题[2]。而采掘工作面更是矿井水害、顶板、火灾以及瓦斯等多种灾害事故的多发区,同时也是工作人员聚集区,因此,也是导致重大生命财产损失的高危区域[3-7]。随采地震勘探[8]是利用采掘活动激发的震动作为震源,探测工作面内部或者掘进面前方一定区域内地质构造的一种地震勘探技术,可以摆脱放炮的安全隐患及对正常采掘生产的影响,实现了采掘的同时进行超前探测[9-11]。随采地震所用震源信号是连续、非可控的,只有进行连续、长期监测,记录远场信号,将其与远场信号作互相关,得到清晰的相关峰值,才能将其转化为脉冲子波,代替炸药震源进行地震勘探[12]。
因此,研制随采地震监测装备及控制软件成为当务之急。本文针对随采地震监测装备的特点,充分分析其观测系统和监测数据的特点,利用数据库和文件系统的优点,设计了软件的数据结构;考虑处理软件的特点,设计了与处理软件之间的接口;最后基于MicrosoftFoundationClasses(简称MFC)开发框架,开发了数据采集软件,联合测试成功后,并在贵州岩脚煤矿进行了3个月的野外采集工作。
1随采地震观测系统及其特点
为了能够获得工作面内部煤层剧烈变化情况、断层和陷落柱位置与规模以及应力集中区等信息,目前的随采地震观测系统采用复杂部署模式。如图1所示,采用H形布局,共72道,其中孔中部署24道,分4个深孔,每个钻孔内部署6道,由一个孔中多级检波器串承担;其余的48道部署于工作面两侧巷道的锚杆上,图1中绿色圆点为巷道检波器。
数据采集分站为6通道,整个观测系统共需12台分站,数据处理时主要使用煤层中的槽波,而槽波的频率较高,可以达到500Hz,为了采集高质量的数据,采样间隔为250μs,这就对数据采集系统提出了新的要求,不仅仅数据道数多,采样率较高,而且是长期连续实时监测。
观测系统随着工作面的推进而移动,当工作面推进到检波器测点附近时,要依次将检波器拆卸,避免被埋入采空区中,当工作面推进到距离图2中黄色深孔检波器10~20m时,要将全部的黄色测点移动到蓝色测点位置,以此类推直到工作面回采结束。
2随采地震监测数据采集软件设计
2.1软件架构设计
针对分站多、数据量大、观测系统多变化、实时性要求高以及需要与数据处理分析软件进行通信的特点,采集软件利用多线程技术分别进行数据采集和存储,软件框架设计见图3。
2.2软件数据结构设计
采集软件中的数据可以分为两类,一类为数据量不大,变化周期较长的数据,比如:监测分站信息、观测系统信息等;另一类为数据量较大,而且变化周期很短的数据,比如:监测数据。根据数据特点,采集软件采用数据库与文件系统相结合的方式保存数据,以提高数据存储效率。监测数据采用文件系统保存,其他数据采用数据库方式保存。
a.数据库设计
数据库主要保存测区信息、采样率、每个文件的采样时长、采集分站信息、传感器信息、观测系统以及监测数据的保存路径等信息,其E-R模型见图4。
b.文件结构设计
监测数据的辅助信息,如采样率、观测系统、道数等信息全部保存在数据库中的监测数据表datafile_info中,按照采样顺序将每道数据作为一块写入文件,块的顺序与道号一致,样点值采用有符号的浮点型数据类型保存,详见图5。文件名为第一个样点的采样时间,格式为:YYYY-MM-DD_HH_MM-SS,不足两位数的补零。
2.3软件交互接口设计
本软件需要分别与井下采集分站和随采地震数据处理软件进行交互,主要涉及到两个接口。
a.与采集分站接口
为了便于和井下采集分站通信,采用UDP与TCP协议相结合的通信模式,采集软件的查询指令通过UDP协议与采集分站通信,通知指令和数据传输则采用TCP协议传输,其通信流程见图6。
b.与数据处理软件接口
为了提高数据存储效率,采集软件采用数据库与文件系统相结合的方式存储监测数据,大量的监测数据保存在文件中,但是文件的相关信息,如:道数、采集时间、采样率、观测系统等信息保存在数据库表datafile_info,与数据处理软件的通信也通过数据库来完成,数据记录表中专门设计一个字段为数据状态标志,数据采集时状态为0,采集结束后为1,数据处理软件不断查询该表中数据状态标志为1的记录,一旦有这样的记录,则根据数据库中的信息读取监测数据进行处理,处理结束后将该标志改为2,具体处理流程见图7。
3随采地震监测数据采集软件实现
3.1开发环境
