发布时间:2023-03-30 11:29:43
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的影像设备论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
世界名牌大学的办学理念中培养终身学习的能力是其主要内容之一,如哈佛大学教育理念包含有:“学校致力于创造培养学生自我依靠和终身学习习惯的平台”。剑桥大学的办学理念也含有“注重培养学生终身学习能力”。医学教育国际标准,即“全球医学教育最基本要求[2]”同样注重培养学生终身学习的能力。继续医学教育(continuingmedicaleducation,CME)是医学终身教育的重要组成部分,是为适应现代医学飞速发展,为技术人员从业后获取新理论、新知识、新技术和新方法所建立的终身教育制度[3]。
1医学影像学现状与发展趋势
经过100多年的发展,放射学发展为诊断和治疗兼备的医学影像学,包括普通X线诊断学、X线计算机体层摄影(computedtomography,CT)、磁共振成像(magneticresonanceimaging,MRI)、数字减影血管造影(digitalsubtractionangiography,DSA)、X线计算机成像(computerradiography,CR)、数字X线成像(digitalradiography,DR)、超声学、发射体层成像(emissioncomputedtomography,ECT)、正电子发射计算机断层扫描(positronemissioncomputedtomography,PET)、单光子发射计算机断层扫描(singlephotonemissioncomputedtomography,SPECT)以及两种影像技术的融合如PET/CT、PET/MRI、SPECT/CT、DSA/CT等一次检查获得多种影像信息的成像技术和介入影像学,包括介入放射学和介入超声学等。传统X线摄片已逐步被CR、DR取代。CT不断更新换代,如螺旋CT(SCT)、多层CT,现已发展到128层CT等。MRI发展趋向于高场强、实时成像、功能MRI(fMRI)、显微结构成像、波谱分析(MRS)以及同质同性抑制技术等。CT、MRI成像速度和分辨率均明显提高,灌注、弥散、仿真技术的应用范围越来越广。超声向超声造影、三维超声成像和介入超声学发展。核医学主流发展方向是分子核医学。
影像学诊断由大体形态学为主的阶段向生理、功能、代谢和分子/基因成像过渡,出现了分子影像学和功能影像学。图像分析由定性向定量发展。诊断模式由胶片采集图像和阅读逐步向数字采像和电子传输方向发展。信息科学的进展,促进了医学影像存档及传输系统(picturearchivingandcommunicationsystem,PACS)和远程放射学(teleradiology)的发展,网络影像学(networkimaging)以及计算机辅助诊断(computeraideddiagnosis,CAD)将成为可能[4]。介入放射学的迅速发展和临床应用,介入治疗及其与内镜、微创治疗、外科的融合发展改变了影像学实践和服务方式,影像诊治手段日益先进,影像诊治水平明显提高,使医学影像学在医疗服务体系中占有更加重要的地位。
东南大学医学影像学学科创建于1935年的国立中央大学医学院附设医院放射科。在70余年的发展过程中,随着科技的进步,紧跟学科发展,经过几代人的艰辛努力,创建了医学影像学科技创新团队,通过学科建设、医学领军人才、承担国家及省部级重大项目和发表高质量学术论文等措施,将“医学影像学与介入放射学”学科建设为江苏省135工程医学重点学科(2001年),放射科建设为江苏省临床重点专科(2002年),“医学影像学科”获准为江苏省医学影像学科质量控制中心(2004年),“影像医学与核医学”创建为江苏省重点学科(2006年)。东南大学医学影像学专业创建于1990年,当年开始培养医学影像学专业五年制本科生。经采用特色专业建设、课程体系改革、精品课程建设、教材建设、课件建设、重点实验室建设和教学名师培养等一系列教学改革措施,现已创建为江苏省普通高校特色专业(2006年)和江苏省高校成人教育特色专业建设点(2007年),分子影像与功能影像实验室获准成为江苏省重点实验室(2007年)。本专业1984年开始招收医学影像学硕士研究生,2003年成为江苏省唯一影像医学与核医学博士研究生学位授予单位。
2医学继续教育的范畴与其在重点学科建设中的重要意义随着科技的发展,尤其是医学影像学正以前所未有的速度发展,新设备、新技术、新方法、新知识和新理论不断涌现,医学知识的更新周期越来越短,社会对从医人员的知识结构和医疗水平要求也越来越高,仅从医学院校教育获得的知识和技能已远远不能适应当前医学工作的要求。在知识经济时代到来的今天,人才培养和学科队伍建设是关键。为了使医学影像学专业医技人员在整个职业生涯中保持高尚的医德医风,不断提高自己的理论知识和工作能力,跟上医学科学发展脚步,为社会提供更好的服务[5],我们在继续医学教育工作方面采取了以下措施:
(1)借鉴医学教育国际标准,即“全球医学教育最基本要求”,结合国情让全体教师和职工树立终身教育、自主学习的理念,即“活到老、学到老”。其特点决定了在高校从事教学、医疗和科研的教师和职工要通过不断的学习来充实自我,把终身学习作为自我提高的一种方式。
(2)配合继续教育学院进行脱产、非脱产形式的成人学历教育,对象涉及本院医护人员与全国成人教育考生。
(3)配合研究生院进行在职职工研究生学历教育,对象涉及本院职工与江苏省乃至全国考生。
(4)与国外著名大学、学术团体保持密切合作,每年不定期邀请国外知名专家来院进行学术讲座和交流2~3次,对象涉及本院相关医护人员和研究生、本科生。
(5)学科学术地位决定了继续医学教育发展的规模和速度。申报和开展国家级继续医学教育项目就要求本学科及学术水平在本专业领域中处于国际或国内领先水平,在同行中具有领先地位,这样才能吸引众多的医技人员来院学习或进修。我们利用“中华医学会实用介入技术推广培训中心”基地,每年认真组织申报并开展继续医学教育项目2次以上,对象涉及本院医技人员和全国需要参加培训的各层次医技人员。在实施继续医学教育工作中,继续医学教育项目的申报和开展是学科学术地位和水平的具体体现,也是展示推广学科成果、宣传自我、扩大影响、构建学科品牌的优势,同时也是提高专业技术人员学术水平的主要体现,其社会效益和经济效益良好。
(6)常年接受国内各单位进修生来院学习、工作,积极鼓励、支持青年教师和职工到国内外著名大学或医院进行短期进修、考察或进一步深造。
(7)切实加强青年教师岗前培训,执行“先培训,后上岗”制度和年轻医师五年住院医师轮转培训制度。科室每月组织一次青年医师读书报告会,以督促年轻人好学、向上。
