首页 优秀范文 集成电路设计论文

集成电路设计论文赏析八篇

发布时间:2023-04-24 17:04:05

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的集成电路设计论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

集成电路设计论文

第1篇

当电缆没有开路、错位质量故障时,A0~A31端的电缆等效电阻RT≤7000mΩ时,对A0~A31端分别取样进行精密测量。在综合考虑IC100~IC131输入端低电平应≤0.7V和图2中运算放大器输入灵敏度兼容情况下,取恒流源IS的输出电流为10±0.5mA,Re0~Re31=33Ω±5%,Vces≤0.1±0.05V。因此可以计算出VA采样取值范围是0.353~0.566V,VB的采样取值范围是0.348~0.384V。为此图2中选用OPA335运算放大器,其输入电压范围是0~3V(单电源供电时),最大输入失调电压为5μV。图2中运算放大器输出电压V0~V31可由式(4)计算。由于OPA335的最大输入失调电流是70pA,在设计中控制最大输入电流在0.1~1mA之间,选择RA=RB=2kΩ±5%,R1=RF=33kΩ±5%,电压增益为16.5,输出电压范围0~3.6V。

2测量分析电路设计

A/D转换与分析电路设计在图3中,A/D转换电路ADC0809的输入端IN0~IN7分别与图2中运算放大器的输出端V0~V7连接,将模拟信号转化为8位数字输出信号,并传送给单片机的D0~D7端口,由单片机进行分析运算。路模拟输出信号共需要4块ADC0809电路进行模数转换。单片机P0.0~P0.7端口接收ADC0809输出的8位数字信号后进行分析。

3电缆等效电阻检测程序设计

3.1标准等效电阻值确定

端子压接后电缆等效电阻的标准值因电缆长度不同而有差异。可采用预先设定标准值和自动确定标准值两种方法。对线径为0.4mm的铜芯线电缆,预先设置标准值RT标准可按照式(5)进行计算:RT标准=75+148•L(5)其中,L是电缆长度,单位为m;RT标准的单位是mΩ。自动确定标准值方法是以正常工艺在质量稳定情况下,将首根检验的压接端子的电缆作为样品,对32个芯线等效电阻进行自动检测对比,选取其中的最小值,然后乘以系数1.05作为标准值。

3.2自动设定标准值程序设计

标准等效电阻值存放于I2C存储器AT24C08中。检测程序设计多路通信电缆端子精密检测的主程序流程图如图5所示。以下为采集的主要函数,假设通道数为36路。

4批量检测结果分析

第2篇

关键词:纳米尺度互连线 集总参数模型 电路仿真 CMOS射频集成电路设计

中图分类号:TN402 文献标识码:A 文章编号:1007-9416(2016)10-0176-02

1 引言

随着半导体技术的发展,纳米尺度的CMOS工艺射频集成电路(RFIC)在工业、科技、医药医疗的应用越来越广泛,且其工作频率已经进入微波、毫米波段,如X波段、Ku波段及60GHz应用等[1]。然而,当电路的工作频率进入到这种高频频段时,电路模型的精度是电路能否成功实现的关键所在。在电路版图设计之后,通常是利用Assura和Calibre等工具来获得互连线的寄生电阻和寄生电容。然而,由于电路的寄生电感比寄生电阻和寄生电容复杂且精度低,很难利用版图验证设计工具得到寄生电感值,因此,需要借助于电磁场仿真软件对传输线进行准确模拟。然而,在电路设计初期通常需要考虑用于互连的微带传输线对电路性能的影响,传统单纯利用电磁场仿真软件进行参数提取的方法无法准确根据设计要求进行参数调整。本文构建了基于物理特性的互连线模型,该模型的寄生参数通过传输线物理特性和电磁场仿真软件得到,易于计算和电路设计分析。同时,该模型的参数和频率无关,易于电路分析,适用于射频集成电路的设计。最后,论文详细论述了将模型用于集成电路设计中的流程。

2 互连线寄生参数仿真模型

射频集成电路设计中使用的互连线结构按照其类别可分为两类:第一类是微带线是以芯片衬底地作为其地平面,第二类是互连线是以某一金属层(通常是第一层金属M1)作为其地平面。对于这两类互连线结构而言,采用衬底地平面作为公共地平面的互连线比采用底层金属M1作为公共地的互连线更加灵活,因为在实际电路设计中受限于电路结构,其底层金属需要作为信号线进行器件之间互连,这种情况下需要采用第一种结构来实现信号互连。然而,使用底层金属M1作地线可以隔离衬底,减少衬底的损耗,因此在集成电路设计中两种传输线结构相互并存。

图1是互连线的模型图,该模型为单π集总参数模型,与常规的电感π模型相似[2]。图1中模型并联部分表示寄生电容和电阻,串联部分表示寄生电感和电阻。在设计窄带宽的电路时,尤其是进行放大器电路设计,关注的是工作频率附近的参数。所以,方框模型可以视为独立于工作频率,即模型在窄带电路设计中依旧可以使用。模型中,电感L2和电阻R2为互连线自身的分布电感和分布电阻,包含了集肤效应和邻近效应对电路的影响,而并联电容和电阻为导线和衬底之间等效电容和等效电阻。

对于该传输线模型,其离散参数的矩阵近似于模拟值和实际测量值。根据等效规则,电路的参数都可由Y参数推导得出[3]。在得到每一模块的参数后,串联电感值,电阻值和并联电容值都可以求出。

根据等效规则,工作频带的S参数应该与模拟和测试值相同。根据对Y矩阵的定义,可以推导出以下公式:

式中,为工作频率,函数real()和函数imag()分别代表着复数的实部和虚部。

以上的公式对于大多数传输线是可用的,无论传输线是否对称。在大多数情况下,传输线的Y1,Y3部分在结构上并不对称。但是,当两端口的反射系数的值相同时,将出现对称的特殊情况。此时传输线可化简为相同的部分,且可从电报方程中得出各元件的值。

