发布时间:2023-04-01 10:11:28
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的建筑结构设计论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
某办公建筑平面呈长方形,长为156m,宽为29m,地上五层,局部六层,总建筑面积21511m2。建筑内部空间主要为大空间的办公区域,因为需要营造绿色生态的办公环境,整栋建筑物内有大量的绿化面积,并且分布在不同楼层。首层入口处有8根“7字形”装饰柱,柱子高度为五层楼高,支承在五层的一根30m跨的横梁上;另外有一个高出屋面约25m,平面呈正方形的拔风塔,塔中央有一根准800直径的圆柱。
2结构选型
国家规范《绿色建筑评价标准》和《广东省绿色建筑评价标准》中均给出在保证安全、耐久的前提下,采用资源消耗低和环境影响小的建筑结构体系的要求,规范指出符合要求的结构体系主要包括轻钢结构体系、砌体结构体系和木结构体系。因此该工程在方案阶段确定结构体系时,根据建筑使用功能要求,进行了多方案的比较:方案1:木结构体系。工程所在地区不是木材出产地,需要从外地运进木材,这样规模的商务办公楼,如果采用了木结构,一方面会消耗大量的森林资源,另一方面,单纯的木结构也不能完全满足建筑的使用功能要求。这个方案不可取。方案2:砌体结构体系。工程所在地区属于抗震设防烈度7度区,该结构体系对于纵横墙间的距离是有要求的不能太大,同时墙体的开窗面积是有限定的。这样就很难满足现在建筑的功能要求,而且这种体系的抗震性能较差,因此不采用该方案。方案3:钢框架与钢筋混凝土组合楼盖结构体系。根据过往的设计经验,在多层建筑中采用框架结构既能很好满足建筑功能要求,又对抗震设防方面有利,同时又是合理、适用的体系。采用钢结构可以减少对周边的环境影响,满足绿色建筑的要求。但是这个方案又存在一个问题:因为存在大量的绿化面积,给钢结构防水措施提出了更高的要求,在这方面的材料消耗相应增多;也会增加使用阶段的维护成本,不符合规范在建筑全寿命周期内,最大限度地节约资源的要点,该方案不是绿色建筑最佳的结构方案,因此也未被采用。方案4:钢筋混凝土框架与部分钢结构组合体系。该方案是在方案3的基础上把钢框架改为钢筋混凝土框架结构,保留部分结构采用钢结构。对照规范的内容综合各方面的因素,因地制宜,进行多方案比较,确定符合规范要求的结构体系,达到经济、合理、适用、节约资源的目标,并且根据工程实际情况,尽可能采用可再利用的建筑材料。通过方案比选,本工程选用方案4:钢筋混凝土框架与部分钢结构组合体系。
3结构设计要点
①入口处的8根“7字形”装饰柱以及其连接的横梁,8根柱子建筑要求外观尺寸为700×1300,有16m高,横梁跨度为30m,建筑外观尺寸要求为800×1500,结构设计上构件采用钢结构,一方面构件自重轻,可以减小地震作用,另一方面在处理横梁与框架柱的连接节点上也变得容易。在工程成本上,采用钢结构较现浇钢筋混凝土结构,能够节省人工、外脚手架、模板及支撑系统费用,另外工期效益显著。②中庭屋盖部分,建筑设计为不上人的采光屋面,该屋面跨度为30m,三边支承。一方面因为跨度比较大,如果采用钢筋混凝土,其自重必然较大,其次从建筑空间效果来看,在二层平台花园以及其他各层均可以看到该屋盖,如果采用钢筋混凝土结构,不够轻盈。所以设计结构设计上决定采用钢网架结构。网架结构平面布置图如图7所示。③对于两处从二层平台花园上三、四楼的楼梯,因为建筑要求做成悬臂形式,中间不加柱子,从节省材料以及造型美观考虑,把它做成钢木组合楼梯(钢骨架木踏步楼梯),从而达到既美观轻巧又相对省材的目的。
4优化设计
结构专业在绿色建筑设计中最突出的内容是节材,因此该工程在设计图纸出来以后,根据绿色建筑的要求,为了达到进一步节材的目标,对主体钢筋混凝土结构部分的设计图纸作了进一步的优化,其中优化的内容主要是通过调整次梁的布置,相对原设计一个房间三道次梁改为两道次梁,从而增大板的跨度,使其在尽量不增加截面厚度以及钢筋量的基础上,达到最大优化值。优化前与优化后的18~28轴三层结构平面布置图如图8、图9所示。根据结构计算得出,前后两个设计成果在混凝土用量上基本持平,而在钢筋用量上,前一个含钢量为35.63kg/m2,而后一个为33.40kg/m2,这一优化节省了6%钢筋用量;同时因为减少了一道次梁,在建筑模板方面也会相应减少材料损耗。另外,拔风塔中央的准800直径的圆柱也作了优化,由原来C25,配18根25钢筋的混凝土柱改为准800×10的钢管柱,这样既节省混凝土8.8m3,钢材量用量也从原来的1.35吨,减少为0.434吨,并且节省人工、模板及支撑系统费用,工期效益显著。综上,优化后的本工程符合国家规范《绿色建筑评价标准》和《广东省绿色建筑评价标准》中,对建筑工程提出的资源消耗低和环境影响小的要求,节省了钢筋用量,减少材料损耗。
5结语
关键词:房屋建筑;结构设计;问题
中图分类号:TB482.2文献标识码:A文章编号:
