发布时间:2023-03-28 15:00:54
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的数学建模论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此
由可知
于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
论文关键词:数学建模数学应用意识数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
参考文献:
1.《问题解决的数学模型方法》北京师范大学出版社,1999.8
2.普通高中数学课程标准(实验),人民教育出版社,2003.4
在职业教育大发展的初期,在“工具论”和功利主义教育思潮影响之下,一度把为专业课服务作为数学课的唯一职能,甚至普遍弱化数学课的地位,一些学校的数学课程被大幅缩减甚至被取消。部分专家学者及时对唯技能、唯工具、忽视素质教育等错误思潮进行了批判,2011年8月,教育部颁布文件《教育部关于推进高等职业教育改革创新,引领职业教育科学发展的若干意见》,强调改革培养模式,增强学生可持续发展能力,重视学生全面发展,推进素质教育,增强学生自信心,满足学生成长需要,促进学生人人成才。公共基础课是高职院校素质教育的主渠道,为素质教育服务是高职院校基础课改革的方向。高职院校基础课的功能主要有为专业课服务和为素质教育服务两个方面。如果真正明确高素质技能型人才的培养目标,真正重视学生的终身发展,而不是把高职院校视为技能培训机构,就应该高度重视基础课的地位。数学的基础性与广泛的应用性不仅使数学成为学习其他科学的基础和工具,而且也使数学成为提高高职学生全面素质极好的载体。高等数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一门科学,而且是一种文化。它内容丰富,理论严谨,应用广泛,影响深远。然而,当前多数高职院校数学课堂仍是以传授课本上的理论知识为主,课程内容主要局限于数学的知识成分,很少涉及到数学思想、精神、学生情感、态度、价值观等观念成分,很少涉及到解决实际问题的能力,而较多地让学生做习题,却较少地让学生想问题。在做习题中,又较多地在操作层面上训练解题方法,而较少地在思维层面上培养数学素养,重知识,轻思想;重技巧,轻能力。大多数学生对数学的思想、精神了解得较肤浅,甚至误以为学数学就是为了会做题、能应付考试,不知道数学方式的理性思维的重大价值,不了解数学在生产、生活实践中的重要作用,不理解数学文化与诸多文化的交汇。所选用的教材由于过多考虑数学学科的知识本位,学生通过教材看到的是定义、公式、定理和性质的堆积和罗列,看不到实际应用的案例,因此学习积极性不高,学习效果不好。况且高职学生基础相对较差,教学效果更不如人意。
2数学建模融入数学课程是高职数学课改的有效切入点
近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。
2.1数学建模融入数学课程能够培养和提高学生的学习兴趣
学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。
2.2数学建模思想融入数学课程能够加快高职学校素质教育的步伐
高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。
2.3数学建模思想融入数学课程能够提升学生各方面的能力
学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。
3数学建模教学实践及学生创新能力的提高
近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。
3.1融入数学建模思想精心设计教学内容
按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。
3.2灵活多样的教学方法与现代教学手段相结合
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
参考文献:
1.《问题解决的数学模型方法》北京师范大学出版社,1999.8
2.普通高中数学课程标准(实验),人民教育出版社,2003.4