在以上的分析中,电容,电感和电阻分别是频率的参数,而本模型中各部分数值处理成和频率无关的数值,这将在电路设计中产生误差。由于替换产生的误差可有下面公式得出:

是仿真实际S参数值,是模型的S参数值。

通常,当电路的频率与正常工作频率差异较大时,由于集肤效应和邻近效应,这个误差将会造成更加严重的影响。依照上述的模型,我们利用电磁场仿真软件ADS-Momentum构建了互连传输线,该传输线采用第二类结构,该传输线位于的TSMC 0.18um射频/混合信号工艺的第6层金属上,金属线宽6um,线长115um。工作频率为10GHz,根据公式(2)得到集总参数模型各个参数如下:

为比较模型和实际电磁场仿真数据之间差别,公式(4)中各个数据对应模型的S参数和电磁场仿真软件得到的S参数进行了对比,图2是采用电磁场仿真软件ADS-Momentum和模型部分参数对比,从图中可以看出,电磁场仿真软件的模型和本模型S参数的误差远离工作频率段误差越大,这是由于公式(2)中对频率进行了近似处理,远离工作频率的点采用工作频率来代替,由于这种代替,数据之间误差越大。在其偏离中心频率50%位置处(即15GHz和5GHz),模型和Momentum仿真数据的差异低于5%。在实际电路设计,通常需要电路设计师关注于传输线寄生参数对电路性能影响,此时工作频率点附近模型简易、准确是电路设计重点,而偏离工作频率点的模型误差在窄带电路设计是可以接受的。

3 模型在射频集成电路设计中应用

CMOS射频集成电路设计是利用已有的有源器件和无源器件模型进行电路设计。传统的集成电路设计首先进行电路原理图设计,然后进行电路版图设计,再进行参数提取,在参数提取中主要利用Cadence系统自身已有的仿真工具Assura来实现,在参数提取结束后再进行后仿真。当电路设计不满足要求时,需要重复上述过程,然而,在上述的传统集成电路中,由于参数提取过程的参数为分布参数,难以直接用于电路O计参数调整。同时,传统的参数提取方法只进行了电阻和电容的参数提取,而对寄生电感没有进行提取,这将导致电路设计的预期结果和实测结果出入较大。

为克服传统的射频集成电路设计的上述不足,可以将本论文的参数模型和集成电路设计相互结合。图4是本论文的模型应用于射频集成电路设计中流程图,在原理图和版图设计中依然类似于传统的集成电路设计方法,但版图设计及参数提取时将版图中的互连线单独分离出来,利用电磁场仿真软件ADS-Momentum电磁场仿真,仿真结束后利用模型将其中的各个互连线参数提取出来,由于互连线的宽度、长度和图1中模型的各个参数密切相关,故将互连线得到的各个参数代入到版图后仿真设计中,检测互连线参数是否满足电路设计要求。如果互连线参数满足设计要求,则电路设计完成;否则,根据要求适当调整互连线参数,并判断调整后参数是否满足电路设计要求,如果满足电路设计要求,则依据重新设计的要求进行版图调整,完成电路设计。如果调整后的互连线参数依然不满足电路设计要求,则依据要求进行原理图设计调整,然后依次重复上述过程。如图3所示。

从上述的电路设计流程可以看出,在射频集成电路设计中应用本模型可以及时了解电路中的各个互连线参数,根据电路设计要求调整互连线参数,满足电路设计要求。在整个设计流程中,首先根据互连线提取参数判断是否满足电路设计要求,进而根据设计要求调整互连线参数来满足电路设计要求,这将简化传统电路设计循环,减少电路设计时间,同时通过互连线参数调整将互连线作为电路设计的一部分进行综合考虑,这将有助于提高电路综合性能。

4 结语

本文提出了适用电路后仿真的纳米尺度互连线模型,该模型基于物理意义而构建,模型的各个参数皆为集总参数,各个参数都可以通过电磁场仿真软件而获得并在集成电路设计中进行调整。该集总参数的模型结构简单,易于使用,适合于CMOS射频集成电路设计分析中使用,同时文中给出了该模型应用于射频集成电路设计的流程并分析了其特点,分析表明采用文中模型可以根据电路设计要求进行调整互连线的尺寸,并可将互连线参数作为电路设计的一部分进行综合考虑,有助于提高电路综合性能。

参考文献

[1]A.Niknejad, “Siliconization of 60 GHz”, IEEE Microw. Mag., pp.78-85,Feb.2010.

[2]J.Rong, M.Copeland,“The modeling, characterization, and design of monolithic inductors for silicon RFICs”,IEEE Journal of Solid-state Circuits, Vol.32,No.3,pp.357-369,March 1997.

[3]廖承恩.微波技g基础,西安:西安电子科技大学出版社,1994.12.

收稿日期:2016-09-28

第3篇

集成电路设计实践主要是提供学生一个实践平台,采用先进的集成电路仿真软件,将书本上的知识采用模拟的方法进行加深理解。实践内容既是电路、模拟电子技术、数字电子技术以及课程设计中所学知识的应用,又是与最前沿科技紧密联系的。而传统的教学内容和教学模式,缺乏对学生创造力的培养,也缺乏与前沿科技的联系,因此需要进行教学改革的探讨和实践。随着教育改革的不断深入,传统的实践教学中“以教师为中心”、“以灌输为主要方式”的教学模式已无法适应时代的要求。先进的教学模式是人才培养的关键措施。研究型教学模式,又称为研讨式教学模式,是指教师以课程内容和学生的知识积累为基础,引导学生创造性地运用知识、自主地发现问题、研究问题和解决问题,以学生为中心,以知识掌握为基础,以能力培养为主线,以提高素质为目的的一种新模式。集成电路设计实践同样需要采用先进的教学方式,提高学生的创新能力,培养研究型IC设计人才。