引言:
近些年来,建筑行业异军突起,一个城市的建筑行业直接标志着该城市的城市化水平,同时又对该城市人们居住和生活质量产生了直接影响,然而,当前建筑施工企业又不能够保证建筑工程的施工质量,这也就对人们的生命和财产安全产生了很大威胁。笔者认为,房屋结构设计直接决定了建筑物最终的施工质量。但是,在当前房屋结构设计领域中,存在着很多问题。下面论述了房屋结构设计中的常见问题。
1. 房屋结构设计中存在的问题1.1 一体化计算机程序的广泛应用并没有显著提高结构设计质量。(引1)
随着计算机辅助设计(CAD)技术的发展,计算方法日益精确化,制图方法中采用的平面表示法和各种标准图相继得到完善,建筑结构设计中存在的热点问题也随之发生了诸多变化,比如,结构整体内力计算和分析非常容易实现,而且出图速度快,节点及其他。
细部表达图纸量大为减少,长期困扰建筑结构设计的一些问题已经得到较好的解决,同时以前不那么重要的问题则上升为困扰结构设计师的热点和难点问题。一体化的计算机程序屏蔽了计算的过程,许多设计软件并没有明示软件内部的简化方法和软件的缺陷,使得一些计算和设计错误更难发现。
1.2 部分结构设计不合理如《建筑抗震设计规范GB50011-2010》第7.1.8条(强制性条文)规定“底部框架-抗震墙结构,上部的砌体抗震墙与底部的框架梁或抗震墙应对齐或基本对齐”。有些设计把底层设计成大空间,抗震墙很少,上部砌体抗震墙大部分与底部的框架梁或抗震墙不对齐,造成结构体系不合理,传力不明确;有些设计中抗震分类、场地类别选用错误,导致整个结构设计错误。一些混凝土构件,特别是悬挑构件的最小配筋率达不到要求,有的相差一半,有的甚至一半都达不到;有些设计中荷载取值没有按规范要求来确定,存在漏算错算现象;有些结构设计与提供的计算书不一致,结构强度远远低于计算结果,设计存在严重安全隐患。1.3 设计深度达不到规定要求由于设计人员没有对一般房屋尤其是多层房屋设计引起高度重视,盲目参照或套用其他的设计的结果;或是由于设计过程中对设计规范和设计方法缺乏理解.因此在设计人员制作图纸中存在“偷工减料”,设计粗糙,过于简单。
2. 结构设计中要遵循的基本原则
房屋结构设计的主要目的是使建筑物安全和房屋能够适应使用的要求,所以设计人员房屋在结构设计时要保证并遵循这四个基本原则:
(1)抓大放小;(2)多道防线;(3)刚柔相济;(4)打通关节。
前三道原则很容易理解,对于原则四,所谓关节,是指变化相聚之处,或变化出现的地方。 不同类型的构件相接处,同一构件截面改变之处,是关节。广义上,诸如结构错层之处,体量改变之处,转换层亦是关节。对于复杂的结构体系,关节的复杂性难于预测和控制,即使从理论上保证了每个组成构件的强度和刚度,但因关节的普遍存在,力量的传递往往不能畅通而出现集中甚至中断,破坏由此而发生。历次灾害表明,从节点开始破坏的建筑占了相当大的比例。所以理想的结构体系当然是浑然一体的----也就是没有任何关节的,这样的结构体系使任何外力都能迅速传递和消减。
3. 房屋结构设计地基与基础
3.1 纵观近些年的房屋结构设计质量,不难发现,很多低层房屋,(例如单建的物管用房、设备房等)并没有地质的详勘报告,只是单纯的依靠建设单位进行口头阐述或者是笼统的对附近建筑物基础设计资料进行参照就进行了施工图的设计,房屋结构的地基与基础设计必须要做到安全、合理、适用,要求设计人员必须要依据相关的地质勘察资料,统一的考察多个方面的易损,从而进行房屋结构设计上部结构方宁和基础类型的设计,单纯的凭地耐力这一个数据时不安全和不全面的,要求我们更加不能够盲目的认为将耐力容许值取小一些就万无一失了。
4. 楼板设计常见问题 楼板是建筑工程中的主要承重构件,是它将楼面,屋面的荷载传给其周围的墙或梁上,楼板的设计问题必将连带梁、墙、柱等构件安全。若对整个设计考虑不周,很容易出现设计质量问题,有的还可能存在严重的质量隐患。楼板设计中常见如下几个问题。 4.1 设计时为了计算方便或因对板的受力状态认识不足,简单地将双向板作用单向板进行计算。使计算假定与实际受力状态不符,导致一个方向配筋过大,而另一方向仅按构造配筋,造成配筋严重不足,致使板出现裂缝。 板承受线荷载时弯矩计算问题。在民用建筑中,常常在楼板上布置一些非承重隔墙,故大楼板设计中常常将该部分的线荷载换算成等效的均布荷载后,进行板的配筋计算。但有些设计人员错误地将隔墙的总荷载附以板的总面积。另外,板上隔墙顶部处理常采用立砖斜砌顶紧上部分的楼板、屋面板,这样会给上部的板增加了一个中间支承点,使其变为连续板,支承点上部出现了负弯矩,而在板的设计中又没考虑该部分的影响,致使板顶出现裂缝。 双向板有效高度取值偏大。双向板在两个方向均产生弯矩,由此双向板跨中正弯矩钢筋是纵横叠放,短跨方向的跨中钢筋应放在下面,长跨方向的跨中钢筋置于短跨钢筋的上面,计算时应用两个方向的各自的有效高度。一般长向的有效高度比短向的有效高度小d(d为短向钢筋的直径)。有的设计为图省事或对板受力认识不足,而取两个方向的有效高度一致进行配筋计算,致使长跨有效高度偏大,配筋降低,使结构构件存在质量隐患,甚至出现开缝的现象。