目前对电磁铁的分析方法有限元法、磁路法以及试验法等[3-4],本文采用磁路法对图1所示的电磁铁进行等效磁路分析。从图1中可以看出,由于该结构为圆柱对称形结构,所以采用二维简化的等效磁路数学模型对电磁铁的静特性进行分析,忽略绕组漏磁通和铁芯涡流的影响,则该电磁铁即可用图2所示的等效磁路来表示。图2中,F代表电磁铁绕组输入总磁势,准为匝链绕组总磁通,Λ1和Λ2、Λ3分别为电磁铁磁路分段磁阻。具体含义以及计算公式如下:磁路分析过程中,该电磁铁机械尺寸的具体数值如图3所示。等效电路中磁阻Λ1计算公式见式(1),是动铁芯与上部铁轭之间的计算磁导。
2、Ansoft仿真结果
有限元分析是根据数学理论变分的原理,采用剖分插值的微元划分法,建立各微剖分区间的相互关系。有限元法的计算步骤包括建立所求解结构的几何模型、定义其几何边界条件、定义材料属性、加载荷、设定计算参数以及后处理等。电磁铁结构的材料属性如表1所示。在Ansoft仿真后处理程序中得出的普通电磁铁二维求解场域的磁力线分布如图4所示。从图4中可以看出,在工作气隙区域有2个磁分路。根据计算结果可以分析电磁铁绕组自感特性,即通电绕组电感随动铁位置和相应电流变化而变化的规律。自感的计算公式为:L(i,x)=ψ(i,x)/i(7)根据式(7)和磁链特性可计算出动铁芯在整个行程中动铁位置与绕组自感特性曲线(见图5)。从图5可以得出如下结论:绕组电流不变时,动铁芯离极靴越远气隙越大,自感变小;气隙越小,在不饱和的情况下,自感越大。具体到该电磁铁,当绕组电流在0.2A以下范围时,由于电流较小,电磁铁内磁场尚处于线性区,自感特性仅是动铁位置的函数,而与电流无关,因此在电流0.2A以下自感特性曲线基本重叠;当电流逐渐增加时磁场逐渐饱和,相同动铁芯位置,电流越大自感越小。以上仿真结果与理论分析和数学解析结果一致。方形极靴时,采用有限元法计算解出的电磁铁电磁力与动铁芯位置的关系曲线见图6。从图6可以看出,电磁铁方形极靴电磁力特性比较陡峭一些,由于磁路的非线性,导致随着位移的变化电磁力呈非线性变化。
3、结语
在高职数学教学过程中融入数学建模思想,必须要改变传统的教学模式,采用开放式的实验教学,让学生自己为主体,在教师的指导下,提取相应的专业知识,运用数学建模的方法解决实际问题,掌握适当的数学技能,与此同时还可以培养学生的创造性,提高学生的创造能力.除此之外,采用实验教学方式,可以让学生在学习数学理论知识的过程中,看到数学知识的应用背景,将数学理论与具体的工作实践相结合,加深学生对数学知识的印象,深化学生对数学知识的理解.采用开放式实验教学,可以解决数学课程的不足,向学生介绍高职院校所引入的基础数学建模,更好地将高职数学建模思想融入到数学教学过程中.
二、高职数学课程与数学建模的结合路径
1.在数学概念教学中运用数学建模思想
在数学概念教学过程中运用数学建模,可以达到更好的教学效果.例如,在讲“导数的概念”时,可给予两种模式:一种是变速直线运动的瞬时速度,另一种是非恒定电流的电流强度.在建立模型的过程中,可以使用简单的物理知识,教师和学生一起努力,共同分析和讨论.通过分析问题,对于上述提到的两个不同的模型,如果能抛开其实际的意义,只是看数学结构,它们具有相同的形式,同样可以归结为一个数学模型,换言之就是函数的自变量与改变量之间的比值.当其中的自变量以及改变量都趋向零的时候,就突破形式的极限,这在数学的定义上为函数的导数.当有了导数的定义之后,前面的两个模型就容易解决.这不仅衍生了导数的概念,也可以让学生发现数学的魅力.
2.利用问题情境,以建模的方式,加强学生对数学问题的解释和应用
根据教学内容的特点,教师可以利用数学建模的原则来进行复杂的、抽象的概念和组合领域的教学.在教学过程中,教师可以引入多媒体技术,利用多媒体课件展示一些有趣的数学故事、历史数据、图片、视频数据等,作为课堂导入的有力环节,让数学问题转化为具体的教学情境,从而使学生建立数学问题意识.这要求教师注重材料和现实生活与大自然中的数学建模接触的多样性.例如,在函数教学过程中,可以分析银行存款的复利问题;在学习极值问题后,可以将最优价格设计引入.如此,设计问题情境,让学生在具体的模型演练以及对知识的分析中解决问题.利用建模方式进行问题情境导入,可以打破传统的高职数学教学过程中的片面化认识,全方位地释放学生的数学思维.