2研究型实践教学模式的作用分析

集成电路设计实践引入研究型实践教学模式,可以使相关领域的学生真正实现学有所用,不仅学习了集成电路设计的软件知识,同时可以将课堂的理论知识通过工艺模型、电路设计、仿真方法来复现,从而更深入的理解理论知识,而且可以通过一些电路实例来解释生活中的一些现象,激发学习的兴趣。集成电路设计是实践性很强的一个方向,要求将工艺、器件、电路、版图四个方面的理论课程融会贯通,而传统的实践教学旨在加强学生对软件的认识,忽略对理论内容的加深与贯通。通过研究型实践教学模式的开展,可以在保证教学大纲不变的前提下,通过选择适用性较强的实践内容,使学生一方面能够将各门理论课的知识加深及贯通,另一方面可以使学生接触到用人单位感兴趣的课题内容,有利于学生加强实践的动力和持续进步。通过研究型实践,对学校而言,可以培养更优秀学生;对学生而言,可以掌握前沿知识、促进就业。研究型实践成果的实现为学生的晋升、发展提供支持。学生的实践研究成果如能公开发表或获奖,能解决实际工作中的问题,这无形中为学生在工作岗位上的晋升、发展增加筹码。这在最大程度上激发学生的实践兴趣,是其他任何实践模式都不可比拟的。同时,研究型实践教学鼓励学生多看文献、多写总结报告,这也为学生撰写本科毕业论文打下良好的基础。

3研究型实践教学模式的具体实施

3.1课程结构优化

指导学生接触各类资料,能够提出问题,进而解决问题以掌握知识、应用知识,完成对知识的一个探求过程;对实验内容进行适当调整和完善,使课程体系更全面更科学,更能贴近行业发展,更能体现学生的主动性。

3.2采用课堂讨论进行专题研讨的教学方法

在研究型实践教学模式中,师生互动有助于学生对基本概念、基本理论、基本方法的理解和掌握。根据课程需要,结合国内外的研究现状和发展趋势,采用与行业内吻合的实验软件,挑选合适的电路原型做仿真设计,并共同探讨电路的优化方案。

3.3专业资料查询能力培养

为学生提供研究资料或指导学生进行资料查询、整理,鼓励学生从图书馆、书店、网络等各种途径查阅文献资料,以充实自己的研究基础。提醒学生要对已收集的资料进行批判性的研究,去伪存真,指导学生从这些资料中总结、分析、解释与实践研究课题相关的理论、知识经验以及前人的研究成果。

3.4指导学生撰写专题论文(报告)

在研究型实践教学过程中,指导学生通过论文、调查报告、工作研究、分析报告、可行性论证报告等形式记录实践研究成果。在撰写论文时,要求学生要了解实践课题研究报告的一般撰写格式;要先拟订论文的写作提纲,组织好论文的结构,做到纲举目张;会用简练、严谨、准确的语言表达自己的思想,不追求文章的长短。指导学生开展专题电路讨论,由学生根据自己感兴趣的课题来查找文献资料,进行研究,完成电路设计和仿真,最后完成专题论文的撰写。

3.5鼓励学生参与课题研究

为调动学生参与科研创新活动的积极性,激发学生的创新思维,提高学生实践创新能力,鼓励学生参加老师的课题,锻炼学生的动手能力,培养“研究型”的思维模式。

4研究型实践教学模式对教师和学生的要求

4.1研究型实践教学模式对教师的要求

研究型实践教学模式的实施对任课教师提出了新的要求:一是要熟练地掌握课程的基础知识和内在结构,还要掌握与课程相关的专业基础知识和实践的基本技能;二是要掌握学科最新信息,不断更新知识,了解课程所涉及学科的最新动态和取得的最新研究成果;三是要熟练运用科学研究的方法和手段。这些都对教师提出了更高的要求。

4.2研究型实践教学模式对学生的要求

第4篇

关键词 电子科学与技术专业;实习基地;定向培养

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2014)02-0102-02

Exploration of School Enterprise Cooperation Mode of Electronic Science and Technology Specialty//Shi Jianxing, Xu Yanbin

Abstract Starting from the characteristics of Electronic Science and technology specialty, the training mode of school enterprise cooperation as a breakthrough point, to improve the students’ practical ability and training directly working talents as the goal, two aspects were summarized from the practice base construction and targeted training, explore the new road of school enterprise cooperation.

Key words electronic science and technology specialty; practice base; targeted training

2000年6月,国务院印发《鼓励软件产业和集成电路产业发展的若干政策》(国发2000〔18号〕),明确提出软件产业和集成电路产业是国家战略性新兴产业,是国民经济和社会信息化的重要基础[1]。大力发展我国集成电路产业和软件产业,是克服我国集成电路人才短缺,抓紧培养集成电路专业人才方面的重大举措。随着集成电路产业的飞速发展,国家和企业对集成电路各类人才的需求越来越多,对人才的要求也越来越高,这些都对电子科学与技术专业的本科教学提出了新的挑战。高等学校在人才培养的模式上必须进行有效的改革,校企合作体制的实施和更深层次的建设是高校人才培养模式改革的重要方面之一。通过校企合作体制的开展和教学质量的不断提高,使毕业生在准备就业的时候不仅具有深厚的理论功底,而且能够学习和掌握相关的设计软件,具有相关工作经验和解决实际问题的能力,了解行业背景和企业需求,为培养直接上岗型人才打下了良好的基础。