5. 抗震结构设计房屋设计用从抗震要求出发,进行合理的结构设计。
5.1 一定要重视概念设计,这是抗震设计的首道防线。
5.2 对一般多层砌体住宅结构,应优先采用横墙承重或纵横墙共同承重的结构体系:纵横墙的布置宜均匀对称,沿平面内宜对齐,沿竖向应上下连续;楼梯间不宜设置在房屋的尽端和转角处不宜采用无锚固的钢筋砼预制挑檐。
5.3 对钢筋砼多高层结构住宅,力求做到:框架与抗震墙等抗侧力结构应双向布置,以便各自承担来自平行于该抗侧力结构平面方向的地震力;框剪体系的各抗侧力结构要形成空间共同工作状态,除了控制抗震墙之间楼屋盖的长宽比及保证抗震墙本身的刚度外,还需采取措施,保证楼、屋盖的整体性及其与抗震墙的可靠连接;结构布置应尽量采用规则结构,对复杂结构,可以设置防震缝。
6.构造柱的设计
6.1一般来讲,在砖混结构中,构造柱除可以提高墙体的坑剪能力之外,还可以与圈梁联结在一起形成对砌体的约束,这样的设计不仅可以限制墙体裂缝的开展,同时还可以维持竖向承载力,提高结构的抗震性。应避免在结构设计中,将构造柱作为承重柱使用的作法。这是由于如果构造柱一般生根于地梁中,没有另设基础,如果将构造柱作为承重柱使用,会造成构造柱提前受力,降低了构造柱对墙体的约束作用,柱底基础的局部承压强度必然不能满足整体设计要求,柱底基础一旦发生冲切或局部承压破坏,就会出现裂缝。尤其是在结构遭遇地震作用时,应力会集中早构造柱位置,导致构造柱首先遭到破坏,这样一来,构造柱不但起不到应有的作用,反而会成为房屋结构中的薄弱部位。因此,设计人员必须保证承重大梁下的柱子应按承重柱进行设计,若遇特殊情况,如梁上荷载较小,也可将构造柱布置在承重梁下方,但构造柱对下墙体的承压和抗弯强度作用都不应考虑在柱承范围之内。
7.结束语
综上所述,房屋结构的设计工作需要设计人员和建筑工程中所有的工作人员全力配合,才能从根本上消除设计质量的隐患。建设工程是一种特殊商品,工程投资大、建设周期长,其工程设计质量不仅关系到工程的投资效益、使用要求,而且直接关系到人民群众的生命财产安全。针对当前设计质量状况,设计单位应加强内部的质量管理,设计管理部门要加大对设计质量的监督管理,结合施工图设计审查、专项检查、质量抽查等工作,加强对业主、勘察、设计单位的市场监管力度。特别是设计单位在进行房屋结构设计时必须在满足国家设计规范要求的前提下,加强房屋结构的概念设计和地基设计,才能提高房屋结构设计水平,确保房屋设计质量不断提升,以使房屋的结构设计工作做到更安全、更合理。
参考文献:
[1] 韩建平,邹新磊,罗熠,王洪涛. 汶川地震甘肃严重影响区砖混房屋震害特点及鉴定加固[A]. 第八届全国地震工程学术会议论文集(Ⅰ)[C], 2010 .
1.1学生基础薄弱,学习兴趣不够对于高职学生而言,一般基础比较薄弱,特别是高等数学及工程力学是建筑结构课程学生的基础课程,有些学生这两门课的基础很差,又缺乏工程经验,学习建筑结构就有很大的难度,其后果是直接导致部分学生畏难情绪严重,甚至厌学。同时,学生的学习目的不够明确,学习过程中缺乏主动性,只做被动接受知识,缺乏思考,无法应用。
1.2教师教学方法单一,反思调整不及时教师主要是为完成教学任务,在目前各高职院校强化动手能力,采取2+1学习方式,即2年在校内学习理论知识,1年校外实习,这样学生的理论课学习课时数就有所减少,若还按原来传统的教学模式,采用满堂灌的方式,在有限的时间内将全部知识都传授给学生;甚至有些教师试图通过多媒体授课,将大量的知识信息放到课件中,不停给学生展示,学生根本来不及思考就硬性地接受,可想而知,这样得到的知识无法应用到实践中。
1.3重视理论学习,缺乏动手能力建筑结构课程理论性与实践性都很强,传统做法是将全部理论知识讲授给学生,而学生动手参与设计能力的培养较少,很多学生课程学得不错,但不会应用,真正进行结构设计,就无从下手,高分低能现象比较严重。
1.4教学内容更新较慢新时期的高职教学理念是培养高技能人才,因此在教学内容上也应适应技能培养方面的调整,但教材更新还达不到这个要求,很多课本上还没有体现设计理念。
2以设计为导向的建筑结构课程教学方法
2.1引入以设计案例为导向的教学模式根据高职高专以就业为导向的办学理念,改革课程教学体系,突出以实践教学为重点的相关内容,针对不同就业岗位群,将建筑结构各章节内容归纳整理成各具体的、切合实际的工程设计案例。即将课程内容项目化,将项目分解成各任务,针对不同任务对应于实际工程案例,各案例均来自工程设计任务。每当学生完成一个项目课程,就能针对该课程项目完成一项实际工程中的设计任务,将教材中单一算例用工程设计案例来代替,避免学生学习课程时的盲目性,即所学知其所用,真正调动了学生的学习热情,通过真正的工程设计案例,更好地引导学生学习建筑结构课程理论,促进学生主动思维,培养学生以设计为导向的建筑课程教学模式,更好地为学生走向工作岗位提供保障。
