发布时间:2023-06-06 15:56:23
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的电力系统概论样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
1.树形节点存储
数据库中新建Tree_Initialization(用于存储树形控件中节点信息)表,一共有4个字段,分别为Node_Name(String型)、Node_ID(Integer型)、Node_Location(String型)、Node_Level(Integer型),可分别对树形节点进行新增、修改、查询、删除、统计等操作。下面就Tree_Initialization表中字段分别说明:Node_Name:String型,Node_Name表示含义为具体的房间名称,组成由区-栋-房间号构成,一共有三种类型的Node_Name,如表1所示,例如#C只表示C区,#C-2只表示C区2栋,#C-2-002表示为C区2栋2号房间,在这里只显示了#A区、#B区、#C区、#D区、#E区、#F区共6个片区,在程序中,实际上可以往下继续新增区域、栋和房间号,区域个数限制10个,栋数个数限制为10个,房间号限制为100个。Node_ID:Integer型,Node_ID从数值1开始递增,计算整个酒店的可用房间数量。Node_Location:String型,Node_Location表示节点的具置,一共有3种,分别为长度=2、长度=3、长度=6,长度为2的表示到区,长度为3的表示到栋,长度为6的表示到房间号,区、栋、房间号之间的逻辑关系通过字段Node_Location的String值来表示,如表1所示,例如Node_Name=”#C2-2-003”所对应的字段Node_Location=”132003”,前面两位”13”表示具体的区,在表中对应找到”13”所表示的区为#C区,第三位数值”2”+前两位”13”,对应的”132”在表中可以找到对应的区-栋,#C-2,最后三位003表示具体的房间号,+前三位”132”在表中可以找到对应的Node_Name=”#C2-2-003”。Node_Level:Integer型,Node_Level分为3层,第1层、第2层、第3层,第1层表示区,第2层表示栋,第3层表示房间号。
2.树形节点变更
将Tree_Initialization表中Node_Name、Node_ID、Node_Location和Node_Level4个字段配合使用,就可以实现树形节点的新增、删除、重命名等操作,例如,在主界面左侧树形节点上#C-4上点击新建房间号,连续点击新增003,004房间号(这里假设#C-4栋下不存在003和004房间,因为按照程序设置,在具体的某区某栋下,房间号是唯一值,不能重复,但是#C-3栋和#C-4栋在程序中假定是不同的,即#C-3栋和#C-4栋下都可以存在001房间),Tree_Initialization表中变化如表2所示。表2Tree_Initialization更新表(部分节点)界面上点击新增房间003,004按钮,相当于在Tree_Initialization表中插入两条新数据,“#C-4-003、32,134006,3”和“#C-4-004、33,134007,3”,并且将之前#D-1-001和#D-1-002的Node_ID分别+2,修改至34,35,当然这里插入和修改的数据,都通过算法进行判断和计算,计算过程如下:
(1)从Tree_Initialization表中找出Node_Level=3的所有Node_Name值,sql.executeQuery("SELECTNode_Name-FROMTree_InitializationWHERENode_Level=3"),将所有Node_Name值与新建的房间号进行对比,以防重复插入房间号;
(2)从Tree_Initialization表中查找Node_Namelikenode.getUserObject()中Node_ID字段中的最大值,sql.execute-Query("SELECTmax(Node_ID)asnumFROMTree_Initializa-tionwhereNode_Namelike"+s_room);
(3)向Tree_Initialization表插入数据,"INSERTIN-TOTree_InitializationVALUES("+"''''"+t_floor+Node_Name+"''''"+","+"''''"+(max_number+1)+"''''"+","+"''''"+String_Node_Location_New+"''''"+","+"''''3''''"+")";其中变量t_floor+Node_Name和String_Node_Location_New在程序其它处通过手段获取或者计算所得,在这里不详细说明其获取值的具体方法;
(4)修改Tree_Initialization表中其他房间号的Node_ID值,这里修改的是Node_ID值大于某个值X(在此处X=32)的房间号,将值++,"UPDATETree_Initializa-tionSETNode_ID=Node_ID+1whereN-ode_Name="+"''''"+String_Node_Name+"''''",程序中每当新增一个房间号时,Node_ID值都做一个自增加运算。以上描述的是在某区某栋下新增房间号的过程,其实新增某区或者在某区下新增某栋,其算法思想都如上所述,仅仅是某些字段值需要改变,在这里不再表述。同理,笔者在实现对某区、某栋、某房间号的重命名、删除等节点操作时,其算法思想也如新增节点操作相似,目的就是保持Tree_Initialization表中各节点之间的逻辑关系。所有对树形节点的变更操作均要由系统后台管理员(系统分为前台操作员和后台管理员,这里可以限定前台操作员的变更权限)来完成。
3.树形节点读入