1 学校目前存在的问题

电子科学与技术专业是为国家和社会培养集成电路产业人才的重要专业分类。河北大学电子科学与技术专业的学生主要学习集成电路工艺和集成电路设计两大类课程,其中集成电路设计又包括电路设计和版图设计。通过两年的专业基础课和专业课的讲授,学生可以了解和掌握集成电路制造过程中的各种工艺加工工序(如硅片的清洗、氧化、光刻和扩散等)、集成电路中常用的设计方法(如全定制、半定制、CPLD和FPGA等)和集成电路基本单元的版图结构(如电阻、电容、BJT管和MOS管等)。虽然在理论授课的基础上也开设了相应的实验课程,但是实验软件落后,以及与社会生产实际相脱节的状态十分严重。这里以集成电路版图实验为例来加以说明。

在集成电路版图实验教学过程中,由于经费的限制,只能通过免费或者低级的版图绘制软件来完成实验教学工作。由于使用软件功能上的落后,没有办法让学生更好地了解如何对版图进行设计规则检查和电学规则检查,不能清楚地知道设计规程检查文件,不明白版图后仿真和电路图与版图的比较过程中需要注意哪些事项,不知道实际生产中相关元件的版图绘制方法,只能简单地绘制出某个元器件的版图,造成学生只是学习到了版图设计中的一点儿皮毛,相关知识匮乏,不能很好地满足企业的需求。

2 校企合作方案探索

实习基地的建立 2003年7月,教育部下发《教育部、科技部关于批准有关高等学校建设国家集成电路人才培养基地的通知》,通知中要求高校要大力推进“国家集成电路人才培养基地”的教学改革[1]。为了培养应用型的集成电路设计人才,了解企业需求,河北大学跟北京芯愿景软件有限公司保定分公司签订了校企合作协议。这既能让学生接触到先进的设计软件,增长自身技能,又能为企业培养所需的人才。

在签订了校企合作协议之后,双方又制定了详细的实习基地实施方案,主要从以下几个方面入手。

首先,暑期毕业实习。学校的毕业生需要在大三之后大四之前的暑期进入实习单位完成毕业实习的工作。实习基地建立之后,企业可以接纳电子科学与技术专业的学生进入单位实习并对学生提供培训。学生要严格按照企业的上下班制度等要求自己。在为期一个月的实习过程中,学生开阔了眼界,增长了见识,掌握了实际生产中相关元件的版图实现方法,明白了集成电路产业中各个环节的作用和实现方法,为就业奠定了良好的基础。

其次,双向选择,深入了解。在暑假毕业实习完成之后,企业对实习的学生进行了综合评定,学生也对企业和集成电路产业有了进一步的认识。通过双向选择的方式,学生可以在大四下学期毕业设计阶段进入实习基地进行更深层次的学习。毕业设计实行双导师制,由学校的指导教师和企业的指导教师共同指导学生完成毕业设计和毕业论文,保障学生能够顺利毕业。这既能增加学生的工作经验,又能为企业本身培养所需的人才。

最后,除本科生的实习以外,还对集成电路工程的硕士生制定了实习计划,并聘请了北京芯愿景软件有限公司的两名高级工程师担任学校的兼职硕士生导师,对集成电路工程专业的硕士生进行联合培养。企业根据不同层次的学生提供不同的培训方案,以满足各自的需要。

定向培养方案 校企合作的目的不仅仅是为了提高学生的能力,为就业打好基础,也是为了为合作企业培养合格的人才,实现双赢。因此,在专业课程教学过程中,根据校企合作协议以及市场对人才培养的需要,高校应该适时地调整教学方案。结合学校的实际情况,在本科教学过程中,从专业课开始到专业选修课,都融入了实际生产中会用到的相关内容。

如在数字集成电路原理与设计以及模拟集成电路原理与设计两个专业课的讲授过程中,凡是涉及集成电路设计方法和版图设计部分的内容时,都融入了芯愿景有限公司的相关书籍或资料作为补充内容,让学生更加直观地了解企业在进行集成电路设计时是如何进行综合考虑的。在数字集成电路综合实验和集成电路CAD课程设计这两门实验课中,采用芯愿景公司的软件和素材进行案例教学,让学生直观地感受到芯片制作过程中模块安排、虚拟结构单元、数字单元、模拟单元、有源器件、无源器件以及布局布线的相关知识,加深对集成电路芯片设计的认识。在集成电路版图设计和集成电路版图设计实验两门课程的开始过程中,从企业聘请了经验丰富的工程师进入课堂帮助任课教师进行理论教学和实验教学。

以上一系列的培养方案,使学生对集成电路设计流程有了更清楚的认识,让学生了解到了企业对毕业生的需求,为合作企业培养了所需的人才,使企业减少了招聘风险,降低了成本。

3 结束语

校企合作的实践教学模式,带给学生的不仅是对书本知识的深化和技能技巧的训练,更是一次记忆深刻的体验,是一次写在记忆中的成长经历[2]。校企合作协议签订半年多来,经过2009级电子科学与技术专业学生在毕业设计环节中的检验,学生深刻地感受到在理论知识与实际应用相结合的过程中自己还存在哪些方面的欠缺,校园里所学习的理论知识在实际工作中发挥了哪些作用。实习经历虽然短暂,但是学生收获颇丰,最终都找到了理想的工作。

笔者深信,随着校企合作的进一步开展和合作的进一步深入,致力于把合作真真正正地落到实处,带给学生的将是更加丰富的工作经验和待遇优越的就业岗位,带给企业的将是源源不断的就业生力军和企业品牌的进一步推广。

参考文献

第5篇

创新实验是各个大学正在认真实施及探讨的一个重要课题,也是摆在教师和学生面前的一项首要任务,创新性实验的开发需要创新性的教学平台,几年来,我们根据电子专业的教学特点,将电子电路专业的实验同大学生创新创业实践项目、大学生挑战杯项目和毕业论文设计实践这一系列创新内容相结合[1],实现了从“传统教育模式”转型为“创新教育模式”[2-3].例如:设计PNP和NPN三极管电流分配关系演示实验仪,设计声光控传感器件性能的演示电路,设计可控硅导通特性演示电路,设计COMS集成电路特性演示电路等先进行电路的仿真实验,进而制作成有创意的演示教具,开发设计了一系列创新实验内容,既培养了学生的创新精神,又为实验教学奠定了一定基础.