2.2以设计案例为向导的教学方法与教学手段改革传统教学方法是以教师课解为中心,学生被动接受知识。课堂上主要是教师唱主角,学生缺乏参与热情,有的学生上课无精打采,甚至上课玩手机,根本听不下去课。以设计为导向的教学方法就是要转变这种状况,授课以学生为中心,学生参与到课堂的教学中,每个学生都是承担设计案例的设计者,完成一堂课的教学需要由学生、主讲教师、设计室及实训中心多个方面配合完成。由于建筑结构课程是以设计为主的,其教学目的也是要让学生掌握工程结构设计理念,达到进行结构设计及能识读工程结构施工图。那么为了达到这上目标,有设计室参与到教学中是最好不过的了,因为可以通过设计室的实际工程项目作为授课的直接案例,这部分列入教师备课教案的一部分,每次课教针对相关内容进行案例布置,当然这需要教师通过事先将学生分组形式,将本次课程内容分组布置成设计任务,学生要完成设计任务需要掌握的理论知识,就是学生要主动探究的内容。教师可以借助于多媒体演示以及建筑结构模型实训室,让学生参与到理论知识学习中来,如设计任务解决需要的理论依据、设计原理、计算公式、公式的适用条件、以及设计规范等,学生都会感兴趣,此时教师讲授这部分知识,恰好与学生探究的知识达到一致,教与学的互动效果也达到了统一。同时充分利用实训室的教学条件,实现讲课、实训一体化。学生所学到的理论知识,通过实训室模型,达到了理论与实践的结合,学生的工程设计成果,交由设计室参与评定,这样能给学生营造出一种真实的工程设计氛围,极大地激发了学生的学习兴趣,学生被动学习变成了主动学习,学习效果也就体现出来了。
2.3以设计案例为导向的学生成绩评定以设计案例为导向的教学方法,需要从根本上改变以往的期末一次考试定成绩的方法。既然强调设计,那么考核方法重在设计过程的考核,通过考核及时了解学生在学习过程中对理论知识的认知程度、对实践知识的掌握程度,每个设计任务完成情况、设计方案的取舍、小组学生的协调配合等都能很好地反映出来,这样通过各小组对比,以及设计任务完成的时间、质量,根据事先确定的学习过程考核细则,可以对学生学习过程进行综合评定。
3结语
1.1传统建筑形态的转变
不同时期的建筑、不同地域的建筑都显现着自身特有的文化特征,这是由于不同环境下的人们对解决问题的方式有一定不同性导致的。从结构主义的角度来看,建筑人类学对历史的间断性进行强调,认为不同的时期和不同的地域的人都是所处社会的构成元素。建筑人类学提倡改革创新传统的建筑设计文化,并应用于现代建筑设计,使之为现代建筑设计服务。
1.2现实主义建筑到未来有机建筑形态
高功能的建筑要求和复杂、现实建筑规范是现代建筑设计师创作过程中需要解决的两大难点,多数结构主义者认为,将来的的建筑将会如有机生物一般,在某些法则中,像结晶生成一样能够自由组合和繁殖。现代建筑设计师在实际的建筑设计创作中,要不受现实束缚,不能过于刻板,要进行超越时代的、表现主义色彩浓烈的城市规划和建筑方案创作。
2建筑形态学结合结构主义对建筑设计的影响
2.1自然形式有机结构
目前,具有仿生特点的自然形式有机结构层出不穷。许多建筑设计师在设计中加入了自然元素的使用,这里的自然并不是指使建筑物与其周围自然环境和谐存在,而是从仿生学的角度,进行自然生物形态类建筑设计,这种新型建筑的形态类似于自然界某种生物形态,在这些建筑中,我们可以深切体会到自然的气息和建筑设计的神奇力量。最初,高迪的自然塑性作品给予了现代建筑仿生特点的启发。现代建筑中,具有仿生特点代表作就是国家体育场“鸟巢”和国家游泳中心“水立方”,其建筑形态是鸟类巢穴的形式,融入了现代化先进的钢结构设计[3]。与“鸟巢”相比,水立方体现了女性柔美,其建筑形态模仿水的纹理,由一个个冰晶状水分子和很所小泡泡构成。在现在建筑设计中,具有仿生特点的自然形态建筑是时代的产物,倍受青睐,这一点,我们的建筑师们已经有了强烈的意识。这些建筑从建筑形态上拉近了人类生活与大自然的事务,此外,这些建筑的概念结构表现出人与自然的融合,使生活更加美好。
2.2“高技”派建筑
随着科技的发展,新技术与新结构的不断涌现,许多建筑师开始通过作品向人们进行技术性审美价值的信息传达,这一类作品被称作“高技”派建筑,如今,“高技”派建筑应运而生,不断涌现。高技派建筑师中最具有代表性的人物之一就是诺曼·福斯特,他设计的建筑结构中,主要使用了玻璃和金属材料,一般都是采用较高的施工技术对外观形态进行金属化表现,存在一定的科幻色彩。伦敦新地铁加纳利·沃夫地铁站就是这类建筑的典型代表之一。我国的国家游泳中心“水立方”就很好了体现了材料学、材料化工和计算机技术等技术相结合的特性及优势,外表采用膜结构---ET-FE材料,不仅仅展现了结构力量美,还体现了设计
2.3地域性建筑设计
随着时代的进步,全球化发展的趋势也在不断扩散。在建筑设计当面,仅仅只是体现地域特色的建筑物正在逐渐减少,而在世界范围逐渐普遍起来的西式、欧式建筑,使建筑隐藏着特色单一的危机,要解决这一问题,最有效的措施就是在建筑设计中展现地域特色。我国现代建筑中地域性建筑设计卓见成效,具有代表性的建筑就是河南博物馆,其建筑形态呈金字塔形,共有9座,根据中国传统中中心对称布置的建筑文化,包含着九鼎中原的蕴意,酣畅淋漓的展现出中原文化的特点。