在启动系统过程中,从数据库中读入界面信息(这里仅仅写出读入树形控件节点信息)的源代码实现如下:publicstaticvoidcreateNodes(){try{//连接数据库代码,此处省略ResultSetrs=sql.executeQuery("SELECTNode_ID,Node_Name,Node_LocationFROMTree_InitializationorderbyNode_Locationasc");while(rs.next()){Strings=rs.getString("Node_Location");StringchildName=rs.getString("Node_Name");intnumber=rs.getInt("Node_ID");if(s.length()==1){node[number]=newDefaultMutableTreeNode(child-Name);}else{if(s.length()<=3){node[number]=newDefaultMutableTreeNode(childName);Stringparents=s.substring(0,s.length()-1);ResultSetrs1=sql1.executeQuery("SELECTNode_IDFROMTree_InitializationwhereNode_Location="+"''''"+par-ents+"''''");while(rs1.next()){intparentNumber=rs1.getInt("Node_ID");node[parentNumber].add(node[number]);}}else{node[number]=newDefaultMutableTreeNode(childName);Stringparents=s.substring(0,s.length()-3);ResultSetrs1=sql1.executeQuery("SELECTNode_IDFROMTree_InitializationwhereNode_Location="+"''''"+par-ents+"''''");while(rs1.next()){intparentNumber=rs1.getInt("Node_ID");node[parentNumber].add(node[number]);
二、总结
关键词:电气企业;电气工程;重要作用;应用现状
1、最优控制理论在电力系统配网自动化中的应用现状
随着我国经济的不断发展,电力系统建设发展更加迅速,进而电力企业的规模也逐渐扩大,电力企业对各方面的管理也更加规范,更加合理,尤其是对电力企业资质管理体制更加的有序合理,电力企业在经济建设中发挥的作用也越来越大,而在电力系统配电网过程中,最优控制理论被广泛地应用,它是电力企业管理的重要内容,也是电力企业能够正常运行的重要保证,能够帮助打造电力企业的核心竞争力,是电力企业发展的内在要求。
在目前我国经济的发展阶段,我国的电力企业属于粗放型的经营模式,管理方面有一定形式的缺陷,就是管理部门将任务分配给项目管理人员,接着设想一下他们项目开展之后的进程,但是由于后期实施的过程中,缺乏专业人员的监督,使得项目工程有所延误。还有一种情况是,管理部门有较大的项目,但是没有具体的实施方案和执行技巧。还有一些企业的项目管理处于无序状态,硬件设施管理不齐全,器具堆放杂乱无章,项目部署没有合理科学地规划,导致项目进度无法推进,直接造成了企业项目的工程时间耽误。如果一个工程项目不规范、不科学,任其自由的发展,不仅会造成项目工期的延长,而且还会造成不必要的人力、物力、财力的损失。但有的项目人员为了一味的追求进度而不顾项目的承受能力,这势必会造成工程成本的增加,对工程的施工质量也无法保证,会给之后的电力系统配电项目留下巨大的隐患。
随着我国经济的快速发展,我国正处于“十三五”规划的攻坚之年和转型之年,要发挥市场在社会主义市场中的决定性作用,并且发挥政府的宏观调控作用来满足我国人们的物质精神文化需求。而电力系统配电网自动化为我国的经济注入新的活力,推动经济发展做出重要成果,在我国电力企业中发挥着至关重要的效益,甚至可以带动电力企业的发展。
我国目前的发展模式仍然以资源型产业和原料性产业,以牺牲环境和资源而换得经济的发展,这种盲目急速的发展状态使得经济的发展远远超出了环境和资源所能承受的范围,造成严重的能源资源短缺问题。因此,我国在上个世纪九十年代便开始研究将最优控制理论应用于电力系统配网自动化中,通过这一理论可以准确地控制电网的配电数据和范围,为我国得到电力企业实施电力配网带来不少便利。
2、最优控制理论在电力系统配网自动化中的基本概述
最优控制系统理论研究的主要问题在于,它是根据已建立的被控对象的数学模型,来选择一个容许控制的对象和区域,使得被控制的对象要按照规定进行运作,并要求将给定的某一性能的指标要达到最优化。近年来,随着我国科学技术的发展,计算机技术的不断进步,最优控制理论出现了数值解法,通过直接搜索法和叠加法找出最适合的控制范围,对于得出的结论比较接近或者是邻近取值,都用比较简单的梯度法或者单纯形法等等的方式。与此同时,计算机可以作为最优控制系统中的一个重要组成部分,可以实现数据在线控制,从而使得最优控制系统在电力系统配网自动化的应用中也变为现实,具有一定的实践意义。
发展到目前为止,对于最优控制系统的研究,无论是在深度上还是广度上都得到了一定程度的发展,而且未来的发展前景也是非常广阔的,并形成了非常实用的学科分支,例如有随机最优控制、分布参数控制等等方法。就目前的发展情况来讲,最优控制系统在电力系统的配网自动化的研究中还是具有非常大的现实意义和经济效益的。
3、最优控制理论在电力系统配网自动化中的应用研究
电力系统的配网自动化有很多因素和条件的限制,设计了新建变电站建设时间、建设地点以及容量大小的最优选择控制,要求满足配网自动化的最大需求。在已知的规划好的预测负荷和电源规划的基础上,根据现有的网络和计算机给出的确定参数,科学合理的新建线路,使得电力系统的配网自动化电网设计可以适应更好的电量负荷,要设计科学可靠的,运行安全且有经济实惠的。但是由于电力系统的配网自动化涉及的因素比较多,而且受到多种变量的束缚,进而电力系统的配网自动化其实是一个非常复杂的大规模的组合优化问题。
随着我国科学技术的发展,电力市场改革的不断深入,以及可靠性价值概念的形成,电力系统的配网自动化越来越受到重视,其中一个关键的因素是可靠性边际成本,从而使得配网自动化的的效益达到良好。而可靠性边际成本是指增加一个单位可靠性水平而获得更大的经济效益而减少投入成本,可靠性边际成本包括分段开关的投资费用和运行的维修费用,可靠性边际成本效益目的是为了那些因电力供给不足而造成的用户停电损失,而电力系统的配网自动化设计的总费用包括开关投资费用、运行维修费用和用户停电损失费用等等。