(8)参加学术会议、撰写学术论文是继续医学教育的重要组成部分。积极鼓励并支持教师参加国际性和中华医学会组织的高质量学术年会或专题学术会议以及省市年会,并制定了《参加学术会议及差旅费使用的规定和的奖励办法》。凡在放射学全国年会上进行大会发言的论文第一作者、在省市年会进行专题讲座或被评为大会优秀论文者,科室承担参加会议的所有费用,包括差旅费、住宿费、会务费和资料费。每年根据北京大学版“医学中文核心期刊要目”,凡在目录内期刊上所发表的论文及SCI上所发表的论文,在单位奖励的基础上,科室根据影响因子再进行不同幅度的奖励,以此鼓励教师、职工多撰写、发表高质量的学术论文。
3加强师资队伍建设,提升学科科研、教学质量人才资源是第一资源,人才规模决定着学科和专业的发展规模,人才结构决定学科和专业的发展层次,人才梯队决定学科和专业的发展后劲,故师资队伍的建设和创新型人才的培养直接影响着学科、专业的发展和教学质量。学科建设中,师资队伍是前提,学科带头人是核心,人才队伍建设是学科建设的根本[6]。承担国家及省部级重大、重点攻关项目,既是学科水平的体现,又是学科进一步发展的契机,同时也是人才培养、梯队建设、国内外学术交流和取得高水平科技成果、确立学术地位的基础[7]。
坚持推进科技创新与培养、聚集创新人才相结合,造就拔尖创新人才与建设科技创新团队相结合。把科技创新作为提高教师创新能力的根本途径和提高人才培养质量的关键环节,将人才资源作为提高学科自主创新能力的最大优势,形成科技创新与教师队伍建设及人才培养密切结合、互相促进的良性机制。多年来,我们本着“用好现有人才,培养青年人才,引进优秀人才,储备未来人才”的原则,把师资队伍建设作为促进学科发展的根本大计来抓,并采取主动培养、积极引进、大胆使用、热情关怀等多种行之有效的措施,全面提高教师队伍的质量。
东南大学医学影像学学科具有一支政治思想素质好,学科力量雄厚,学术造诣较深,结构合理,集教学、科研和医疗为一体的专业队伍。教师队伍职称、学历、年龄结构合理,素质优良,发展趋势好,形成了具有团队意识、创新意识和奉献精神的科技创新团队。35人中正副教授/主任医师18人,博士生导师2人,硕士研究生导师11人,博士10人,硕士22人。近5年在研课题包括国家自然科学基金12项,其中国家自然科学基金重点项目1项,国际合作1项,省部级以上课题20项。获《中华医学科技进步二等奖》等科技成果奖14项;发表科研论文250余篇,其中SCI收录16篇、中华级期刊46篇;出版教材和专著16部,卫生部视听教材2部。东南大学医学影像学专业一贯注重于教学改革的研究,近5年来,主持教学改革课题14项,获教学成果奖15项。其中《面向21世纪医学影像学专业课程体系和教学内容改革的研究》和《创建特色专业,培养医学影像学创新人才》分别于2001年和2005年获江苏省高等教育教学成果一等奖。在国内核心期刊发表教改论文20余篇。
随着信息时代的到来,数字化、标准化、网络化作业已经进入医学影像界,并以奔腾之势迅猛发展,伴随着一些全新的数字化影像技术陆续应用于临床,如CT、MRI、数字减影血管造影(digitalsubtractionangiography,DSA)、正电子体层成像(positiveelectrontomography,PET)、计算机放射摄影(computedradiography,CR)及数字放射摄影(digitalradiography,DR)等,医学影像诊断设备的网络化已逐步成为影像科室的必然发展趋势,同时在客观上要求医学影像诊断报告书写的计算机化、标准化、规范化。医学影像存档与通讯系统(picturearchivingandcommunicationsystems,PACS)和医学影像诊断报告系统应运而生并得到了快速发展,使整个放射科发生着巨大变化,提高了影像学科在临床医学中的地位和作用。
概述
PACS是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的、旨在全面解决医学图像的获取、显示、存贮、传送和管理的综合系统[1-4]。PACS分为医学图像获取、大容量数据存贮、图像显示和处理、数据库管理及用于传输影像的局域或广域网络等5个单元[2,4]。
PACS是一个传输医学图像的计算机网络,协议是信息传送的先决条件。医学数字影像传输(DICOM)标准是第一个广为接受的全球性医学数字成像和通信标准,它利用标准的TCP/IP(transfercontrolprotocol/internetprotocol)网络环境来实现医学影像设备之间直接联网[3]。因此,PACS是数字化医学影像系统的核心构架,DICOM3.0标准则是保证PACS成为全开放式系统的重要的网络标准和协议。
1998年我院放射科与航卫通用电气医疗系统有限公司(GEHangweiMedicalSystems,简称GEHW)合作建成医学影像诊断设备网络系统,它以DICOM服务器为中心服务器,按照DICOM3.0标准将数字化影像设备联网,进行医学数字化影像采集、传输、处理、中心存储和管理。
材料与方法
一、系统环境
(一)硬件配置
1.DICOM服务器:戴尔(Dell)PowerEdge2300服务器(奔腾Ⅱ400MHzCPU,128MB动态内存,9.0GB热插拔SICI硬盘×2,NEC24×SCSICD-ROM,Yamaha6×4×2CD-RW×2,EtherExpressPRO/100+网卡;500W不间断电源(UPS)。
2.数字化医学图像采集设备:螺旋CT:GEHiSpeedCT/i,DICOM3.0接口;磁共振:GESignaHorizonLXMRI,DICOM3.0接口。
3.医学图像显示处理工作站:SunAdvantageWindows(简称AW)2.0,128MB静态内存,20in(1in=2.54cm)彩显,1280×1024显示分辨率,DICOM3.0接口。
4.激光胶片打印机:3M怡敏信(Imation)969HQDualPrinter。
5.医学图像浏览终端:7台,奔腾Ⅱ350~400MHz/奔腾Ⅲ450MHzCPU,64~128MB内存,8MB显存,6GB~8.4GB硬盘,15in~17in显示器,10Mbps以太网(Ethernet)网卡,Ethernet接口。
6.医学影像诊断报告打印服务器:2台图像浏览终端兼作打印服务器。
7.激光打印机:惠普(HP)LASERJET6LGOLD×2。kr~e6w=,N!''''#X_Ow+bafe~nNw法律论文b&mWw;\+?=u(tAvzA€\J?~^v=
8.集线器(HUB):D-LINKDE809TC,10MBPS。
9.传输介质:细缆(THINNET);5类无屏蔽双绞线(UTP);光纤电缆。
10.网络结构:星形总线拓扑(STARBUSTOPOLOGY)结构。
(二)软件
1.操作系统:螺旋CT、MRI、AW工作站:UNIX;DICOM服务器:WINDOWSNT4.0SERVER(英文版);图像浏览及诊断报告书写终端:WINDOWSNT4.0WORKSTATION(中文版)。
2.网络传输协议:标准TCP/IP。
3.网络浏览器:NETSCAPECOMMUNICATOR4.6。
4.数据库管理系统:INTERBASESERVER/CLIENT5.1.1。