3结束语
在建筑的竖向荷载中,其主要是由楼面荷载以及结构自重通过楼面传递到剪力墙的。其具有着两种表现形式,一种是由连梁所产生的弯矩,一种是墙肢内具有的轴力。在我们对竖向荷载进行计算时,主要是以其受荷面积进行计算的,而在水平荷载计算时,则主要是借助计算机的有限元方式对其进行计算,通过这种建筑受力情况的科学估算,能够有效地为我们后续的结构布置提供重要的基础数据。在高层建筑中,剪力墙结构一般都是以双向布置的方式形成空间结构。在剪力墙布置过程中,非常关键的一个问题就是要保证力所具有的均衡性,要通过建筑中心同刚度中心距离的接近避免建筑出现扭转效应。在对其实际布置时,我们会看到当剪力墙抗侧刚度过大时,其所具有的自振周期也会随之增大。面对此种情况,设计人员则可以通过加大墙体间距的方式使结构的抗侧移刚度能够得到降低,可以说,通过剪力墙的合理布置,能够有效地提升高层建筑的稳定性。
2剪力墙结构设计
对于剪力墙结构的设计是一个非常复杂、专业的过程,其中具有着很多个设计步骤。对此,就需要我们在对剪力墙结构进行设计之前就能够对剪力墙结构设计的步骤进行充分的了解,并对墙肢所具有的厚度与长度进行确定。之后,则需要开展连梁以及边缘构件的设计,最终对地震荷载进行计算。
2.1墙肢长度与厚度的设计
之前我们已经提到过,在剪力墙设计的过程中其长度不应当过长。对此,我们就需要对墙肢长度设置进行一定的控制,避免长度过长。一般来说,墙肢长度不应当超过8m,且跨高比应当大于6,并以此帮助我们获得更为稳定的剪力墙设计。在厚度方面,我们在实际设计时则需要能够对剪力墙所具有的稳定性以及刚度作出保证。通常来说,一般居民建筑的填充墙厚度会保持在200mm左右,在剪力墙厚度设计时也将其设置为200mm。而对于部分不含地下室的高层住宅来说,则将其基础埋深选择在2.5m以上,强度高度在5m以上,之后再根据适当的比例对剪力墙进行确定。但是对于这种方式来说,其很可能使最终的剪力墙厚度大于填充墙厚度,这也是非常不利于我们高层建筑设计的。对此,就需要我们在对剪力墙厚度设计时能够在联系建筑实际情况、相关建筑设计规程的基础上对其进行科学的设计。
2.2连梁的设计
连梁就是对墙肢之间进行连接的梁,其不仅能够帮助我们对不同墙肢进行连接,同时也能够在水平荷载的作用下使墙肢因为出现变形情况对连梁产生一种内力,并以这种内力的产生对墙肢施加一种稳定的约束作用。在实际设计中,首先需要重点关注的就是截面尺寸以及连梁跨高比这两个指标。如果连梁刚度过大,就需要我们对其进行适当的折减,但是,在对剪力墙进行设计时,仅仅根据相关的设计标准很难帮助我们实现配置的折减,对此,就需要我们能够允许其适当的出现开裂的情况,并以这种开裂情况的存在将内力转移到墙体上来实现折减的效果。而在折减过程中,也需要我们能够对折减的系数引起充分的重视,通常来说,如果防裂度较低,那么我们就可以根据情况折减的少一些,而如果防裂度较高,就可以折减的多一些。但是,无论我们折减的多、少,都需要保证折减系数应当大于或者等于0.5,因为只有在这种折减系数下才能够使连梁所承受到的竖向荷载能够得到保障。而在连梁刚度方面,我们则可以通过增加剪力墙洞口宽度的方式减小连梁刚度,因为当整体结构的刚度降低时,当发生地震时的地震作用也会因此降低,并可以保证连梁所具有的承载力不会出现超限的情况。另外,混凝土也是我们在设计时需要重点注意的问题,通过混凝土等级的提升,也能够对连梁抗剪承载力的不超限情况起到一个保障作用。
2.3边缘构件的设计
边缘构件也是我们在剪力墙设计过程中非常重要的一项工作。对于边缘构件而言,有约束边缘构件的矩形截面剪力墙和无约束边缘构件剪力墙相比有着明显的优势,具有着更高的基线承载力,同无约束情况相比其承载力能够提升约40%左右。而在类型方面,边缘构件主要有构造边缘构件以及约束边缘构件这两种,在实际应用的过程中都需要我们在联系建筑实际情况的基础上对其进行设置。
2.4地震荷载及内力设计
如果建筑主体结构布置情况较为简单,那么我们在对剪力墙结构进行设计时则可以通过空间协同平面框架的应用对其进行计算。而如果建筑主体结构布置情况较为复杂,我们则可以通过空间分析程序对其位移、内力等因素进行分析。同时,在实际设计过程中,我们也需要以简化计算的原则开展设计工作,且在对地盘长宽进行计算时需要能够在结合建筑主体结构长宽的基础上对其开展分析工作,并尽可能地以成比例的方式进行设计。
3结束语
关键词:高层建筑;剪力墙结构;计算分析;抗震设计
高层建筑剪力墙结构设计不仅要满足高层建筑结构的各项要求外,也需满足规范对此类结构所有其他规定。同时,还要加强构造处理方面的各种措施。在进行结构的整体设计计算时,转换层上下结构的侧向刚度比应符合规范要求,并应严格控制结构在地震作用下的位移值和扭转效应,使结构布局合理。本文结合工程实践,主要论述了高层建筑剪力墙结构设计要点及注意问题。
1 工程概况