电力系统配网自动化设计还有一个比较重要的创新就是安装配电网故障定位系统,它是一个实时在线处理系统,可以随时解决用户提出的问题,但是其工作量大,工作环境相对恶劣,温差变化很大,而且一般都装在高电压和高电流的装置上,而且配电网的通信点一般都比较多而且分散,很难采用同一种方式来进行解决,一般要采用混合式的通讯方式,再加上一些干扰因素,配电网故障信息受干扰的可能性就会加大。
在最优控制理论应用中,还有一个重要的部分就是配电网的优化及重构,配电网的优化及重构是指配电网在正常运行中,在电力系统进行运作时,会根据理想的实际负荷来判断负荷的实际分布情况,进而决定网路信息的理想运作模式,在理想的运作模式与前的实际运作模式加以对比,才可以决定采用的解决方式和实际的负荷运载量。这些理想的运作模式就是为了强制的改变电力系统的供电路径,使得电力系统的供电设备可以达到最优模式。
配电网优化及重构设备可以使得电力系统降低耗能,节约资源能源,进一步提高供电质量和供电可靠性和科学性,,改善电力系统的电压分布和功率分布,延长电力系统设备的使用时限,可以更好地带来经济效益和社会效益。通过优化重构不仅可以平衡负荷消除过载,进一步提高供电电压的质量,而且还可以降低电力损耗,提高电力系统设备的经济性。
4、结束语
综上所述,最优控制理论在电力配网自动化实践应用还是非常有成效的,而且应用前景非常广阔,使得电力系统管理已经更加的专业化、科技化、规范化和动态化。为了顺应时代的发展要求,电力系统企业应该努力提高其自身的核心竞争力,发挥其自身的优点来创造更多的价值,占据更多的市场份额。
参考文献:
[1] 仉志华. 基于UPFC的自愈配电环网及其潮流优化控制技术的研究[D]. 济南:山东大学,2012.
【关键词】 教学;留学生;电力市场概论
【中图分类号】G642.3 【文献标识码】A 【文章编号】2095-3089(2013)29-00-01
为了提高能源利用率,应对全球能源危机和环境污染问题,世界许多国家提出了电力工业重要的可持续发展方向:电力市场建设。2009年,美国总统奥巴马提出了美国要建立坚强智能电网的改革计划,实现在美国东西两岸电力的高效传输。同时,中国国家电网公司近期公布了将于2020年建成统一的坚强智能电网的发展计划。
电力市场是一个以电力系统为对象,结合微观经济学基本概念,分析电力这个特殊的商品,实现从发输配电到用户所有环节的智能交流,优化生产、传输和使用的自愈电网。与传统电网相比,电力市场引入后,大量智能技术的致使电网具备了许多新的功能,如可再生能源的大量接入,支持用户需求响应的市场交易机制,电网运行状况的实时监控等。智能电网建设强有力的支撑了电力市场的发展,智能电网也促进了电力市场的改革。
因此作为电力系统及其自动化的本科留学生,有必要学习《电力市场概论》这门课程。本文详细介绍了教学目的与要求,课程内容及采用的教学方法,教学环节与学时分配,课程评价设计。
一、教学目的与要求
《电力市场概论》是电气工程及其自动化专业的专业课程,选修。
通过本课程的教学,使学生了解电力市场的研究现状、发展动态以及电力市场化的意义;熟知电力市场的运营模式、交易理论;掌握电力市场的电价、输电服务的理论和方法;拓展学生的知识面,培养和提高新的环境下电网规划、运行和管理能力,了解中国电力工业的管理体制和基本的市场运行规律。
1、主要先修课程和后续课程
先修课程:电力系统稳态分析、微观经济学。
后续课程:无。
2、教学方式与重点和难点
教学方式:以课堂教学为主,辅以国、内外电力市场分析加之以案例讨论。
重点内容:在“保护竞争”与“公开、公平、公正”的原则指导下,制定合理的电力市场交易方式、制定电价。
难点内容:对电力市场交易的理解与“公平”原则的实施,交易计划的确定和电价的计算。
二、教学内容
(一)电力市场理论基础
包括电力市场的基本概念、运营模式、运行规则、电价制度、发电竞价上网、电能转运、用户管理,辅助服务和监管体制等内容。
(二)电力市场交易模式
包括电力市场的主要成员、组织结构、交易类型和交易模式。
(三)Pool中的拍卖方法
包括市场参与者的报价形式、拍卖方法,着重讲述实时电价和阻塞管理。
(四)电力市场的辅助服务
包括频率控制、发电备用容量、无功功率的管理方法。
(五)电力市场技术支持系统
包括报价处理系统、交易管理系统、合同管理系统、结算管理系统、信息系统、数据网络系统和通信协议、发电厂报价及发电管理等子系统。
(六)国外电力市场
包括英国电力市场、加州电力市场、PJM电力市场以及其它电力市场的运营情况。
(七)中国电力市场
包括中国电力市场的构想、体制改革情况以及浙江和山东电力市场的运营情况。
三、课程的教学方法
为加深留学生对课程的理解程度,在教学上,采用“理论”与“项目”结合的方式进行教学。教师选取典型项目,分析和演示,之后将学生分组,分别讨论项目的解决方案及具体实施方式。然后留学生演示项目结果,由学生阐述项目机理、交易及运营方式等。最后由老师进行归纳总结。
四、教学环节与学时分配
本课程总学时为26学时,教学环节包括课堂教学、案例教学、课外辅导、作业等,其学时分配建议见表。
《电力市场概论》教学学时分配表
教学内容 总学时 其中 课外辅导/课外实践
讲课 实验 上机 其他
理论基础 2 2
交易模式 4 4
Pool拍卖方法 4 4 2
辅助服务 4 4 案例教学
技术支持系统 6 4 2
国外电力市场 6 4 案例教学 4
中国电力市场 2 4 2
总计 28 26 2 10
五、课程评价设计
课程采用考查方式进行考核。同时,平时表现也要作为考核总成绩的组成部分。因此,本课程的考评方式采取平时成绩和期末成绩两者综合的考评方式。考虑到留学生的特殊性,平时成绩占60%,期末成绩占40%。
关键词:电力系统;自动化;技术
中图分类号:TM7 6 文献标识码:A
电力系统自动化简单说来,就是根据电力系统本身特有的规律,应用自动控制原理,采用自动控制装置来自动地实现电力生产的安全可靠运行。换句话说有了自动化,就可以保证电力系统安全可靠运行,有了自动化,就可以大大减轻人的劳动强度,提高生产效率。
1电力系统自动化分类
1.1电力系统自动监视和控制系统