2创新实验电路举例

几年来山西师范大学物信学院电子专业通过开放性多种实验训练方式,学生制作出有特色的多种创新电路及创新电路实验演示板,例如:图1是用数字集成电路制作的三极管电流分配关系演示仪,接通电源,该演示仪能模拟PNP和NPN三极管3个电极电流的流动Ie=Ib+Ic,使学生对三极管的结构、特性达到深刻的理解.图2是图1三极管电流分配关系演示仪图2单双向可控硅导通性能演示实验装置用数字集成电路设计制作的单双向可控硅导通性能演示实验装置[4-5].图3是单向可控硅导通性能模拟演示图,图4是双向可控硅导通性能模拟演示图,该演示装置如果将充电开关按下,电路左边的充电回路就有闪闪发光的充电电流在流动,如果将触发开关按下,右边回路里就有闪闪发光可控硅导通电流在流动,单向可控硅电流只能有一个方向导通电流,而双向可控硅可以有2种触发方式,控制2个方向导通电流在流动,模拟导通电流如图3~4所示,演示效果形象逼真,电路设计说服力强.图5是声光控特性原理设计框图,图6是声光控特性演示实验装置图,该实验装置可通过声光传感器将声光信号送给功放电路及可控硅导通电路分别将声光传感器的导通特性通过1组发光管进行形象演示,使学生对声光传感器件的特性加深了理解.图7是用多种数字集成块巧妙组合而成的CMOS门电路逻辑功能特性演示实验装置,该装置是对数字电路的综合应用,用译码器、数码管显示器、555时基电路、计数器以及多个控制开关组成的数字门电路特性演示器,它可将各种门电路的输出状态通过发光管亮暗的方式、数码管显示“0”“1”的方式、计数器输出端LED依次流动发光的方式,同时演示给学生,使学生对门电路的功能特性达到深刻的理解.图8、图9是学生制作的中学物理演示实验内容,图8将中学物理中二极管的单向导通、电容2个振动波的合成、声波信号的演示、电磁感应现象等中学物理实验电路用电子电路进行模拟演示,当有信号时电路右边的输出端接在二极管倍压整流电路的输入端,输出端接的是1组高亮发光管,显示感应电流的大小、方向等现象,显示方式生动活泼、形象逼真.图7CMOS门电路逻辑功能演示装置电路显示图10是仿真电路的创新设计,它将图7的CMOS门电路逻辑功能演示装置进行仿真演示,图8中学物理实验演示仪装置图9LED型倍压整流电路演示板从另一个方面演示了门电路逻辑功能特性,也是对实验电路的一种创新设计,可以将各种创新电路都可以进行计算机仿真演示,这里就不一一例举

3结束语

第6篇

关键词:CMOS电路;瞬态电流;测试

中图分类号:TN4文献标识码:A文章编号:1009-3044(2008)23-1063-02

On Method of Testing the Transient Current of a CMOS Circuit

SHAO Tao

(Lenovo Group Limited,Beijing 100085, China)

Abstract: IC design and test is one of the major research areas in computer technology today. Testing based on stuck at fault model is insufficient for high performance ICs, especially for CMOS circuits. Using IDDQ testing can reduce the cost of testing and enhance the reliability of the chip remarkably. However, some defects, such as some stuck-open defects in CMOS ICs still cannot be detected by IDDQ testing or by logic testing, and at the same time it faced some challenges of increasing leak electric current in deep submicro technology. Due to these limitations, in order to improve the fault coverage of the testing to meet the demands of people, the dynamic current (IDDT) testing was proposed to detect some faults that cannot be detected by other testing methods.

Key words: COMS Circuit; transient current; Test

1 引言

集成电路是一块微小的硅片,它包含有几百万个电子元件。术语IC隐含的含义是将多个单独的集成电路集成到一个电路中,产生一个十分紧凑的器件。通常认为集成电路就是芯片,而为计算机应用设计的IC则称为计算机芯片。CMOS (Complementary Metal-Oxide-Semiconductor),它指的是一种特殊类型的电子集成电路(IC)[1]。

集成电路技术的高速发展使得一个计算机系统可以集成在一个芯片中。有人说,这类芯片应该用“集成系统”这一名词来代替“集成电路”。研究计算机体系结构的一个重要课题变成怎样用好集成在一个芯片内的几百万上千万晶体管。集成电路和软件成为当今计算机技术的两大主题。特别是早在80年代初期提出的稳态电流测试(IDDtesting)就已逐渐成为了工业界接受的测试方法。稳态电流测试可以大幅度降低测试成本,提高芯片的可靠性。集成电路设计与测试自然成为计算机科学技术工作者关心的重要方向[2]。

但是CMOS电路中的某些故障,例如开路故障,仍然无法用稳态电流测试或逻辑测试的方法检测出来,而且其还面临着深亚微米技术中漏电流日益剧增的严峻挑战。正是由于这些方面的局限性,人们提出了瞬态电流测试方法(IDDT testnig),以便发现一些其他测试方法所不能发现的故障,进而从总体上进一步提高测试的故障覆盖率,满足人们对高性能集成电路的需要。

而所谓CMOS数字集成电路的瞬态电流是指当电路处于过渡过程期间时,由于电路中PMOS管和NMOS管同时导通以及电路中等效电容的充放电,使得电流变化剧烈而且复杂,人们称之为瞬态电流。目前,瞬态电流测试一般采用的方法包括:数字信号处理技术和对瞬态电流平均值的分析。