某高层住宅建筑,分为A、B、C 3栋,一共16层,地下室为2 层,层高为 3.6m和4.5m,A、B栋主体结构层高61m,;地上1层为居民活动空间,高5.2m;2~16层为住宅,层高 2.9m,以上至屋顶层高均为 3.0m。
2 结构设计
2.1 转换体系的选取与计算
框支转换层楼板在地震中受力变形较大,其在整体电算中的模型选择很关键。由于工程转换梁上部层数多,地震时楼板将传递相当大的地震力,其在平面内的变形是不可忽略的。因此采用弹性板或弹性膜的计算模型较为适宜。由于弹性板的平面外刚度在整体计算中已被计入,相当于考虑了板对梁的卸荷作用,会使梁的设计偏于不安全。在进行整体结构分析时,将转换层楼板用弹性膜单元模拟。
2.2 嵌固端与转换层楼板板厚的确定
工程以±0.000 板作为嵌固端,既保证上部结构的地震剪力通过地下室顶板传递到全部地下室结构,同时能够保证上部结构在地震作用下的变形是以地下室为参照原点。《抗规》第 6.1.14 条规定:当地下室顶板作为上部嵌固端部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2。故地下室顶板厚度取200mm,同时,为了有效地将水平地震力传递给剪力墙,在应力集中的楼层,将楼板厚度加大,转换层楼板取180mm,与其相邻的层也适当加厚至150mm。
考虑抗震需要,施工图阶段时更有意提高转换层配筋率,使单层配筋率达到0.35%,以进一步提高转换层楼板和框支大梁共同作用的能力。考虑到梁宽大于上部剪力墙的两倍,宽度较宽,对边转换梁,板面钢筋不是简单地要求伸入梁内满足锚固要求即可,而是要求必须贯穿梁截面,以确保梁内扭矩在板上的有效传递。
2.3 框支柱与剪力墙底部加强部位墙厚的设计
框支柱作为框支剪力墙结构体系中重要的构件,它的安全度直接决定了整栋建筑的抗震潜力,因而框支柱的延性和承载力成为设计的关键。框支柱应在计算的基础上,通过概念设计和抗震措施进行设计。调整框支柱总剪力不小于0.30,框支柱的抗震等级定位一级,为了增加其延性,轴压比不超过 0.4,其最小配箍特征值比一级增加 0.02 采用,框支层剪力墙轴压比控制在 0.6 以内,以保证剪力墙有足够的刚度。
抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加构造边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施,避免脆性的剪切破坏,改善整个结构的抗震性能。为了保证底部加强部位处剪力墙的平面外刚度和稳定性,《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)及《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称《高规》)分别规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值更加严格。取《高规》第 10.2.2 条规定:带转换层的高层建筑结构,其剪力墙底部加强部位的高度应从地下室顶板算起,宜取至转换层以上两层且不宜小于房屋高度的 1/10。
2.4 转换层上、下结构侧向刚度比的确定
工程实践中,框支剪力墙结构体系是对结构本身来说是很不利的,为了加大底部大空间楼层的抗侧刚度,使上下刚度接近,《高规》规定:需要抗震设防时,转换层上下刚度比不应大于 2,同时不应小于 1。为了满足此要求,对底部的落地芯筒及少量的落地剪力墙均予以加厚,落地芯筒周边墙体加厚至300mm(上部为250mm),少量的落地剪力墙加厚至 400mm(上部为250mm),同时转换层以下的混凝土强度等级定位 C45(上部为C35),最终大部分单元刚度比均控制在1.4左右,只有少数单元较大,但也控制在1.8以内。
由于高层结构中转换层的出现,沿建筑物高度方向刚度的均匀性会受到很大的破坏,力的传递途径会有很大的改变。如何计算转换层上、下结构侧向刚度比是带转换层高层建筑结构设计时必须解决的主要问题。《高规》附录 E 分别规定了底部大空间层数不同,转换层上、下结构侧向刚度比的计算方法。其中转换层上、下结构的等效侧向刚度比的计算综合考虑了竖向抗侧力构件的抗剪刚度和抗弯刚度,因此更能反映带转换层的高层结构沿高度方向刚度变化的实际情况。转换层上、下结构的等效侧向刚度比按公式(1)计算,为了便于计算顶部位移,可以将顶部单位水平力适当放大。
1H2
γe≤ (1)
2H1
结构设计时可以应用“高层建筑结构空间有限元分析与设计软件”(SATWE)计算转换层上、下结构的等效侧向刚度比,具体计算步骤如下:①采用 PMCAD 建立结构计算模型;②采用 SATWE 前处理程序形成风荷载数据文件 WIND.SAT;③分别修改计算模型的风荷载数据文件,将顶层刚性楼板的 X、Y向风荷载的 X、Y轴均设置为500kN,Z 轴扭转分量设置为 0,其余各层 X、Y 向风荷载的X、Y 轴分量以及Z轴扭转分量均设置为 0;④运行SATWE中结构分析及构件内力计算程序,求出计算模型 1、2的顶部位移;⑤应用公式(1)即可求解出转换层上、下结构的等效侧向刚度比。