系统主要是为电网调度服务的。我们知道,电力系统是由许许多多发电厂、变电所、输电线以及用户所组成的,这些发电厂、变电所的实际运行状况、线路的有功无功潮流,以及母线电压等信息,一般是通过装设在各厂站的远动装置送至调度所。调度所有大有小,我国一般分为五级调度,即国家调度、大区调度、省级调度、地区调度和县级调度,各级调度的职能和管辖范围是不同的,这些远动信息送至调度后,由调度中心的运行人员和计算机系统,对当前系统运行状态进行分析计算,最后再将计算结果及决策命令通过远动的下行通道送至各个厂所,从而实现电力系统的安全经济运行。因此,电力系统调度的主要任务可以概括为,控制整个电力系统的运行方式,使整个电力系统在正常状态下能满足安全优质和经济地向用户供电的要求,在事故状态下能迅速消除故障的影响和恢复正常供电。
1.2电厂动力机械自动控制系统
系统主要是为电厂的动力机械自动控制服务的。动力机械随电厂的类型不同而不同,如火电厂需要控制的是锅炉汽机等热力设备。大容量火力发电机组自动控制系统主要有计算机监视和数据系统,机炉协调主控系统,锅炉自动控制系统,汽机自动控制系统,发电机电气控制系统以及辅助设备自动控制系统等。水电厂则需要控制的是水轮机、调速器以及水轮发电机励磁自动控制系统等。
1.3变电站自动控制系统
变电站的自动控制系统是在原来常规变电二次系统的基础上发展起来的,随着微机监控技术在电力系统和电厂自动化系统中的不断发展,微机监控监测技术也开始引入变电站,目前已实现了变电站的远方监视控制,远动和继电保护已实现了微机化,各地正大力开展无人值班变电站设计改造工作。无人值班变电站将会使变电站综合自动化程度推向一个更高的阶段,其功能包括变电站的远动、继电保护、远方开关操作、测量及故障、事故顺序记录和运行参数自动打印等功能。
1.4电力系统自动装置系统
系统主要是为电力系统安全可靠经济运行服务的,它主要是指发电机组的自动控制装置如发电机组的自动并列装置,自动励磁装置,自动解列装置,发电厂变电所主接线操作和运行的自动控制装置,以及电力系统的安全自动控制装置如低频减载装置,自动重合闸装置,继电保护装置等,这些装置都是直接为电力系统的安全可靠、经济运行服务的。
2综合自动化系统
电力系统结构图纸设计完成之后,电力自动化得到了开放式的管理与lED并网,可实际相关的灵活系统的运行,已不能满足高类别的变电站的运行需求了。
2.1变电站电网自动化系统结构功能
电力自动化系统结构的功能:
(1)微机保护。含母线保护、多次重合闸、电容器保护、变压器的保护、备用电源能的自投。
(2)电力数据采集与采集的状态。
①电力模拟量的采集:每个系统进出线的电力回路功率与电力的电流值、各阶段母线电压;配电网相位及电力频率等电力的电量的参数以及变压器的压力,温度等非电参数。
②状态的采集:有变压器分、接地刀闸状态、开关的状态、断路器状态等,信号多数使用光电隔离方式开关量中断进行输入。
(3)关于时间上的记载和障碍点的记录。包括保护行动序列记录,及开关跳闸的记录,可存放100个时间记录。
(4)规划整定保定值。对保护装置,可以是设置多方面的定值,显示需要进行切换。
(5)操作与控制。可以对变压器进行分别接头调节控制,对进行控制隔离开关合与分,还可对断路器调换。
(6)电容器自动调控、电压的自动调控以及备用电源的自动投入,电容器可以自动的切换通过电压和功率因子的自控变压器。如果主电源失效,可以自动投入备用的电源。
(7)和远程调控中心互相通信。可以将采集的状态量实时送往远程调控中心,方便装置的远程调控,接受远程调控中心所发来的一些指令。
(8)数据统计以及记录。整点数据日报表、每日峰值以及谷值、输电线的功率、电压等数据被系统所采集,主要是一些脉冲量、状态量以及数字量等,对这些进行一些处理,并送往监控系统的调控中心,对这些数据进行操作控制以及进行修改和对记录的归档等操作。
(9)人机通信功能。无论变电站有无人值班,都可以对系统进行实时的监控,有人时可以在当地的后台机上进行操作,无人时可以在远方的调控中心进行远程的调控,通信界面主要是屏幕以及键盘和鼠标等。
2.2变电站自动化常见的通信方式
变电站的自动化系统通常采用的接口有以太网数据以及串行数据的接口等。
3电力系统自动化技术发展方向
现代社会对电能供应的"安全、可靠、经济、优质"等各项指标的要求越来越高、相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展。当今电力系统的自动控制技术正趋向于:
(1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。
(2)在认计分析上日益要求面对多机系统模型来处理问题。
(3)在理论工具上越来越多地借助于现代控制理论。
(4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。
(5)在研究人员的构成上日益需要多"兵种"的联合作战。
整个电力系统自动化的发展则趋向于:
(1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。
(2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。
(3)由单个元件向部分9域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。
(4)由单一功能向多功能、一体化发展.例如变电站综合自动化的发展。
(5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。
(6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。
(7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展。
结语
近几十年以来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机、控制、通信和电力装备及电力电子的统一体。其内涵不断深入.外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。因此我们的从业者们要下大力气研究,不断的深入,全面的掌握,从而使电力系统自动化技术可以为我们所用。
参考文献
[1]付周兴. 电力系统自动化[M].中国电力出版社 , 2006.