5.医学图像浏览及影像诊断报告系统开发软件:BORLANDC++BUILDER4.2。
论文医学影像存档与通讯系统的开发与初步应用来自免费
6.医学图像浏览终端:GEHWADVANTAGEVIEWERSERVER/CLIENT1.01。
7.医学影像诊断报告系统:GEHW医疗诊断报告1.0。
8.刻录机驱动软件:GEAR4.2。
(三)系统结构
螺旋CT、MRI和AW工作站按照DICOM3.0标准通过细缆连接到主干电缆(细缆)上形成总线拓扑结构的DICOM网络;DICOM服务器与各图像浏览及诊断报告书写终端通过双绞线以集线器(HUB)为中心连接成星形拓扑结构的ETHERNET网络;二者再通过集线器连接成星形总线拓扑结构的PACS。螺旋CT、MRI、AW工作站各自通过光纤电缆与激光胶片打印机相连,进行共享打印。本PACS由如下各子系统构成:
CT/I:GEHISPEEDCT/I;AW2.0:SUNADVANTAGEWINDOWS2.0;MRI:GESIGNAHORIZONLXMRI;DICOM:DIGITALIMAGINGANDCOMMUNICATIONSINMEDICINE;ETHERNET网络:以太网络;T-BNC:同轴电缆接插件T型连接器;TERMINATOR:终结器;TRANSCEIVER:收发器;UTP:无屏蔽双绞线;THINNETCOAXIALCABLE:细同轴电缆
1.数字化图像采集子系统:从螺旋CT、MRI等数字化影像设备直接产生和输出高分辨率数字化原始图像至DICOM服务器,供中心存储、打印、浏览及后处理。
2.数字化图像回传子系统:将中心存储的图像数据回传给螺旋CT、MRI等数字影像设备,供打印、对比参考及后处理(三维重建等)。
3.医学图像处理子系统:在AW工作站及各图像浏览及诊断报告书写终端上进行调节窗宽/窗位、单幅/多幅显示、局域/全图放大、定量测量(CT值、距离、角度、面积)、连续播放和各种图像标注等。
4.医学影像诊断报告书写子系统:书写规范、标准的医学影像诊断报告。
5.图像中心存储子系统:图像短期内(5~7天)保存在DICOM服务器的硬盘中,当图像数据累积到一定数量(650MB)时,将其刻录到CD-R(COMPACTDISK-RECORDABLE,刻录盘)盘片上作为长期存储。
二、医学图像浏览及影像诊断报告系统
医学图像浏览及影像诊断报告系统使用的软件包是由航卫通用电气医疗系统有限公司(简称GEHW)提供的ADVANTAGEVIEWERSERVER/CLIENT1.01。该软件以WINDOWSNTSERVER/WORKSTATION4.0为操作平台,分为服务器端和客户端两部分:服务器端软件负责完成医学图像的传输、中心存储、数据库管理等任务;客户端软件具有医学图像浏览和影像诊断报告书写功能。
服务器端软件包括图像浏览、图像管理、光盘数据库和系统设置4个模块。(1)图像浏览模块具有简单的图像浏览功能;(2)图像管理模块包括存储、删除、图像输出等子模块,在这些子模块中通过以患者姓名、年龄、性别、CT号、检查序号、检查类型、检查日期等为关键词在DICOM服务器硬盘、光盘上查询所需图像并进行相关处理;(3)光盘数据库模块储存有每张光盘图像检索信息以备查询;(4)系统设置模块管理各输入输出设备的IP地址等。
医学图像浏览软件具有强大的图像处理功能,可以通过网络从DICOM服务器硬盘、光盘上调阅所需图像,并进行图像浏览和后处理。它包括窗宽窗位、图像、几何、网络、显示格式、连续播放等功能模块:(1)窗宽窗位模块通过预定义、用户自定义及精确设定窗宽窗位,使图像得到最佳显示,另外还可以通过鼠标左键进行调节;(2)图像功能模块可以对图像进行放缩(1~300倍)、滤波、对比度(-100~100)、旋转(0~360°)、三原色(RGB)色彩处理;(3)几何功能模块可以将图像垂直或水平翻转、加网格、负片处理、定量测量(CT值、距离、面积、角度)及标注等。经过后处理的图像可以直接输出至诊断报告系统或以不同文件格式存盘以供制作幻灯片
医学影像诊断报告系统软件镶嵌于医学图像浏览软件内,可以在浏览图像后直接书写诊断报告。医疗诊断报告主窗体上的输入项如姓名、性别、年龄、CT号、检查序号及检查日期可直接从数据库获取,报告日期由系统自动生成,科别、报告模板等项通过下拉菜单选择。检查所见、印象两项可直接从诊断支持库提取正常或常见病、多发病的检查所见、印象,直接或经局部修改后形成诊断报告主体。程序提供了撤消、剪切、复制、粘贴、清除、全选、字体等编辑功能。该软件可输出4种格式的诊断报告,其中可包含1~2幅典型图例。用户可通过1个或多个关键字段检索和调阅诊断报告。
结果
在上述PACS的硬件设备安装、组网完成后,在基础网络连接(TCP/IP)和DICOM水平传输这2个层次上,对PACS进行整体调试,成功地实现了数字化图像在PACS内的传送、中心存储、易机图像处理、不同操作系统(UNIX和WindowsNT)不同格式图像(Adv和Dic)在DICOM3.0标准水平的相互兼容和影像交流,以及PACS内影像诊断报告的书写、共享、打印等功能。1999年初PACS正式用于我科的CT及MRI室,显著提高了科室的工作效率及管理水平。
讨论
数字技术、计算机技术和网络技术的飞速发展带动了医学影像技术的突飞猛进的发展,同时也推动了医生工作模式的变革:要求医生逐渐习惯于在显示器的荧光屏上观看医学图像;通过计算机检索和调阅医学图像,并且调节窗宽窗位;通过计算机网络随时获取所需的医学图像及诊断报告等相关信息。
一、传统的医学图像处理方式存在的问题
(1)保存胶片需要很大的存放空间。(2)在显影、定影、冲洗、烘干、归档等环节上要耗费大量的人力和财力。(3)胶片库手工管理效率低,查询慢且容易把胶片归错档。(4)数年后由于胶片的老化使其上的图像变得模糊不清,给再次查阅和科研工作带来极大的不便。(5)把CT、MRI等图像硬拷贝到胶片上,固定的窗宽、窗位已经丢失了大部分原始信息,保留的只是操作医师认为有用的信息,图像无法后处理,丢失了对病人复诊和其他医师认为是有用的诊断信息。
二、PACS在影像学科中的应用价值
(1)利用PACS网络技术,在CT、MRI等影像科室之间能快速传送图像及相关资料,做到资源共享,方便医师调用、会诊以及进行影像学对比研究,更有利于患者得到最高的诊断治疗效益。(2)PACS采用了大容量可记录光盘(CD-R)存储技术,实现了部分无胶片化,减少了胶片使用量和管理,减少了激光相机和洗片机的磨损,降低了显定影液的消耗,节省了胶片存放所需的空间,降低了经营成本。(3)避免了照片的借调手续和照片的丢失与错放,完善了医学图像资料的管理,提高了工作效率。(4)可在不同地方同时调阅不同时期和不同成像手段的多幅图像,并可进行图像的再处理,以便于对照和比较,为从事医学影像学工作的医务人员和科研人员提供方便的工作、科研和学习的条件。(5)有利于计算机辅助教学,进一步提高教学质量。运用PACS可无损失地储存图像资料,待日后调阅发现有价值且符合教学内容要求的图像,标上中英文注释,利用PowerPoint软件制作成教学幻灯片,采用大屏幕多媒体投影仪示教。