通过上述方法计算得出的转换层上、下结构的等效侧向刚度比宜接近 1,非抗震设计时不应大于 2,抗震设计时不应大于 1.3。
2.5 抗震设计
框支剪力墙结构的局部加强范围,对本工程来说,取框支部分所临近两个2~3个开间所包围的区域。在进行框支柱、梁内力调整时可按此调整加强部位有关剪力墙、框支柱和梁的内力。局部框支加强范围以外,可按剪力墙结构设计。两者交接部分应加强连接构造,如板边设暗梁、梁板配筋加强等,以保证水平剪力传递。
建筑专业为了立面处理的需要,希望在建筑平面的角部开窗,墙体角部在地震作用下,是较敏感的部位,特别当结构平面不规则时,由于平面的扭转,引起内力重分布,将使震害加剧,使得此处的连梁分配更多的地震力,容易产生连梁的超筋问题。因此,需要对此处的连梁采取构造加强措施,本工程主要采用了以下几点:①角部开窗的墙体为无翼缘墙体,《抗规》6.4.1 条规定墙体厚度,当无端柱或翼墙时不应小于层高的 1/12,本住宅层高 2.9~3.0m,故角部房间墙段厚度取250mm;②由于角部墙体无翼缘,延性较差,应在墙体端部设置暗柱,并适当的加强配筋;③为了增加墙体平面外的稳定性,可在每层楼板角部处附加钢筋板带配10Φ12mm 钢筋,两端各锚入暗柱内,长度≥35d。楼层加强,双层双向且均按受拉钢筋锚固于墙内和梁内。
3 结构设计中应注意问题
框支剪力墙结构虽然框支部分很少,但对框支部分还应该符合部分框支剪力墙结构的,同时又不完全符合。因此,为满足使用功能和结构抗震设计的要求,同时使剪力墙的布置和用量较为合理,结构设计时主要应解决以下几个问题:①平面设计时合理布置剪力墙的位置,使结构的刚度中心与质量中心相接近。②对于框支柱上的剪力墙尽可能的减少,减薄,如果实在无法避免时,框支柱的计算配筋要充分考虑到平面外的荷载作用及内力的相互影响。③对工程中出现转换层一类的局部特殊结构形式时,应对结构整体计算后对局部特殊结构进行专门的有效受力分析,如对转换层上下层刚度比进行单独的计算。④增强结构的抗扭能力,在建筑物的四个角部不利于抗震的开设的转角窗,应加强构造措施。⑤对于受力复杂的结构,构造设计是保证结构安全的重要措施。
钢结构的合理利用可以有效提高企业的经济效益,和传统的钢筋混凝土结构相比,钢结构更加环保。就这点来说,钢结构更加符合国家节能减排的号召,满足建筑对节能环保材料的需求。钢结构本身就是由钢材构成的,建筑对高强度和高效能材料的需求也因此得到满足,具有很大的循环利用价值;在工程施工过程中,为了保证不出现其他问题,就需要在设计阶段对图纸和计算不断优化,在保证图纸质量的前提下,确保施工顺利进行;设计过程应该经济合理,可以满足建筑抗震和防火要求;和施工工艺以及相关产业紧密配合,促使钢结构施工过程不断优化,在保证质量的基础上满足施工过程中的各种要求。
1.1工业建筑中常规钢结构的作用
在工业建筑中,钢结构的常规应用由来已久,我国多数工业厂房均采用的是常规钢结构人字梁以及工字梁,这些常规钢结构已成为工业早期时代的主要象征。而这些特征构成了我国的吊车梁式系统以及常规钢屋架系统。由于民用建筑、商用建筑以及工业建筑各有不同,在进行工业建筑时要求建筑结构能够为工业生产以及施工提供最好的跨度及空间。而传统钢筋混凝土结构已经不能完全满足现在工业生产在跨度以及空间上的相关需求,从而鉴于此基础上的钢屋架系统应运而生,屋架系统主要由屋架、系杆以及支撑组成。同时吊车梁系统作为工业厂房的重要部分,多数厂房中均设有吊车,主要由车档、吊车梁、轨道、制动结构及连接件等构成。在传统钢筋砼结构不能够满足新时代工业建筑在相应功能及跨度上需求时多采用钢结构。如(1)材料堆场、大型仓库以及飞机装配车间等多采用钢结构体系,这些钢结构体系多为网架、拱架、门式刚架以及悬索等;(2)建筑物受到动力荷载影响时,多采用钢结构体系;(3)碳素厂高楼部碳素振动成型机对相应结构的耐疲劳程度和强度要求均较高时,多采用钢结构体系;(4)在高烈度区,钢筋砼结构早已超出了现行工业行业的规范以及规定,应采用钢结构以满足其新的需要;(5)原有厂房需改建或扩建时,多采用钢结构。综上即可知,钢结构在现今工业建筑中有着十分重要的作用,且应用广泛。
1.2工业钢结构在建筑工程中的应用方向
在工业建筑中,相关人员应该根据规定的生产流程来为工艺服务。在这个过程中,工业钢结构的形式、材料与空间等多个方面都有特殊的标准。由于建筑体量比较大,要求相关人员应该注重把握好尺度,熟练掌握新材料技术。因此,工业建筑与普通建筑相比,具有一定的特殊性。在工业建筑中,一些比较简单的建材会被新建材取代,落后的施工工艺会被淘汰。如今在工业钢结构方面,包括钢缆、构件和型材等方面的建材类型越来越丰富。另外,高性能施工涂料的应用有效地解决了工业钢结构中存在的防火、防腐、防污染以及隔热等多个方面的问题。随着经济的发展与科学技术的日益进步,涌出了很多新的设备、工艺与材料,有利于迎合工业建筑设计的更高要求,落后的原有工业建筑体系应该与时俱进,实现进一步的完善。