关键词:电气工程;自动化技术;应用
中图分类号:F407文献标识码: A
引言
随着经济的不断发展,人们对电力的需求量不断加大,电网的应用规模也随之扩大。电力系统的基本要求就是24h不间断工作,因此必须要保证电力系统能够正常运行,自动化技术的应用便在很大程度上实现了对电力系统的监督与完善。自动化技术利用计算机,对电力系统采取连续操作,已达到电力系统不间断工作的目的,从而提高电力系统的运行质量。
一、电气工程及其自动化概述
1、电气工程及其自动化的发展概述
电气工程及其自动化是电气工程领域的新兴学科,在原有的电气信息领域基础上,跟随现代科技发展的步伐,市场经济建设的需要,其自身也开启了自动化的进程。它本身既是一门较为复杂的交叉学科,又是现代电气工程建设所依赖的技术基础。电气工程及其自动化起步于上个世纪70年代的美国,后伴随着第三次科技革命的浪潮给各国在经济建设领域贡献了极大的价值。由于涉及信息与计算机技术,自动控制技术,电力、电工、电子、电机等基础技术,故而电气工程及其自动化需要进行内部的协调发展,通过不断地技术优化组合和关键技术的突破以实现电气工程及其自动化的不断进步。随着电网改造等一系列国家级重大电气工程项目的建设开工,电气工程及其自动化在我国也取得了长足的发展和进步。
2、电气工程及其自动化的价值概论
电气工程及其自动化已经深入到我国经济发展的每一个细节中去,发挥着提高生产力,促进生产方式的优化革新,对国计民生有着突出的贡献。笔者结合自身工作经验认为电气工程及其自动化在以下四个方面发挥着无可替代的积极作用。第一,在工业制造上,通过一系列的电气工程及其自动化措施实现了远程控制以及自动化高效率的生产;第二,在交通上通过电气工程的改造,实现了轨道交通的提速和安全性保证,为运输行业的蓬勃发展奠定了良好的基础;第三,在民用领域,实现了大型电网升级改造,民用配电、安防系统等一系列民用设施的应用,提高了人民生活质量与水平;第四,在现代信息通讯上,电气工程自动化设计无处不在,为国家安全和人民生活以及经济建设做出有力保障。
二、电气工程及自动化技术的应用
1、在电网调度中的应用
电气工程自动化技术在电力系统方面的应用体现在对于电网调度方面。正是由于电气自动化技术的应用才打破了传统继电器独步天下的电气保护的时代,进而进入了微机继电保护的现代电力系统调度自动化时代。电网调度的自动化、计算机化是电网的发展趋势也是智能电网时代的开端。正是由于电气工程及其自动化技术的应用实现了站内设备的实时监控、并将站内全部资源组成一个局域网,可以随意调用和控制,实现了站与站之间的通信和互联,进而组成一个难以置信的庞大的电力系统调度网,并实现了发电厂、下级调度中心及变电站终端之间的有效的连接。
2、发电系统中自动化技术的应用
传统的发电系统对数据的传输相对有限,导致很多技术人员不能根据变换的参数信息对发电系统进行监控,操作人员也就不能根据数据完成相关操作,这样在电力系统中就会存在隐患问题,一旦电力系统出现问题,技术人员就很难做出及时的措施改进,从而引发一系列的电力系统问题。自动化技术在发电系统中的应用很好地解决了这些问题,通过自动化技术,电力设备在自动化运作过程中水平便可以得到显著提高,发电系统的通信网络上传输的数据信号也就随之增多。在发电系统中有效运行自动化技术可以促使信息呈现多样化,设备的利用上也可以实现最优化配置,这样一来,对于电力设备的操作工作人员来讲,工作难度会明显下降,同时有效降低设备出现故障的几率,即便发电系统出现问题,自动化技术也可以做好预警,采取相应的解决措施,将损失降到最低。
3、配电系统中自动化技术的应用
在电力系统的配电系统中应用自动化技术的目的在于保障电力系统的日常安全防护,人们可以通过数据网络查询信息,制定电力系统的数据网络技术体制。在体制的制定过程中,技术人员需要严格按照国家的法律法规,以网络安全制度作为基础,完善电气系统中数据网络技术体制。由于配电系统中的数据网络服务对象存在一定的固定性,这样便可以满足自动化系统对安全性的需求,确保自动化技术可以在配电系统中得到广泛应用。
4、人工智能技术运用
在电力系统中,要想实现自动化控制,必须对故障进行自动诊断,及时分析问题,对系统操作进行总体规划,这些均需依靠人工完成,而通过人工智能技术,提高了电力系统运转。例如,某电网发生故障,按照传统管理模式,若某电网发生线路故障、停电故障,必须切断相关线路,阻断线路电流,便于人工检查问题,修理故障电路。然而,通过人工智能技术,信息技术可实现消除这些环节,降低周围用户的用电影响。
三、电气工程及自动化技术的发展方向
1、低频向高频发展