2 当前集成电路常用测试方法

1959年,Elderd[3]提出了世界上首篇关于组合电路的测试报告,并将此方法用于第一代的电子管计算机Datamatci-1000的诊断中,从此揭开了数字系统测试的序幕。经过研究人员近半个世纪的不懈努力,逐渐形成了一系列的测试方法,并且广泛的应用在工业领域。这些测试方法主要包括:电压测试方法和稳态电流测试方法。进入本世纪以来,为了适应电子电路高速化,大规模化发展的需求,研究人员又提出了新的测试方法。其中最具代表性的是瞬态电流测试方法和全速电流测试方法。

2.1 电压测试方法

电压测试技术主要是指通过观察无故障电路和故障电路的原始输出信号来检测故障。它主要是针对固定型故障的,通过改进电压测试方法也可以用于检测时滞故障。

通常,被测电路CUT(Circuit Under test)具有n个原始输入和m个原始输出(如图1),设该电路正常时输出为F(X),存在某故障a时输出为Fa(X),则可以检测故障a的条件是:

即存在输入X,使得故障电路的输出信号和无故障电路的输出信号不同。目前,电压测试生成和故障模拟技术均已十分成熟。电压测试在开关级和门级的研究已比较完善,并在工业界得到广泛的应用。通过广大科研人员对电压测试方法的不断改进[4],该方法已经可以检测多种故障类型,成为检测开关级和门级故障应用最广的测试方法。

2.2 电流测试方法

提出电流测试技术的目的不是要取代传统的逻辑值测试方法,而是为了弥补电压测试的不足,作为电压测试方法的补充,进一步提高故障覆盖率,保证集成电路产品的高可靠性。

IDDQ测试可以检测很多类型的故障,比如某些晶体管开路故障、晶体管短路故障、晶体管栅氧化层短接故障、互连桥接故障以及CMOS制造工艺中限制成品率的许多缺陷等等。这些故障都是传统的电压测试难以检测出来的故障。因此,IDDQ方法作为逻辑测试方法的补充,可以有效的提高故障覆盖率、产品可靠性以及降低产品成本,成为一种工业界广泛使用的测试技术。CMOS电路静态电流非常小,在25℃温度下的典型值为1~500nA.一个CMOS门的长时间平均功耗用下式表示:

为了要检测CMOS电路中的某一个故障,IDDQ测试向量必须在该故障条件下制造一条或多条由VDD到Vss的低电阻通路。这就是IDDQ测试产生.这相当于传统的测试产生中故障的激活和控制。但是,和传统测试产生不一样的是:IDDQ测试产生不需要把故障效应传播到原始输出端。因为,IDDQ的观测并不在原始输出端。有3种类型的IDDQ测试集。第1种是用传统的电压测试的测试集,对每一个逻辑测试,都测IDDQ。由于IDDQ测试比较慢,这种办法不可取。第2种是选少于1%的逻辑测试,加测IDDQ。最近国内开发的QUIETEST系统[5]选择测试向量,使得IDDQ测试能检测每个晶体管栅、漏、源和体之间的所有6种桥接故障。目前工业界都采用选择方式,对4万门的时序电路,可以做到既经济又有效。

2.3 瞬态电流测试方法

该方法于上世纪90年代中期提出,并且通过实验验证了这种方法在理论上是可行的。瞬态电流是指当电路在输入发生变化时,电路内部各点随之变化,在各点状态稳定下来之前,由于电路中PMOS管和NMOS管可能在瞬间同时导通以及电路中电容的充放电,电源到地之间产生剧烈而复杂变化的电源电流。其测试原理与稳态电流类似,主要通过故障状态下的瞬态电流与正常状态下的瞬态电流的差别来检测故障。但是由于瞬态电流测试方法所观测的对象与传统的测试方法(电压、稳态电流等)不同,所以使用这种方法可能检测到某些用传统方法不可检测的故障。

3 基于CMOS电路的瞬态电流测试

CMOS电路中晶体管的开路故障(stuck-open fault)不易用电压测试或稳态电流测试进行检测,而瞬态电流测试则可以比较容易地把它们检测出来。

有研究认为应用遗传算法对CMOS电路中的开路故障进行测试生成,但应用此法时间开销非常大。虽有人对该算法进行了进化,并对电路中的每一个故障都做了一次测试生成,但事实上电路中有很多故障相互之间存在某种关系,因此该法时间效率比依然较低。

3.1 测试生成标准

由于逻辑门的实际时间延迟具有不确定性,可能导致使用固定时间延迟的测试生成方法所生成的测试向量失效,即在实际测试应用中,这些测试向量可能无法激活故障,或者不能使无故障电路与故障电路之间产生预想的足够大的电流差。所以测试生成应该遵循以下原则:

1)用稳定跳变激活故障,并使故障门的旁路为非控制值;

2)测试向量应遵循规避风险原则;

3)测试向量要使测度值尽可能的大。

3.2 故障激活

如果要检测CMOS管的开路故障,除了在与故障晶体管相连的输入上有一个跳变外,其它输入也可能存在跳变。当与故障晶体管相连的输入端上的跳变,出现在其他输入端发生跳变之前,则我们希望测试的那个故障将不能被激活。现在我们以两输入与非门为例进行说明,假设与非门有N2开路故障。在某一特定门延时条件下,如果激活故障的波形如图2所示,根据表1中的规定,该波形可以激活故障。

3 结束语

由于瞬态电流测试的研究目前还处在初始阶段,还没有一个比较好的测试生成算法。目前,瞬态电流测试产生采用的算法主要有:随机产生一局部搜索算法、遗传算法、利用电路信息的启发式搜索算法。以上的算法各有其优缺点,随机产生一局部搜索算法考

虑门延时的影响且实现简单,但故障覆盖率不高;遗传算法故障覆盖率较高并考虑了门延时的作用,但时间开销较大;利用电路信息的启发式搜索算法在保持一定故障覆盖率的基础上时间效率较好,但没有考虑门延时的影响。本文在静态下对开路故障进行瞬态电流测试生成,然后在考虑延时变化的情况下对开路故障进行故障模拟。

参考文献:

[1] Levi M.CMOS is most testable[C].In: IEEE 1981 Int'l Test Conf.Philadelphia,PA,1981:217-220.