规范的医学影像诊断报告书写功能,可打印出图文并茂的影像诊断报告。
三、诊断报告规范化、计算机化
(1)基本项目要求规范化。诊断报告中反映病情的一般项目齐全,备查项目比较完整。(2)报告的专业术语规范化。内容表述清楚,主次分明,先描述阳性征象,后描述阴性征象,先描述主要病变,后描述次要病变,描述部分与结论一致。(3)基本格式规范化。先一般项目,再描述图像情况,然后作结论表述,最后还有做其他进一步检查的建议。
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料色彩模式转换DCT转换量化器编码器编码结束
三、编码的基本要素有三点
(一)一种压缩/还原的转换可表现在影像上的。
(二)其转换的系数是可以量化的。
(三)其量化的系数是可以用函数编码的。
四、现有WAVELET影像压缩工具主要的部份
(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。
(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种本论文由整理提供
为内插。
(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。
(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、WAVELET影像压缩未来的发展趋势
一、在其结构上加强完备性。
二、修改程式,使其可以处理不同模式比率的影像。
三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、加强运算的能力,使其可支援更多的影像格式。
五、使用WAVELET转换藉由消除高频率资料增加速率。
六、增加多种的WAVELET。如:离散、零元树等。
七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。
八、增加8X8格的DCT模式,使其能做JPEG的压缩。
九、增加8X8格的DCT模式,使其能重叠。
十、增加trelliscoding。
十一、增加零元树。
现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。
伍、影像压缩研究的方向
1.输入装置如何捕捉真实的影像而将其数位化。
2.如何将数位化的影像资料转换成利於编码的资料型态。
3.如何控制解码影像的品质。
4.如何选择适当的编码法。
5.人的视觉系统对影像的反应机制。
小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。
陆、在印刷输出的应用
WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。
有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。
在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。
柒、结论
WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。
参考文献:
1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。
2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。
3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。
4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。
5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。
6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。
7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。
附录:
嵌入式零元树小波转换、阶层式嵌入式零元树小波转换、阶层式影像传送及渐进式影像传送
目前网路最常用的静态影像压缩模式为JPEG格式或是GIF格式等。但是利用这些格式编码完成的影像,其资料量是不变的,其接受端必须完整地接受所有的资料量後才可以显示出编码端所传送的完整影像。这个现象最常发生在利用网路连结WWW网站时,我们常常都是先接收到文字後,其网页上的图形才,慢慢的一小部份一小部份显示出来,有时网路严重塞车,图形只显示一点点後就要再等非常久的时间才再有一点点显示出来,甚至可能断线了,使得使用者完全不知道在接收什麽图案的图形,无形中造成网路资源的浪费。此缺点之改善,可以使用嵌入式零元树小波转换(EZW)来完成。
阶层式影像传送系统的主要功能为允许不同规格之显示装置或解码器可以从同一编码器中获得符合其要求之讯号,如此不需要对於不同的解码器设计不同的编码器配合利用之,进而增加了其应用的范围,及减低了所架设系统的复杂度,也可以节省更多的设备费用。利用Shapiro所提出的嵌入式零元树小波转换(EZW)技术来设计阶层式影像传送系统时,其编码的效果不是很好。主要的原因是,利用(EZW)技术所设计的编码器是根据影像的全解析度来加以编码的,这使得拥有不同解析度与码率要求的解码器,无法同时分享由编码器所送出来的位元流。虽然可以利用同时播放(Simulcast)技术来加以克服之,但是该技术对於同一影像以不同解析度独立编码时,将使得共同的低通次频带(LowpassSubband)被重复的编码与传送,而产生了相当高的累赘(Redundancy)。
基於上述情况,有人将嵌入式零元树小波转换(EZW)技术加以修改之,完成了一个新式的阶层式影像传送系统。该技术为阶层式嵌入的零元树小波转换(LayeredEmbeddedZerotreeWavelet,简称LEZW技术。这个技术本论文由整理提供
使我们所设计出来的阶层式影像传送系统,可以在编码传送前预先指定图层数目、每层影像的解析度与码率。
LEZW技术是将EZW技术中的连续近似量化(SAQ)加以延伸应用之,而EZW传统的做法是将SAQ应用於全部的小波转换系数上。然而在LEZW技术中,从基层(BaseLayer)开始SAQ一次仅用於一个图层(Layer)的编码,直到最高阶析度的图层为止。当编码的那一图层码率利用完时,即表示该图层编码完毕可以再往下一图层编码之。为了改善LEZW的效率,在较低图层的SAQ结果应用於较高图层的SAQ过程中,基於这种编码的程序,LEZW演算法则可以在每一图层平均码率的限制下,重建出不同解析度的影像。因此,LEZW非常适合用於设计阶层式影像传送系统。