随着科技的发展及工业化程度的不断加深。传统单一频率运行的自动化技术已经无法满足现代工业发展需要。电气工程技术也逐渐变得复杂化、多样化,同时满足节能环保要求。因此电器产品已不可能在仅仅的单一频率运转,而是逐渐实现可以随意调节,以满足不同负荷和环境下的要求。因此,我国工业生产从低频向高频生产阶段发展是必然趋势。
2、充分地融合计算机技术
互联网技术的发展,为现代社会带来了巨大变化和飞跃。电气工程技术随着互联网技术的发展也逐渐变的智能化、集成化。可以说电气自动化技术与互联网技术的融合给未来人类社会带来质的飞跃,两者的融合使电气网络的智能化成为可能。如今我们通常把电气工程技术和互联网技术结合的技术称为微机技术。可以说微机技术的发展实现了生产过程数据的实时分析处理,同时大大节省了劳动力、降低工人劳动强度、改变人们的生活方式,实现了工业生产的自动化。
3、开关设备智能化
伴随着微机技术的发展,伴随着开关设备也变得越来越智能化以实现自动控制系统的流畅运行。可以说智能化设备与微机技术共同奠定了未来智能电网的基础。开关设备智能化指的是高低压设备及其辅助装置可以提供接口以方便与计算机网络连接,从而实现自动控制。一次开关元件包括各类电器设备等,其中的智能监控单元包括输出、监测、通信等重要模块。开关设备的智能化是电气工程技术发展的趋势,在未来应用、运行等方面发挥着至关重要的作用。
4、操作人员专业化发展
电气工程技术的发展朝着自动化、智能化方向发展的同时,也对其操作人员提出了更高的要求。操作人员往往在设备运行时才进行相关技术培训,而忽视了设备安装时设备调试等各个环节发现的问题。因此也就失去了最佳掌握该技术的时机。因为自动化生产设备一旦调试完成,出现问题的几率将会大大减小。如果不在调试期间熟悉设备,就很难更好的理解现代化技术。况且现代电气工程技术是一门系统性综合性技术,如果不从设备安装环节、调试环节注重人员培养,就无法理解这些特定安装的意义和作用。只有每个操作人员能轻松的对故障原因作出快速准确的判断处理,才能减少生产过程中不必要的损失。
结束语
电力系统自动化技术是现代变电站的核心系统,通过自动化技术的应用,电力系统的安全可以得到有效保障,同时提高电网供电服务的安全性与可靠性,这样更有利于提高电力系统的供电能力,确保电力系统的安全可靠运行,从而为人们提供更好的供电服务。
参考文献
[1]王孔怀.论电力系统运行中电气自动化的应用[J].广东科技,2012(13).
电气工程及其自动化专业规范研究?
"本科"+"技师"+"工程师"应用型人才培养模式的探索与实践?
电气工程专业人才培养质量保障体系构建与实践??
电气工程及其自动化专业人才培养模式改革??
全面优化本科教学平台,培养电气工程创新人才——浙江大学电气工程及其自动化特色专业建设
面向国家轨道交通需求,整体建构电气工程教育体系??
通识教育基础上的宽口径专业教育定位的培养计划??
"定制式"人才培养模式的探索与实践??
大学生创新计划项目与理论课相融合的教学模式
电气工程与自动化专业应用型人才培养模式研究??
《电力系统继电保护原理》教材内容选择与结构优化
三个导向下的电气工程专业教学改革与探索??
电气信息类专业创新人才实验区建设的探索??
浅析"电力电子技术"专业课程教学??
电气类电力工程与管理专业建设研究??
论EDA技术在电工电子技术课程教学中的应用??
电力电子技术课程的教学与实践??
建筑类院校电气工程及其自动化专业的教学改革——专业基础课教学方法与教学手段改革?
"电机学"特色教学体系研究??
以教学评估、电子设计竞赛为契机谈电类课程改革??
"电机学"课堂教学质量的保障与实践??
"电机及拖动"课程教学体系建设??
电气工程及其自动化专业概论教学研究??
自动控制原理课程建设的体会与思考??
简论数字化技术对专业课程教学的影响与作用?
研究型大学中"电力电子技术基础"课程改革??
"PLC电气控制与组态设计"课程教学研究与实践??
"电机与拖动基础"课程仿真软件的设计??
"电气工程基础"课程的建设与教学研究及实践??
"电机及拖动基础"课程教学研究与探索??
电气工程及其自动化专业人才实践能力培养方法??
不断创新实践教学模式,提高本科教学质量??
宽口径电气工程专业实践教学体系的构建??
基于WDT-Ⅲ电力系统综合自动化试验台应用研究??
电气信息类专业"通信原理"实验与实践教学的研究??
开展教师专业技术实践提升应用性教学水平??
浅谈专业课中加强素质教育方法和途径的研究??
欠发达地区电气工程及其自动化专业实践教学探索??
电气工程及其自动化专业实践教学改革探索?
大学生创新能力培养的研究与实践?
第一本中文电磁学著作及其历史地位??
自动控制理论实验教学研究??
混沌理论在高等工程实践教学中的应用??