3.数学建模的载体———优化教学内容
在高职数学教学过程中,教师要以应用为目的,优化教学内容.因此高职数学教师应该积极展开相关的课程理论研究,在数学教学的过程中挖掘数学教材与学生实际生活相关的联系,将数学内容生活化,将数学教材生活化,根据学生专业的实际需求编排高职数学课程教学内容和教学重点.与此同时,高职数学教师还需要增加数学实验等辅的教学内容,将趣味性、知识性、实用性以及现代化等技术融为一体.如此,可以提高学生学习数学的兴趣,开拓学生的知识视野,还可以突出高职数学应用型的培养目的,提高高职学生的数学水平.
三、结语
1.1任务设计
教师基于教学目标及学生的实际等,把教学内容设计在若干个任务中。设计任务时,主要遵循以下原则:(1)意图明确,应使学生通过完成任务,学会相关教学内容,实现教学目标,达到教学目的,实现知识的建构。(2)差异性与层次性,结合学生的基础、认知能力、兴趣等因素,设计不同特点、不同层次的任务,任务有大小、有难易,循序渐进,使大多数学生能独立或协作完成,使基础好的学生“吃得饱”,基础差的学生“吃得了”,最终通过完成任务使学生有所收获,有所提高,享受学习,激发兴趣,建立自信。(3)创新性,针对数学建模竞赛的特点,设计一些具有开放性、挑战性的任务,培养学生的创新意识和能力。
1.2自主、协作学习
学生以教学内容为载体,以任务为线索,在教师的指导下,通过自身的思考实践,或者通过同学之间的共同探索,实现知识的构建和技能的提高。
1.3总结评价
在教师的组织、指导下,通过学生自我展示或师生交流、生生交流,了解学生是否完成了任务,完成的任务是否正确,找出存在的问题并加以解决,修正认识,加深理解,完成任务。
2任务驱动教学法在数学建模培训中的应用案例
在2013年8月进行的数学建模集训中,我们在往年实践的基础上,继续运用任务驱动教学法,上表为其中两个案例。
3收获与体会
五年多来,通过在我院的数学建模培训中不断的实践、总结、改进,学生加深了对任务驱动法的认识,提高了运用的能力,在培训中取得了良好的效果。经过培训,学生基本达到了参赛的要求,能独立完整地参加竞赛,竞赛中获得了四个国家级奖项等成绩,下面谈谈我们运用任务驱动法的一些体会。
3.1任务设计是任务驱动教学法成效好坏的关键
教师必须对教学内容要有透彻的理解,任务设计要有较强针对性,切实可行,要使学生通过完成任务,实现教学目标、达到教学目的,若能设计一些灵活、具有挑战性的任务,则效果更佳。如,在奶制品的生产与销售中,设计的任务“若以奶制品的产量为决策变量,试建立相应的模型”对学生就有一定的挑战性,学生要想完成这一任务,首先必需吃透教材,然后才能完成这一任务,完成任务的收获对于学生来说将是深刻的。
3.2教师要善于组织、指导、监控
在学生自主协作学习过程中,教师要注意监控学生的学习进程,了解学生在完成学习任务过程中碰到了哪些困难,给予学生适当的指导或组织学生攻坚克难。在总结评价环节,除了师生交流,应鼓励学生之间进行交流,鼓励学生展示自我,发表看法,特别对于学生思维中的亮点,要加以鼓励,培育学生思维中的灵活性与创新性。
3.3学生是任务驱动法的最大受益者
在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。
二、数学建模教学的改革举措
1.加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。
三、收获与体会
关键词:概率统计;数学建模;教学