LEZW技术也可以应用於渐进式传送,对於一个渐进式影像传送系统而言,控制其解析度将可以改善重建影像的视觉品质。而常用的渐进式传送方法有使用向量量化器或零元树资料结构编码演算法则。但是向量量化器需要较大的记忆体及对与传送中的错误敏威,而利用EZW技术所设计的渐进式影像传送系统,可以改善这些缺点,所以享有较好的效能。但是它也有缺点就是,应用於渐进式传送时是根据全解析度来做编码及传送,因此在低码率的限制之下时,若用全解析度来显示影像将使得影像模糊不清。所以在低码率传送时的影像以较低的解析度来显示时,则可以使影像的清晰度有所改善。
所以将LEZW技术延伸至渐进式传送,在编码之前可以先设定每一级(Stage)的解析度与传送每一级所累加的码率(AccumulatedRate),然後再编码与传送之。该系统在低码率时用低解析度来显示影像,在较高码率时则以高解析度来显示影像,将改善渐进式传送的视觉品质。此系统在编码传送的过程中,允许传送的位元流在任一点位置被中断停止,而接收端可以由所接收到的资料,将影像重建在资料中断时的解析度下。
渐进式影像传送与阶层式影像传送的设计方法是相似的,只不过在传送方法上两者有相当大的不同。在阶层式影像传送系统中,所有图层的资料是平行的一起传送出去的。而渐进式影像传送则是以级对级(Stage-by-Stage)的方式传送的。因此,利用LEZW技术所设计的渐进式传送可看做是单一图层(Single-Layer)系统,其解析度与传送都是可以控制的。如此网路资源的浪费,便可得到某种程度上的解决。
1设备与方法。
1.1设备:DR。
1.2方法:许氏位(Schuller′s位),首先把球管向足侧倾斜35°,中心线对好平板探测器的中心,然后在中心点作一小标记,如用一黑水笔画上一点,并以此点为固定点。画好固定点后让患者俯卧位,把所需拍摄的一侧乳突置于固定点上(初学者可以摸住外耳廓后方稍凸出处即乳突尖部)耳廓前折去除伪影。然后再使患者的正中矢状面平行于床面,瞳间线垂直于床面,摆放成标准头颅侧位姿势。尽量缩小拍摄视野,使图像更为清晰。
梅氏位(Manger′s位):方法同上,首先把球管向足侧倾斜45°,把乳突固定在固定点上,让患者仰卧位,两臂放于身旁,被检侧耳廓前折,头部正中矢状面向被检侧倾斜45°,听呲线垂直于床面。尽量缩小拍摄视野。
2结果。
均能很清晰地显示内外耳、乳突小房与乳突窦、迷路区、乙状窦、颈动脉窦、下颌关节等部位。
3讨论。
乳突是中耳的一个感觉器,天下论文外观呈乳样突出,整体上如一个类圆锥体,可分为乳突尖部、乳突峡、部乳突基底部,乳突内部为乳突小房和乳突窦。由于X线片只能平面显示,所以只有特殊位能更好地显示。因为球管打了角度以后中心线与床面成一角度,中心线呈斜线照入,头颅有一定厚度,射线到达近球管一侧头颅和到达近床面一侧头颅的体表位置不一,需要估计中心线对外耳孔外几厘米,造成初学者的困惑和操作难度。数字化摄影是平板探测器将X线信息转换成电信号再行数字化,整个转换过程都在平板探测器内完成。没有暗盒或IP板,只能通过调整患者和球管来达到拍摄要求。我们通过使用固定点,可以很准确地使乳突中心置于拍摄中心。不用去考虑斜线造成的影响。
直接数字化摄影出图快,不需要反复更换影像板,可减少技术人员的劳动强度、缩短摄影时间,提高了影像科的工作效率。数字化摄影可以即时获得图像,若摄影时图像不正确或达不到诊断目的,可以及时进行修正,避免了患者反复来影像科重拍的过程,大大提高了影像科的整体形象。
DR摄影机是数字化摄影技术,具有后处理功能,借助计算机监视器,结合临床需要,既可对图像显示各部位情况细致观察,也可对图像进行对比度、亮度调节,边缘增强、黑白反转、三维影像、局部放大以及伪彩色复制、存盘等。图像可以复制、存盘、远程传送,为临床诊断、治疗、教学和科研提供了极大方便。
参考文献
1王月程,章富利。CRDR两种数字化X线技术影像质量与成像剂量的比较。中华放射医学与防护,2005,25(1):91.
北大一院医学影像科在三维后处理的应用方面多有实践,尤其在前列腺癌的MRI三维成像、肝脏肿瘤的CT三维重建等方面积累很多经验,在《中华放射学杂志》、《中国医学影像技术》和《中国肿瘤影像学》等杂志上发表相关论文多篇。
王霄英是北京大学第一医院医学影像科主任、北京大学前沿交叉学科研究院功能成像中心主任、中华医学会中华放射学分会青年委员、《中国医学影像技术杂志》副主编。自1998年至今,已先后发表署名科学论文150余篇,承担多项国家级和部委级研究基金。
8月16日,《e医疗》就北大一院的医学影像三维实践、医学影像科与临床科室的关系、三维影像今后的发展趋势等问题,对王霄英进行了专访。
前列腺癌和肝癌的三维应用较多
| 贵院的三维影像应用有哪些?
王霄英:我们做前列腺癌辅助诊断挺多的,医院有国内最大的前列腺癌数据库,甚至可以做到把某个地方发生前列腺癌的概率标志在腺体的三维图像上,这对外科医生引导穿刺特别有帮助。
我们医院的泌尿外科比较有特点,在临床外科里实力比较强,他们要求每个肾癌病例都要进行三维重建,有一整套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等。
另外,应用较多的还有普外科,他们经常需要影像科配合做肝脏的三维重建。我们医院在进行较大的肝脏肿瘤切除之前,都会要求根据CT断层图像做一个三维重建,以选择切除不同的肝段及血管,我觉得这个也蛮有特色的。
| 临床科室如何查看医学影像科的影像?可以实现三维影像传输吗?
王霄英: 二维图像是通过PACS查看的。我们医院有两套服务器,一套是医学影像科自己用的,能力比较强一些,存储量也比较大;另一套是用于临床浏览的服务器,存储三个月内所有的临床图像,临床医生有查看自己科室所有患者影像资料的权限。
具体到三维图像,最早是临床医生到我们科室来看,后来他们要求我们做好了传给他们,但是我们现在用的机器只能存储二维影像,所以传输的还只是静态的二维图像,暂时没办法实现三维影像的传输,虽然临床医生很希望我们能这么做,但是他们会定义几个标准位置给我们,我们会跟临床科室沟通,告诉他们冠状位怎么看,轴位怎么看等。
三维影像改变医疗服务模式
| 三维影像能带来什么好处?
王霄英:三维重建给外科大夫带来的益处显而易见,他们关心病变组织能不能切除、怎么切除,三维重建就是告诉他们这些的。
我们医院的呼吸内科开展了一项新业务:用呼吸内镜把肺气肿的病变部分进行切除,切除之后剩余的肺就可以有更大的空间进行收缩,这样患者的肺功能会保持得很好。这个手术非常依赖CT三维重建,以确定病变区域的支气管以及与周围血管和组织的关系。进行这种手术前,呼吸内科主任往往会亲自到我们科室来,对如何重建三维图像提出要求。由于有了三维重建,呼吸内科的医生开始用外科方法进行治疗,这可以说是开拓了一个全新的领域。
此外,三维影像也给患者带来了很大的好处。有了三维影像,患者和家属可以更直观地了解病情,医生省去了很多解释工作。而且,对医生更信服的患者的依从性会大大提升,会积极配合医生的治疗,治疗效果自然也会更好。
我觉得,三维影像后处理会改变整个医疗服务的模式和理念。
MDT已成常态机制
| 贵院是否有多学科团队机制(MDT)?