2钢结构在工业建筑中存在的问题
目前,人们对工业钢结构在建筑方面的相关认识还不够全面。传统混凝土结构一直影响着人们的建筑观念,直到现在也还没有彻底转变。工业钢结构体系还不够完善,其具有一定的复杂性以及综合性,涉及到多种配套体系,比如屋面、墙体、防腐、隔热和保温等多个方面的配套材料。而国内的工业钢结构与发达国家相比,其技术水平与设计理念相对落后,专业人才的培养、新产品的研发、设备的制作与安装水平、钢材质量等多个方面都没有得到很明显的提升。从事工业钢结构的设计、制作、安装以及监理等领域的相关工作人员依旧没有掌握好新知识,没有彻底转变新理念,没有充分挖掘新材料,对新的施工方法也缺乏足够的掌握力度。
3优化工业建筑施工过程中的钢结构
在实际工作中,为了有效地提高工业建筑中钢结构的稳定性。
3.1需要我们确保脚螺栓的稳定与坚固,保证在脚螺栓使用过程中控制得当,且可以保证钢结构的应用合理有效。对脚螺栓的安装与埋设,需要重视其精度问题,以保证其他环节的有序稳定运行。
3.2要在地脚螺栓的安装中,注意钢柱的准备,有效地协调平面控制网全系统的每个环节,进而更好地保证螺栓的安装精度,使钢结构稳定性增加。
3.3要注意顺利弹出柱脚底板十字线、地脚螺栓的中心线,并将柱脚剪力孔做好积极的清理工作,在钢柱就位后,要将标高调整好,并坚固螺母。
3.4对钢结构的施工需要注意梁柱安装,并控制梁柱之间的柱间支撑精度,使空间单元的稳定性提高,以保证其他安装工作有效进行。
3.5要注意合理有效地应用垫板,确保垫板定位线精准,以对后续钢结构施工整体运作起到优化的作用。此外,在安装结构构件中,要健全构件储备,并能够充分地利用构件设备,更好地满足实际钢结构工作需要。堆放要合理规范,管理科学。每个存放场地均要有专人管理,根据供货需要携带清单取货,适时清点。
4结束语
现代钢结构建筑结构类型选定后的下一环节就是对钢结构截面进行预估和选择。一般而言对于钢结构截面的选择是在建筑施工前对各种支撑构件的尺寸和形状进行设定和假设。钢结构钢梁一般在钢结构设计中选用比较多的是槽钢或者焊接H型钢截面等,根据建筑结构的荷载情况和支座具置一般截面高度设置在建筑结构跨度的1/20—1/50之间。翼缘宽度根据梁间侧向支撑的间距来确定;待截面高度和翼缘宽度确定后,按照钢结构设计的有关规范规定对板件的厚度进行预估。柱截面一般按照柱的长度和直径比来预估。
2.工程结构分析
建筑钢结构设计中的钢结构一般采用的分析方法是线弹性分析,目前钢结构实际设计中,结构分析通常为线弹性分析,条件允许时考虑P-Δ,p-δ。如果钢结构建筑工程项目有特殊要求情况下可采用现行的有限元软件分析建筑结构的几何非线性和刚才的碳素性能。可有效提高建筑结构分析的精准度。需要提出的是对于钢结构的分析并不是一定要采用软件进行分析,对于比较典型的钢结构可通过查阅力学手册的方式比较直接地确定结构的内力和变形。对于结构相对简单的建筑一般采用人工手算的方式进行分析。对于结构比较复杂的工程需借助软件来建模后分析。
3.构件设计
在进行钢结构构件设计时,设计人员的首要工作就是对构件材料的选择。一般在钢结构建筑设计中比较常用的是Q235和Q345。一般钢结构的主体结构使用一种钢种,主要目的是便于工程管理。从建筑经济性角度分析,也可以将不同的强度的钢材组合使用,比如对强度要求时应选择Q345,对稳定性要求高时应选Q235。在钢结构构件截面设计中,对截面的验算一般使用弹塑性方法,但这种验算方法和结构内力计算的弹性方法不是一致的;目前,多数的结构软件都是对截面验算后进行处理,而随着软件技术的发展,部分的软件可不通过构件直接对截面进行验算,而是根据给定的截面库中选择截面加大一级的方式自动对截面分析验算,可有效地减少设计人员对结构构件截面验算的工作量。
4.节点设计
根据现代钢结构节点传力特性的不同可将节点分为刚接、铰接和半刚接;节点的连接比较常用的方式是等强设计和实际受力设计两种。就当前的钢结构建筑设计中比较常用的节点形式是刚接和铰接,这是因为这类节点的连接数据可以从有关的钢结构设计手册中直接查阅。也可通过结构软件后处理部分自动完成连接。节点焊接也是节点设计的重要设计环节,应严格按照钢结构设计中的规范规定控制焊缝的尺寸和形式。比如,所选用的焊条应和焊接的金属材质相匹配:E43对应Q235,E50对应Q345,Q235与Q345连接时应选低强度的E43。焊接设计中应严格控制焊缝,不能随意的加大焊缝,焊缝重心应同被连接构件重心重合或接近。就栓接节点而言,普通的螺栓抗剪性能比较差,一般使用在结构的次要部位。对于结构重要部位,对抗剪性能要求高时应采用高强度螺栓,当前在钢结构建筑设计中选用比较多是螺栓强度等级为8.8和10.9。
5.图纸编制
建筑钢结构图分设计图和施工详图两阶段。设计图是设计单位提供给构件制造厂用来编制施工详图的依据。钢结构制造厂根据设计单位提供的设计图,按照图纸内容要求,比如各种参数、工艺、技术等编制施工详图。
6.结语