数学建模主要是借助调查、数据收集、假设提出,简化抽象等一系列流程构建的反映实际问题数量关系的学科,将数学建模思想融入到概率统计教学中,不仅能够帮助学生更好地理解与掌握理论知识,同时对于提高学生运用数学思想解决实际问题的能力大有裨益。可以说,概率统计教学与数学建模思想的融入具有重要的理论以及现实意义。
1.教学内容实例的侧重
在大学数学教育体系中最为重要的一个目标就是培养学生建模、解模的能力,但是在传统概率统计教学中,教师大多注重学生的计算能力训练以及数学公式推导,而常常忽视利用已学知识进行实际问题的解决,使得大多数学生的应用能力无法得到提高。所以,为了能够在教学中提高学生应用概率与统计的实际能力,教师应在教学内容设计中吸收与融入与实际问题息息相关的题目,使学生在课堂中不仅能够轻松学习概率知识,增加学习主动性,同时能够尝试到数学建模的乐趣,提高自身数学素养。例如,在古典型概率问题的教学中,为了加深学生对于该部分知识的理解,教师可以引入彩票概率的实际问题,通过引导学生分析各等奖的中奖概率,使学生获得极高的建模、解模能力。
2.在教学方法中融入数学建模思想
在概率统计教学中,教师还需要在教学方法中融入数学建模思想。首先,采取启发式教学方法。在课堂教学中,教师应引导学生利用已学知识开展认识活动,在问题发现、分析、解决的一系列锻炼中获得概率统计知识的自觉领悟。其次,采取讲授与讨论相结合的教学方法。在课堂中,讲授是最为基本的教学方式,不过单一的讲授很可能导致课堂的枯燥,所以课堂中还需要适当穿插一些讨论,使学生在活跃的氛围中激活思维,延伸知识面。再次,采取案例分析的教学方法。案例分析是在概率统计教学中融入数学建模思想的一种有效方法。在教学中应用的案例应进行精选,其不仅需要具有典型性,同时还需要具备一定的新颖性以及针对性,通过缩短实际应用与数学方法间的距离,使学生学习数学的兴趣被大大激发。最后,采取现代教育技术的教学方法。在概率统计的问题中常常需要较大的数据处理运算量,所以为了简化问题,使学生掌握一定的统计软件具有重要意义。通过结合具体的概率统计案例,在学生面前演示统计软件中的基本功能,为提高学生掌握统计方法以及实际操作能力奠定坚实基础。知识的获取并不是单纯的认识过程,其更应偏向于创造,在不断强调知识发现的过程中帮助学生认识科学本质、掌握学习方法。
3.在概率统计教学中融入数学建模思想的案例分析
一个完整的数学思维必须经过问题数学化以及数学化问题求解两个方面,只有让学生体验以及掌握到一般的数学思维方法,才能使其真正拥有利用数学知识解决实际问题的能力。而具体分析在概率统计教学中融入数学建模思想的案例,能够为引导学生发现生活中的数学,开拓学生眼界奠定坚实基础。很多概率的实际问题中均存在着随机现象,其可以视作许多独立因素影响的综合结果,近似服从于正态分布。例如,某高校拥有5000名学生,由于每天晚上打开水的人较多,所以开水房经常出现排长队的现象,试问应增加多少个水龙头才能解决该种现象?对于该问题的解决,教师首先应组织学生对开水房现有的水龙头个数进行统计,然后调查每一个学生在晚上需要有多长时间才能占用一个水龙头,最后引导学生分析每一个学生使用水龙头这一情况是否是相互独立的,通过联想中心极限定理以及考虑每个人具有占用水龙头以及不占用水龙头两种情况,得到每人占用水龙头的概率为0.01。所以,每名学生是否占用水龙头能够被视作一次独立试验,其能够看作是一个n=5000的伯努利试验,假设占用水龙头的学生个数为X,那么其满足X~B(5000,0.1),通过借助中心极限定,使得该问题被快速解决。