王霄英:在接受你采访之前,我和泌尿科主任、放疗科主任在给一个前列腺癌患者做会诊,实际上这就是一个多学科团队。我们科参与更多的是跟随临床科室一起查房,有时也会安排某个具体疑难疾病的会诊。医学影像科在其中所起的作用跟疾病有关,有时候我们主要是去学习、交流,学习临床医生怎样更好地处理影像报告;有时候医学影像科的角色会非常重要,如果医学影像科医生不参加会议,临床医生甚至无法进行讨论。
我要求我们科的每一位医生必须给自己定一个方向。影像科医生在跟所配合的临床科室沟通的时候要带着两个任务:一是要向他们提供医疗影像服务,二是带回临床科室的需求。然后我们会根据临床需求进行不断的学习和改进。这种做法很早就开始了,现在科室更加明确了这项工作内容。
| MDT给医学影像科带来了哪些改变?
王霄英:医学影像科以前是按设备分组,而按专业分组才是国际趋势。我们科室是从2009年7月开始进行专业分组的,大家对自己专业方向的定位开始逐渐清晰起来,让深入研究业务、提高业务水平成为可能。
信息共享是大势所趋
| 医学影像科能为临床科室提供什么?两者理想中的合作关系应该是怎样的?
王霄英:今年5月份我去美国参加ISCT年会的时候,斯坦福大学医院的一名医生在演讲中举了一个例子:医院的临床医生根据一张CT片子和诊断报告(影像和报告的质量都很高)做了一个处理的决定,而经过由医学影像科医生参加的多学科团队(MDT)讨论后,50%的临床医生改变了治疗方案。虽然是同一张片子、同一份报告,为什么在讨论前后的结果如此大相径庭?事实上,很多信息并没有在诊断报告里写出来,临床医生也没有从影像中看出来,而这些信息往往会对治疗方案的制定产生很大影响。
医学影像科和临床科室的密切配合无疑会提升诊疗准确率,不仅能提升医生的技术水平,更能让患者直接受益。
医学影像科的医生应该更紧密地与临床医生进行合作,但是医学影像科医生的理念目前可能是一个比较大的阻力,因为并不是所有的医学影像科医生都愿意把影像资料拿出来与大家分享。医学影像科医生的核心竞争力应该是诊断水平而不是影像资料,分享之后必然会得到临床医生的积极反馈,这对提升医学影像科医生自身的水平肯定也是有帮助的。只要医学影像科医生意识到这一点,就一定会把影像资料拿出来分享,这是一个趋势,只是时间早晚的问题。
PACS应附加更多功能
| 贵科在信息化方面今后有什么要提升的部分?
王霄英:如果没有PACS,很难实现真正意义上的专业分组。分别用临床浏览器和我们自己科室的PACS查看影像,明显能感到后者更强大。我觉得基于PACS或者网络的后处理工作站特别重要,对提高专业特别有帮助。
此外,我们的PACS只有最基本的3D能力,医学影像科高级工作站的很多功能,比如功能成像等都没办法在PACS上实现,临床浏览自然就无法看到。如果要看的话,必须先在CT、MR的后处理工作站上处理完再推到PACS上去,而处理得好不好完全取决于当时的操作人员(通常是研究生)的能力。
有时候前列腺里明明有一个肿瘤病灶,如果操作人员在做DWI(磁共振扩散加权成像)的时候没看到,就得不到肿瘤的功能成像。而如果基于PACS或网络的处理能力足够强的话,签报告的医生就可以重新做一次后处理,就会避免很多错误诊断的出现。
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。
WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料色彩模式转换DCT转换量化器编码器编码结束
三、编码的基本要素有三点
(一)一种压缩/还原的转换可表现在影像上的。
(二)其转换的系数是可以量化的。
(三)其量化的系数是可以用函数编码的。
四、现有WAVELET影像压缩工具主要的部份
(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。
(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。
(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。
(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、WAVELET影像压缩未来的发展趋势
一、在其结构上加强完备性。
二、修改程式,使其可以处理不同模式比率的影像。
三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、加强运算的能力,使其可支援更多的影像格式。
五、使用WAVELET转换藉由消除高频率资料增加速率。
六、增加多种的WAVELET。如:离散、零元树等。
七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。
八、增加8X8格的DCT模式,使其能做JPEG的压缩。
九、增加8X8格的DCT模式,使其能重叠。
十、增加trelliscoding。
十一、增加零元树。
现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。
伍、影像压缩研究的方向
1.输入装置如何捕捉真实的影像而将其数位化。
2.如何将数位化的影像资料转换成利於编码的资料型态。
3.如何控制解码影像的品质。
4.如何选择适当的编码法。
5.人的视觉系统对影像的反应机制。
小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。
陆、在印刷输出的应用
WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。
有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。
在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。
图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。
柒、结论
WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。
参考文献:
1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。
2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。
3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。
4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。
5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。
6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。
7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。
附录:
嵌入式零元树小波转换、阶层式嵌入式零元树小波转换、阶层式影像传送及渐进式影像传送