背景知识——提高创新能力的有效途径
电气工程及其自动化专业铁路特色应用型人才培养??
面向工程强化实践的"电力系统分析"课程改革与实践?
电磁理论中的矩阵变换??
电路与电子系列基础课程立体化改革与建设??
电气工程专业人才培养模式的改革??
"C++程序语言"课程教学环节的组织与设计??
"单片机系统设计"课程教学改革探讨与实践?
基于项目教学法的课程设计改革??
基于CDIO理念的"传感技术"课程教学与探索??
"信号与系统"和"数字信号处理"的优化教学??
"数字信号处理"课程改革探讨与实践??
"数字图像处理"课程教学改革的尝试??
本刊来稿须知??
关键词:新型; 继电保护; 发展现状
中图分类号:TM77文献标识码: A
1 前言
我国电力事业的快速发展,对继电保护的要求越来越高,随着信息化的发展,计算机、电子与通信技术等的快速发展为继电保护技术的提高,提供了新的发展方向,推动继电保护朝着智能化方向发展。在继电保护工作的过程中,加强对继电保护设备进行完善和改进,开发新型继电保护设备,是适应电力事业发展之需要。新型继电保护的开发与利用,是提高供电可靠性之保障,是推动电力事业可持续发展之保障。
2继电保护概论
继电保护就是指保护电力系统供电的可靠性,并且在此基础上,最大限度的与电力经济发展相协调。由于我国配电网络覆盖面广,运行环境复杂多变,加之各种气候的影响,导致电气故障频发,这就需要继电保护系统充分运用保护功能,保护供电的可靠性。电力系统一旦发生故障,会给电力企业造成一定的经济影响,继电保护的正常运行,是电力企业经济活动之保障。继电保护是电力系统保护的设备与措施,即是在电力系统元件如:线路、电机等在发生故障的时候,继电保护系统进行控制断路,发出跳闸指令,最终规避危险。
2.1继电保护原理。继电保护是在电力系统中的电气设备发生故障不能正常运转时,发挥继电保护设置的作用,选择性的把故障从设备中除掉,进而确保电力系统的安全运行。其保护原理为:体现电气量保护与非气量保护。如以电流增大或电压降低时进行保护,或是电压与电流的相位角在发生变化时进行方向或比值的保护。另外,当温度、流量以及压力发生变化时,对电力变压器构成瓦斯保护与温度保护等。继电保护装置相当于一个自动控制的开环装置,对控制装置发出的信号进行数字型和模拟型判断,对判断结果进行继电保护控制。
2.2继电保护的目标。保护电力系统供电的安全性与稳定性,在电力系统设施发生故障的时候,继电保护及进做出判断,准确的脱离故障源,以就近选择的原则发出施令,保护系统的安全。电气设备在运行的过程中,继电保护设备能对电气设备不正常的工作状况进行反应,对不同的维护条件作出不同的判断,能使工作人员在第一时间对故障进行处理,确保供电的可靠性。
3 继电保护现状
在继电保护发展的过程中,从发展到完善经历了几十年了历程,从完全依靠进口,到自主研发。直至90年代,我国还处于集成电路的运用与研究状态,进入集成电路时代。随着信息化时代的到来,我国的继电保护也发生很大的变化,同时继电保护也步入计算机时代。计算机继电保护是以数字化为基础而构成的继电保护体系,在各行各业得到广泛的应用与推广。然而在运行的过程中,还存在以下问题:
首先,继电保护工作人员在工作交接的过程中,交接不清,对设备性能不熟悉,在发生故障时不能准确判,故障处理不及时。
其次,工作人员缺乏责任心与安全意识,缺少专业的继电保护知识,对故障的处理能力不强,对设备的安装调试出现项目不全面,校正不准确等现象,埋下安全隐患。另外,工作人员在工作过程中的操作性失误,缺乏对新技术的了解,在故障处理的过程中,出现误动保护设施现象,造成人为的经济损失。
最后,由于继电保护设备自身存在的质量问题,致使保护功能不完善,也是目前继电保护迫切需要解决的问题。
4 继电保护对新技术的应用分析
传统的继电保护设备分为联合与非联合保护,这两种保护均有无法避免的缺陷,联合保护比如对电流差的保护需要在输电线两端有专用的通信通道,并且可靠性能受元件与通信线路的限制。非联合可护却只能保护线路的其中一部分,并且整定复杂。在新型的继电保护设备中,大量应用故障就是实现的思想,既能节省线路费用,又能准确无误显示故障状态,新型继电保护的运用有效避免了联合与非联合保护之缺点,是今后继电保护设备发展之方向。
4.1微机技术在继电保护中的应用。微机技术在继电保护系统的应用,能有效的对线路故障进行判定,是继电保护设备的革新,比如,基于暂态量的行波保护原理,是微机技术应用的成功典范,充分的运用了微机特性对供电系统进行保护。但是,微机技术的引用还需要不断加强配套继电保护芯片的开发与研究,目前,我国还无专用的继电保护芯片,还未达到电力系统保护的可靠性与适用性标准,加强继电保护专用芯片的研究,是继电保护发展之基础。
运用微机技术生产了微机继电保护,这种保护措施应用在变电站上,有效实现了变电站的自动化与馈线自动化,将测量、保护、控制以及信息管理集为一体。