[2] 冯建华,孙义和.CMOS电路IDDQ测试方法研究与进展[C].2000年全国测试学术会议论文集,2000:114-118.

[3] 杨士元.数字系统的故障诊断与可靠性设计[M].2版.北京:清华大学出版社,2000.

第7篇

关键词:斜坡发生器 电流舵 TDC

中图分类号:TN792 文献标识码:A 文章编号:1007-9416(2016)10-0153-01

近年恚随着CMOS集成电路工艺水平和设计技术的不断发展,CMOS图像传感器得到迅速的发展。普通单斜模数转换器(Single-Slope ADC)以其优越的性能广泛应用,但其速度限制了它在高速高精度CMOS图像传感器中的应用,而Time to Digital Single-Slope ADC(TDSS ADC)既保留了普通单斜结构的优势,又提高转换速率。而斜坡发生器作为普通Single-Slope ADC的重要组成部分,在TDSS ADC也是必不可少的。

1 斜坡发生器电路的设计与分析

斜坡发生器为8位,实现精度为12位。电压幅度为1.5V,单个台阶高度为:

产生单个台阶电流增量为ILSB=16μA,那么电流源网络的整体负载电阻为:

为了满足精细比较阶段的要求,还需要增加32个台阶。那么斜坡发生器需要的总台阶数量为M=28-1+2×24=287个,最终降斜坡电压范围约为2.5V-0.818V。

1.1 电流舵分段方式的确定

电流舵斜坡发生器根据电流源网络的实现方式可以分为二进制译码型和温度计译码型[1]。通过比较两种网络的优缺点,最终采用二进制和温度计型混合译码型电路。采用4+4的分段方式实现了一个8位斜坡发生器,即低4位用二进制译码型,高4位用温度计码型,实际精度达到12位。

1.2 输出转换电路的设计

驱动电路就是运算放大器组成的跟随器,所以驱动电路的设计就是对运放的设计。

实际运放接为的跟随器的增益误差可以表示为公式(1.3),Vout是理想输出,实际输出Vout。

增益误差应该小于0.5LSB,对于该电路要求的1.68V的电压摆幅,即Vref=1.68V,实现12位的精度,可以得出对运放增益误差的要求为:

由上式可得运算放大器的最小增益为74dB。

运放的时间常数可以表示为公式(1.5),其中ω0为3dB带宽,Av(0)ω0是单位增益带宽,Av(0)即为跟随器的低频环路增益。

对于12位的精度要求的运放,输出增益误差达到小于0.0205%的时间t0.0205%可以得出:

该运算放大器工作频率为50MHz,取其稳定时间为时钟周期的65%,那么由t0.0205%=13ns就可以得到该运放需要达到的单位增益带宽为:

所以要满足设计要求,运放的单位增益带宽要达到104MHz。

1.3 运算放大器的设计

根据计算要求,本文中的运算放大器采用了轨到轨运算放大器来实现。该放大器可以分为输入级、中间级、输出级和补偿电路组成。

输入电路采用了PMOS和NMOS共用的互补差分输入,同时采用了电流镜技术来使得互补输入在输入共模范围内具有较为恒定的总输入跨导[2]。

本运放中间放大级设计采取折叠式共源共栅结构。折叠共源共栅中间放大级构成加法电路,从差分输出的电流进入此加法电路后,通过两个电流镜实现双端到单端的转换,输出给下一级电路。设计时一方面为了提高输出电阻和摆幅,采用了含有反馈电路的宽摆幅共源共栅结构的电流镜作为负载。

输出级采用带有AB类偏置的推挽输出级,它可以实现全摆幅输出,并且其送至负载的最大信号电流与输出级静态电流的比值大,电源利用率高。

两级电路中需要加入补偿电路以确保有合适的相位裕度来使运放工作状态稳定,该运算放大中的补偿电路通过接入合适的电容Cc1和Cc2来实现的。补偿电容的大小与负载电容、两级电路的输入跨导和电路的单位增益带宽等因素有关,设计中需要综合考虑。

2 结语

论文首先详细介绍了适用于TDSS ADC实现12位精度的斜坡发生器设计过程,电路主要包括电流源网络、开关网络及输出转换电路三部分。论文详细分析了电流源电路、开关电路和输出级电路的设计。

在UMC130nm CMOS工艺下完成整体电路的设计后,分别仿真验证了各个电路模块的功能和输出,然后对整体斜坡发生器进行了仿真分析,最终得到0.81V-2.48V的斜坡仿真电压,其中Dnl+-0.485LSB,INL+-0.0869LSB,仿真结果满足设计要求。

参考文献

[1]黎佳.一种12位500MS/s分段型电流舵DAC的设计[J].电子技术应用,2013,39(5):48-50.

[2]刘华珠,黄海云,宋瑞.功耗轨至轨CMOS运算放大器设计[J].半导体技术,2011年6期.