目前网路最常用的静态影像压缩模式为JPEG格式或是GIF格式等。但是利用这些格式编码完成的影像,其资料量是不变的,其接受端必须完整地接受所有的资料量後才可以显示出编码端所传送的完整影像。这个现象最常发生在利用网路连结WWW网站时,我们常常都是先接收到文字後,其网页上的图形才,慢慢的一小部份一小部份显示出来,有时网路严重塞车,图形只显示一点点後就要再等非常久的时间才再有一点点显示出来,甚至可能断线了,使得使用者完全不知道在接收什麽图案的图形,无形中造成网路资源的浪费。此缺点之改善,可以使用嵌入式零元树小波转换(EZW)来完成。
阶层式影像传送系统的主要功能为允许不同规格之显示装置或解码器可以从同一编码器中获得符合其要求之讯号,如此不需要对於不同的解码器设计不同的编码器配合利用之,进而增加了其应用的范围,及减低了所架设系统的复杂度,也可以节省更多的设备费用。利用Shapiro所提出的嵌入式零元树小波转换(EZW)技术来设计阶层式影像传送系统时,其编码的效果不是很好。主要的原因是,利用(EZW)技术所设计的编码器是根据影像的全解析度来加以编码的,这使得拥有不同解析度与码率要求的解码器,无法同时分享由编码器所送出来的位元流。虽然可以利用同时播放(Simulcast)技术来加以克服之,但是该技术对於同一影像以不同解析度独立编码时,将使得共同的低通次频带(LowpassSubband)被重复的编码与传送,而产生了相当高的累赘(Redundancy)。
基於上述情况,有人将嵌入式零元树小波转换(EZW)技术加以修改之,完成了一个新式的阶层式影像传送系统。该技术为阶层式嵌入的零元树小波转换(LayeredEmbeddedZerotreeWavelet,简称LEZW技术。这个技术使我们所设计出来的阶层式影像传送系统,可以在编码传送前预先指定图层数目、每层影像的解析度与码率。
LEZW技术是将EZW技术中的连续近似量化(SAQ)加以延伸应用之,而EZW传统的做法是将SAQ应用於全部的小波转换系数上。然而在LEZW技术中,从基层(BaseLayer)开始SAQ一次仅用於一个图层(Layer)的编码,直到最高阶析度的图层为止。当编码的那一图层码率利用完时,即表示该图层编码完毕可以再往下一图层编码之。为了改善LEZW的效率,在较低图层的SAQ结果应用於较高图层的SAQ过程中,基於这种编码的程序,LEZW演算法则可以在每一图层平均码率的限制下,重建出不同解析度的影像。因此,LEZW非常适合用於设计阶层式影像传送系统。
LEZW技术也可以应用於渐进式传送,对於一个渐进式影像传送系统而言,控制其解析度将可以改善重建影像的视觉品质。而常用的渐进式传送方法有使用向量量化器或零元树资料结构编码演算法则。但是向量量化器需要较大的记忆体及对与传送中的错误敏威,而利用EZW技术所设计的渐进式影像传送系统,可以改善这些缺点,所以享有较好的效能。但是它也有缺点就是,应用於渐进式传送时是根据全解析度来做编码及传送,因此在低码率的限制之下时,若用全解析度来显示影像将使得影像模糊不清。所以在低码率传送时的影像以较低的解析度来显示时,则可以使影像的清晰度有所改善。
【关键字】工程测量测绘新技术应用探讨
中图分类号:[P258] 文献标识码:A 文章编号:
一、工程测量重要性
工程测量是建筑工程、水利工程、路桥工程施工的基础提_工程施工管理的指引。测量工作是一项专业性强,需多人配合才能完成的工作,往往—个环节的失误就会影响整个工程施工进度。目前我国建筑工程施工企业已经充分i^识到了工程测量的重要性曲于工程测量、放线等工作造成烂尾楼的情况已很少见到。杜绝工程测量工作失民不仅仅需要在管理上加强控制与管理,还需要应用先进的测量技术,将误差将至最小,保障工程施工的正常进行。城市建筑工程测量由于地形情况较好便于测量工作的进行不能充分体现新技术应用带来的效果。对于公路、铁路、水利等工程测量环境艰苦、地形复杂、测量放线工作困难的工程中测量新技术的优势才能够真正体现。影像提取技术、GPS技术等测量新技术的应用已经得到一线测量人员的一致好评,加快测量新技术推广、加快测量工作设备投入对于工程质量的保障有着重要的影响。
二、工程测量中所应用得测绘新技术
1、工程测量中的全球卫星定位技术(GPS)
GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,GPS用户设备由GPS接收机、数据处理软件及其终端设备等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理。设备运行后系统会自动生成一个观测文件(观测文件必须进行妥善保管以便日后的查询以及日后数据测算使用),再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标,最终计算出准确的测量数据。GPS测量技术不适用于短边测量,在必须使用时要谨慎观测,并通过多次测量确保测量的精准度。RTK(Real Time Kinematics,实时动态)技术是在GPS基础上发展起来的、能够实时提供流动站在指定坐标系中的三维定位结果,并在一定范围内达到厘米级精度的一种新的GPs定位测量方式,是GPS应用的重大里程碑。RTK测量是将1台GPS接收机安装在已知点上对GPS卫星进行观测,将采集的载波相位观测量调制到基准站电台的载波上,再通过基准站电台发射出去;流动站在对GPS卫星进行观测并采集载波相位观测量的同时,也接收由基准站电台发射的信号,经解调得到基准站的载波相位观测量;流动站的GPS接收机再利用0TF(运动中求解整周模糊度)技术由基准站的载波相位观测量和流动站的载波相位观测量来求解整周模糊度,最后求出厘米级精度流动站的位置。RTK测量可以不布设各级控制点,仅依据一定数量的基准控制点,便可以高精度、快速地测定图根控制点、界址点、地形点、地物点的坐标,利用测图软件可以在野外一次生成电子地图。同时,也可以根据已有的数据成果快速的进行施工放样。因此,RTK被广泛应用于图根控制测量,地籍、房地产测绘、数字化测图及施工放样等各种工作中。
2、工程测量中地理信息技术(GIS)的应用分析
GIS 是地理信息系统(Geographic Information System)的简称,指的是在计算机的软硬件条件支持的情况下,对具有空间内涵的地理信息,按照空间分布以一定的格式输入、存贮、查询、分析、更新、图形编辑、数据库管理、显示与输出和数据综合分析的计算机技术系统。它是集计算机科学、空间科学信息科学、测绘遥感科学、环境科学和管理科学等学科为一体
的新兴学科,目前,GIS 已经成为多学科集成并且应用于各领域的基础平台和地学空间信息显示的基本手段和工具。它的技术优势不仅仅在于它的集地理数据的采集、存储、管理、分析、三维可视化显示与成果输出于一体的数据流程,还在于它的空间提示、预测预报和辅助决策功能。如今,GIS 不仅发展成为一门较为成熟的技术科学,而且已经成为一门新兴的产业,在测绘、农林水利、气象海洋、城市规划土地管理、环境监测、区域开发与国防建设等领域的作用越来越重要。
让我们以城市的地下管线信息系统的建立为例,地理信息系统能把地形图作为基础图形数据,然后叠加地下和地面的类管线,这管线包括上水、通讯、电力、燃气、工程管线、污水,还有测量控制网和规划路等多种基础的测绘信息,在上述基础上,形成一个测绘数据的信息系统,从而实现对城市地下管线的现代化的信息管理。
3、摄影测量技术在城市规划工程测量中的应用