软件基于VisualStudio的微软基础库类(microsoftfoundationclasses,MFC)开发框架,采用C++语言编写,充分利用其图形用户界面(graphicaluserinterface,GUI),大大提高软件的开发效率。在功能开发方面,为了满足随采地震监测的需要,提供数据采集和数据保存功能,采用菜单栏和对话框方式来实现软件与用户之间的人机交互。在整个应用框架的基础上进行功能性、界面性的填充。将软件开发分成若干部分,有效地提高软件研发效率和可读性,同时也便于后期维护升级。
3.2软件的实现
为了提高软件的运行效率,将软件操作界面、数据采集、保存和整理以及设备状态监测与恢复功能分别由单独的线程来完成。
a.数据库实现
数据库中最主要的两张表为传感器信息表和监测数据表,传感器信息表为观测系统表的基础,而且随着工作面的回采传感器移动后,传感器的位置信息就会发生变化,观测系统随之变化;监测数据表是数据采集软件与处理软件通信的基础,表中需要包含大数据文件路径、观测系统、采样率、采样时间和时长等重要信息,具体见表1和表2。
传感器信息表中(表1)以Station_ID、Channel和Modify_Time为联合主键,这样表中可以把同一个传感器在不同时间的坐标都保存起来,随时可以获取任何时间段的观测系统。
监测数据表中(表2)由File_Index为主键,该值为根据时间自动生成一个与时间有关的数,确保唯一性,同时将大数据文件的相关数据信息全部存入该表中,以方便数据处理软件随时查询。
b.软件操作界面
随采地震监测软件属于监测类软件,具有自动化程度高、人工干预少等特点,因此,需要用户的操作很少,主要是一些参数设置和监测分站运行状态的显示:系统中监测分站的数量、每台分站的传感器数量及其工作状态。
传感器参数设置功能主要包括传感器的安装位置及其坐标、所属监测分站号、通道号、测点号等信息的增加、删除和修改,由修改传感器的时间为主键,即可获得该时刻的观测系统。
c.数据采集功能
数据采集功能主要包括数据采集软件与监测分站之间的通信、监测分站状态查询与控制、数据采集等。为了达到随时能够与监测分站通信的目的,与监测分站的通信通过UDP和TCP协议两种方式来实现,其中监测分站的信息和状态查询由UDP协议实现,指令的发送、参数设置和数据采集通过TCP协议实现。TCP协议中采集软件为服务器端,监测分站为客户端,服务器端采用完成端口技术来接收多个监测分站上传的数据,为了便于数据保存,每个通道的数据分别存放在独立的缓存区中,缓存区采用循环数组的设计,当数据写入缓存区中后,循环数组的数据采集下标iColDataIndex+1,数据采集详细流程见图8。
d.数据保存
为了提高数据存储的效率,将数据存储分为数据保存和整理两个步骤,分别由两个线程执行。数据保存线程监测缓存区中数据采集下标iColDataIndex与已保存数据下标iSaveDataIndex之差,当该差值达到预设值时,从数据缓存区中读取数据并保存成数据文件(采用异步模式将每道单独存储为一个文件)。数据保存完成后,循环数组的已保存数据下标iSaveDataIndex+1,其数据保存详细流程见图9。
e.数据整理
为方便数据处理需要把同一时段的各道检波器的数据保存为一个文件,当由于检波器或者采集分站故障导致数据缺失时做填零处理。因而增加一个专门进行数据整理的子模块,由一个单独的线程来处理,其数据整理详细流程见图10。
f.系统自恢复
井下的供电系统或者网络经常检修或者故障,导致随采地震监测设备出现故障,当故障解决后,系统应该能够自动恢复,但是该系统是由多个监测分站组成的,分站之间需要不断进行时间同步,当一台分站出现故障后,该分站停止采集,其他分站仍然正常采集,当该分站故障解决后,要想恢复采集,必须要把系统中所有的分站进行重启。图11所示流程,就是用来检测网络是否出现故障,如果出现故障,则一直检测,直到故障修复,然后重新启动系统。
4随采地震监测数据采集软件联调与测试
4.1运行环境
数据采集软对运行环境的要求如下:
操作系统:windows7及其以上;CPU:2.5GHz,4核;内存:8GB;硬盘:500GB。
4.2联调与测试
该软件与井下监测分站以及数据处理系统在实验室进行为期1个月的联调测试,联调过程中对采集软件与监测分站和数据处理软件的接口进行了修改和完善,并在野外进行了为期2个月的稳定运行后,各项性能指标都达到了设计要求,软件实时波形界面见图12所示。最后在贵州岩脚煤矿进行为期3个月全面试运行,无论是采集数据还是与数据处理软件的通信都正常工作。
5结论
a.整个软件的设计契合了随采地震监测系统的特点,实现了随采地震信号的高效采集、完全存储和与处理软件的实时通信,软件具有运行稳定、操作便捷、处理高效、便于维护等优点。