第8篇

我校微电子科学与工程专业是在应用物理学专业微电子方向的基础上,于2009年提出申请,同年9月经陕西省教育厅批准,于2010年增设的,专业代码为080704,属于工学大类,电子信息类。学制四年,授予理学学士学位。本专业培养具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。

二、微电子科学与工程的专业特征

通过实验、技能训练和到实习基地顶岗实习,本专业毕业生应具备以下能力:(1)掌握数学、物理等方面的基本理论和基本知识;(2)掌握固体电子学、微电子器件和集成电路设计与制造等方面的基本理论和基本知识,掌握集成电路和其他半导体器件的分析与设计方法,具有独立进行版图设计、器件性能分析的基本能力;(3)了解相近专业的一般原理和知识;(4)熟悉国家电子产业政策、国内外有关的知识产权及其他法律法规;(5)了解VLSI和其他新型半导体器件的理论前沿、应用前景和最新发展动态,以及微电子产业发展状况;(6)掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。微电子科学与工程专业具备以下特征:兼容性:本专业是理工兼容的专业,融合了物理学、化学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科的基本知识、基础理论;交叉性:微电子科学与工程专业是超净、超纯、超精细加工等多种技术交叉的基础上发展起来的学科;基础性:微电子科学与工程专业是电子科学技术、信息科学技术、计算机科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础。

三、学科建设的实践与探索

学科建设是一个长期积累、不断提高的过程,重在建设和积累。我们在建设过程中以教学团队为抓手,以课程群为载体,以课堂教学为主渠道,以深化改革为手段,以培养学生实践创新能力、持续提高教学质量为目标。将教学团队建设、课程群建设和教学改革紧密结合,作为系统工程整体推进,实现成效的最大化。教学团队建设、师资队伍建设和青年教师培养相结合。教学团队从师资队伍中产生,不能孤立于师资队伍建设之外,师资队伍建设需要高水平教学团队的带领和引导,需要传帮带。为了使教学团队具备坚实的基础,同时发挥其辐射引领作用,必须提高教师的整体教学水平和大面积教学质量,必须大力狠抓师资队伍建设,对于开办时间不长的新专业而言,更要特别注重新进青年教师的培养。首先,理念引导,认识到位。我们始终坚持教学是人才培养的第一要务的宗旨,确立了教学的重要地位,为了把教学这个良心活做好,我们在教学活动中一再强调换位思考,希望任课教师要像当年要求自己的教师那样要求自己,以对学生、学校、家长、专业、社会高度负责的态度讲好每一节课。教师们教学态度端正、认识到位,责任心强,这是搞好教学工作的前提。其次,建立长效机制。通过建立一系列行之有效的规章制度、运行机制和政策措施,如青年教师培训培养机制、教学信息交流反馈机制、资源经验共享互用机制,通过互相听课、针对性听课、随机听课、学生评教等渠道了解、检查教师的教学情况,做到有问题及时反馈、沟通并督促限期整改。针对新近开办专业青年教师多的现状,我们着力培养青年教师的教学基本功,定期、不定期召开青年教师座谈会,交流治学、教学、科研经验,要求他们跟班听课并要听不同教师的讲课,博采众长。同时,要求青年教师根据工作需要,结合个人特长选定主讲课程(至少两门),扎实练就教学基本功。鼓励和支持年轻教师到国内外进修学习,加速他们的成长。

1.课程群建设、教学团队建设与课堂教学相结合。

教学团队不能脱离课程而单独存在,课程群需要高水平的教学团队去建设。目前课堂教学仍是本科教学的主渠道,因此必须将课程群建设、教学团队建设融入课堂教学,才能把建设落到实处,并在具体的课堂教学中体现建设效果。微电子教学团队和课程组认真研究了半导体物理、半导体器件、集成电路设计原理等这几门课程之间的区别、联系、共性和互补性,对传统的教学内容进行了整合、改革,以促进各课程之间的相互渗透、优势互补和资源共享,更好地处理理论教学、实验教学和实际应用之间的关系。把教学团队和课程群建设的成果有效地落实到课堂教学中,接受课堂和学生的检验,并做到互相促进,增强了整体效果。

2.课程建设与科学研究、教学研究、教学改革相结合。

只有深入开展教学研究,才能有效地推进教学改革和课程建设。我们对教学研究常抓不懈,常研常新,从教学内容、教学方法、教学手段和方案实施等方面全方位抓起,不断深化教学研究和教学改革。对于课程内容的研究与改革,从宏观上把握课程的科学体系和各部分之间的关系、理清主线、抓住要点;从微观上对教材的具体内容进行深入研究,如MOS场效应管与现行手机屏之间的关系,由于和实际生活非常近,非常受学生的欢迎。教学方式与手段的研究与改革方面,可以阅读科学史和科学家传记,从中受到启发,如杨振宁的老师泰勒水平很高,但往往无暇备课,上课时总是现想现推,有时就会陷入困境或误入歧途,恰恰是在他摆脱困境和纠错的探索中,让细心的学生有机会亲眼看到老师的思维过程和分析、解决问题的方法。这是鲜活的问题解决式教学,泰勒是无意的,有经验的教师难道不可以有意而为吗?教学的关键和难处在于揭示前人的发现过程和思想脉络,这就需要任课教师了解相关的历史和教育学原理,在发挥教师主导作用的同时,通过提问、专题讨论等方式活跃课堂气氛,促使学生积极思考,让其从知识的被动接受者转变为主动参与者和纠结探索者,发挥学生的主体作用。进而微电子科学与工程专业的教师把自己现有的纵横向科研课题带入课堂教学中去,让学生感受科学研究的氛围,并通过专业课程的熏陶培养学生的科学美感。

3.理论教学、模拟实验、实验教学与生产实践相结合。

实践性教学环节包括:认识实践、毕业实践和毕业设计等几方面。加强实践教学环节,突出微电子学应用型人才培养特色。提高校内实验实践基地建设的规模与水平;加强与校外教学实践基地合作,提升校外合作教育基地的层次和联系紧密度,实行“双师型”教学模式,加强实践教学环节,提高学生的实践能力。形成先进的实践教学理念,坚持不断的实训,构建以学生为主体的实践教学模式,以取代传统的教师主体式的模式,构建主动适应社会发展所需人才的培养体系。加大力度组织学生参加各类科技竞赛,力求每年参与创新创业实践和学科竞赛活动的学生比例逐年递增的趋势。生产实践是学生学以致用、锻炼能力、增强创新的重要活动,通过不断加强实验性、实践性、应用性、创新性教育环节,使学生自己体验学、用微电子的乐趣,有效地提高了学生的实践能力和创新意识。

四、结语