摄影测量测绘技术是通过摄影方式来获取目标物体的基本信息,目前已发展到数字摄影测绘阶。摄影测量利用计算机技术和影像处理对影像进行测绘,将大量外业测量转移到室内,速度快且精度高。在人口密集区,应用该测绘技术可高效率大面积的成图,而数字摄影测绘技术,可以对城市大比例尺地形图的测绘和更新,为城市规划、城市建筑工程提供南图。
4、工程测量中的数字化技术
(1)地图数字化技术
在建立各种GIS系统时.对原有地图进行数字化处理,在建库工作中占据了相当大的工作量.各工程测绘部门都投入相当大的人力和财力。对于已有纸制地图,若其现势性、精度和比例尺能满足要求,就可以利用数字化仪将其输入计算机,经编辑、修补后生成相应的数字地图。当前有手扶跟踪数字化和扫描矢量化两大类仪器。针对大比例尺地形图.大多数扫描矢量化软件能自动提取多边形信息,高效、便捷、保真的对地图进行数字化处理。
2、数字化成图手段
大比例尺地形图和工程图的测绘是传统工程测量的重要内容.常规的成图方法野外工作量大,作业艰苦,作业程序复杂,同时还有繁琐的内业数据处理和绘图工作。成图周期长,产品单一,难以适应社会飞速发展的需要。而数字化成图技术具有精度高、劳动强度小、更新方便、便于保存管理及应用、易于等特点。目前。数字化成图技术有内外业一体化和电子平板两种模式。内外业一体化是一种外业数据采集方法,主要设备是全站仪、电子手簿等,其特点是精度高、内外业分工明确、便于人员分配,从而具有较高的成图效率。
三、工程测量的应用分析及展望
当前,经济的发展带动测绘技术的快速发展,现代工程测量技术正在向着内外业一体化、数据获取及处理自动化、测量过程控制及系统智能化、测量成果数字化、测量信息管理可视化、测量信息共享数据库和传播网络化的方向发展。测绘技术的快速更新也要求我国有关部分和企业加强测量人员的培养,使有关人才及时了解新的测量技术,使工程测量顺利进行。其主要目的是围绕提高测量工作效率、提高测量数据精准度进行,为工程施工指明方向、打下基础。这就要求我国工程测量企业、施工企业加强测量才培养,通过对测量人才的不断培养与培训使其能够了解了新的测量技术,又保障工程测量的顺利进行。另外还要加大在工程测量方面的投资,通过加大投资加快新测量技术及设备的应用,促进测量工作的精确、可靠、快速、简便、连续、动态、遥测、实时开展。
【参考文献】
[1]李力 测绘新技术在工程测量中的应用[期刊论文]-中国新技术新产品2010(9)
[2]马琳.魏志寰浅谈测绘技术在工程测量中的应用[期刊论文]-中国科技纵横2010(17)
[3]潘贤通 浅谈测绘新技术及其在工程测量中的应用[期刊论文]-科技致富向导2010(19)
[4]阿帕尔沙塔尔 浅析在工程测量中测绘新技术的应用与研究[期刊论文]-管理学家2011(2)
论文摘要: 对教师综合素质的培养、教学方法、教学设备的建设及教学效果的评价方法等四个方面进行探讨,以提高断层解剖学实验教学的教学质量。
随着医学影像学的进展,影像设备越来越先进,影像诊断学要求医学生必须具备扎实的人体断层解剖学知识,从而使断层解剖学成为医学生继系统解剖学和局部解剖学后的又一门人体解剖学课程。我校于2001年对影像学专业开设了断层解剖学课程,并不断的开展教学改革和科研的工作,以求进一步提高教学质量。以下就自己多年的教学实践,结合其他院校的教学经验,对断层解剖学实验教学提出几点体会,供同行参考。
一、教师综合素质的培养
1.教师应有丰富的解剖学知识
断层解剖学是研究人体各种方位断面上器官和结构的形态、大小、位置和毗邻关系的形态科学。教师不仅要具备丰富的系统解剖学和局部解剖学的知识,同时对每个断层的器官结构位置毗邻关系以及各个断层间的变化都应了如指掌。因此,我们先后选送中青年教师全脱产到山东大学医学院及其举办的断层解剖学学习班学习,以丰富教师的解剖学知识。
2.教师应有熟练的操作技能
断层解剖学实验教学必须有足够的标本让学生观察,所以教师应该具备熟练的标本的制作技术,如分离脑、肺、肝等主要器官的断层标本制作技术。熟悉断层标本在制作过程中会出现的磨损情况,标本的变异情况等,有利于教师在教学过程中给学生指明。
3.教师必须具备相关的临床知识
一个合格的断层解剖学教师,不仅要知道解剖学知识,教授尸体断层解剖知识,更应该了解相关的影像学知识,包括各种影像技术的成像原理、特点及进展,能熟练讲授DSA、CT解剖、MRI解剖和ECT解剖的器官结构。因此,我们进医院影像科学习正常CT解剖、MRI解剖和ECT解剖,同时了解各种常见病和多发病的影像诊断。讲授时能使基础和临床相结合,有利于激发学生的学习兴趣,有效的提高了教学质量。
二、教学手段和教学方法
建立以疑难问题为中心,学生自行观察在体器官、断层标本、亲手切制离体器官断层标本,并对照CT、MRI图像学习的实验教学模式。[1] 这种方法能激发学生学习兴趣和求知欲望,锻炼他们独立思考和动手能力,有效的提高了教学质量。
1.设立“疑难问题”,做好课前预习准备
在实验前给学生出几道能概括实验内容的问题,让他们围绕这些问题做好课前预习。学生通过寻求问题答案的过程中激发了学习的兴趣,学会了自学的方法,树立了自学的信心,提高了学生的思维能力。
2.培养学生的“整体-断层-整体”断层解剖思维
实验课要让学生观察在体标本,反复在大体上模拟做断层,再结合断层标本让其知道断层标本上结构什么时候出现,为什么会出现;最后亲手切制离体器官断层标本进行比对。让学生明白学习断层解剖学不能光知道一个器官的整体,也不能光从断层到断层,而应该让学生建立起“整体-断层-整体”断层解剖思维。
3.断层标本与影像图象相结合的教学方法
在断层解剖教学过程中,实物标本的观察和临床CT及MRI图像的观察是重要的内容。临床CT及MRI图像的观察的激发了学生学习的兴趣。学生通过“整体-断层-整体”断层解剖思维,观察每个器官的立体结构及平面结构,再通过CT及MRI图像一一进行比对。这样从大体标本到断层标本,从断层标本到CT及MRI图像,反复进行观察。从而达到记忆CT及MRI图像及断层标本上的器官组织的形态结构,提高学习的效率,为学习影象诊断学打下扎实的基础。
三、实验条件和教学设备
1.模型、挂图、标本及CT、MRI图片
实验室内必须具备足够数量及较高质量的教学标本,这是完成一次实验教学最基本的条件。我们根据教学计划提供和断层解剖学相关的局部解剖标本和盒装的系统化的断层标本及临床正常的CT、MRI图片。同时准备相当数量的模型和挂图,因为有些结构不能在标本上直接观察,必须借助模型或挂图来显示。
2.标本陈列室
标本陈列室是解剖学科乃至一所学校的窗口,陈列的标本是解剖教学中必不可少的一个环节。我们建立了大体(系统解剖、局部解剖)陈列室和断层解剖陈列室两间。尤其在断层陈列室内陈列四套全身各个部位的横断层、冠状断层及矢状断层的标本,在每个标本旁边摆放该标本拍照放大过的教学照片(35cm*40cm),并对照片上的结构进行标注。学生可以充分的利用这一教学资源,培养学生的自学能力,大大的增加学生获取知识的途径。
四、教学效果及评价
为了检验实验教学效果,我们对学生的动手能力和对知识的综合应用能力进行考核,力争做到公正、合理,具体形式包括以下几个方面:①操作能力:观察学生平时实际动手操作能力,如脑、肺、肝脏的离体器官的断层标本的制作。②实验报告:我们要求学生把上课观察到的主要的断层结构进行绘画。通过绘画有助于对结构的毗邻关系加深记忆。③标本考试:标本考试是解剖学教学过程中一个不可缺少的重要环节,是检验实验教学效果的必要手段和客观依据。通过标本考试能调动学生观察标本的积极性,对断层解剖实验教学质量的提高起着促进的作用。