4.2小波变换在继电保护中的应用。小波变换的应用,是把数学的计算方法运用到电力系统之中,为故障信息提供数字依据,为继电保护的发展提供有力的理论依据。小波变换对暂态量的处理具有独特的优势,小波变换对突变质与非平稳变化进行分析最理想的工具。在继电保护系统中,主要运用二进小波与离散小波变换。首先,离散小波对数据进行压缩与滤波功能,在继电保护设备中,电力的质量监视器、行波的故障测距装置与行波保护器等都需要对电流、电压信号进行不断的收集、记录、储存与传送等,数据量巨大,需要进行压缩处理,利用离散小波进行进行数据压缩处理后,确保数据信息的保存,有效避免数据丢失现象的发生。同时运用滤波对小波变换的暗频带进行信号分解,即是指对谐波的检测与电压波形的畸变进行检测等。
4.3加强新型继电保护的管理。严格对新型继电保护进行检验与自检,及时的发现安全隐患,提高新型继电保护的运行效率。同时要提高继电保护从业人员的道德素质与专业素养有效避免人为隐患。新型微机的继电保护管理系统,是整个继电系统管理之重心,随着信息化的发展,继电保护系统管理也是通过网络化来实现,因此,建立继电保护网络平台,通过客户终端与服务管理系统软件,对继电系统进行网络化管理。加强对继电保护从业人员进行新型继电保护的培训,引进专业人才,同时对计算机继电保护进行深入研究,加速新型继电保护的发展与维护工作,是提高电力系统供电可靠性之保障。
并且在继电保护还应用了可编程控制器、人工神经网络等各种技术,被应用在各种电器设备中,确保了这些设备的运行安全与系统稳定性,为我国输送电提供了基础措施。
5结束语
总之,新型继电保护是实现智能化、高速化、一体化与信息化的发展趋势。在继电保护发展的过程中,还需要加强对继电保护探索,不断发掘新型继电保护原理。随着计算机技术在继电保护中的运用,为故障信息研究提供了有力的信息依据,为继电保护提供更大的发展空间。
【参考文献】
[1] 徐进亮,刘效孟,芮志浩,王峰,崔东辉,贺.微机型变压器保护的再认识[J].电力自动化设备.2010(8)
[2] 丛伟,潘贞存,郑罡,段昊,施啸寒.配电线路全线速切继电保护技术[J].电力自动化设备.2009(04)
[3] 罗建,李亚军,王官洁,高家志.继电保护远方测试方法的探讨[J].重庆大学学报(自然科学版).2012(09)
关键词:调度运行;电力技术;运用
中图分类号:F470.6 文献标识码:A
前言
文章对调度运行中的相关电力技术,如:AEMS系统、电力电子技术、电网安全稳定控制技术、雷电定位技术等技术进行分析和探讨,希望能对调度运行中电力技术的运用有所帮助。
二、AEMS系统在调度运行中的运用
AEMS是以广域测量系统为基础的动态EMS系统,主要由动态测量系统、同步定时系统、中央处理机和通信系统组成。它可用于对发电机内电势、各母线电压等空间矢量的测量。可以说,AEMS的运用实现了对状态的动态估算,能够对发电机的振荡现象及动态行为进行监测。
AEMS在调度运行中的运用,主要集中在以下几个方面:
分析全网范围内的运行情况。运用AEMS来估算全网范围内的运行状态,来使得对全网运行的分析更具意义和实际价值,为在线监控的实现提供便利。
进行动态调度。运用AEMS可分析控制系统负荷的动态、连续变化,从而将原有EMS系统只能分析控制某一时间断面的缺陷消除,从而实现调度的优化。
3.满足市场机制要求。运用AEMS,可实现在线定价和核算功能,强化电网决策辩护能力、分析能力和计算能力,使技术或运行据侧不受或尽可能少受经营性的争论和攻击。
4.针对事故连锁发展进行自动的预防性控制。运用AEMS,能够强化系统紧急状况下的集中控制和统一调度,从而集中对连锁性事故实施自动化的控制。
三、电力电子技术调度运行中的运用
对于电力电子技术主要是一种新型电工技术,它主要是结合了电力和电子的相关性技术进行有效地融合,一般该技术在社会经济体系中的得到较广泛的应用,而且具有较好的使用性能,其中该技术的应用目前主要体现在高压的直梳输电和柔性的交流输电两大方面,而且在此应用中也比较成熟,具有一定的应用价值。
1.HVDC应用分析
高压直流输电在实际应用中主要考虑到经济与技术这两个方面。在远距离的输电过程中,采用高压直流输电比较经济,并且稳定性不受到限制,同时对两端系统以及整个系统的动态稳定性可以有所改善。由于高压直流输电的过程中,两端交流系统不要求同步,可以对两个甚至多个不同频率或者不同步的交流电网进行连接。
2.FACTS应用分析
FACTS主要是应用电力电子技术实现交流输电系统中的柔性控制与优化协调控制,进而提高输电系统的可控性与传输能力。柔流输电控制器有十多种,按照安装位置可以划分为发电型和输电型以及供电型,但是他们的共相同点都是快速精确的对电力系统中的一个甚至多个变量进行有效地控制,达到增强交流输电或者提高电网工作性能的目的。
四、电网安全稳定控制技术在调度运行中的运用
1.电网安全稳定运行控制技术作用
安全稳定控制技术又叫做“特殊保护”或者“系统保护”,能够有效保证系统进行安全稳定运行的一项技术措施。在全国大电网逐步形成的背景下,同相应系统稳定导则相适应,电网中应用了各类安全稳定控制技术,在深度上和广度上都取得了很大的进步。
2.安全稳定控制技术类型
(1)根据应用的电网可以分作电网解列、送端电网侧、受端电网侧。
(2)根据应用范围可以分作大区联网控制、区域电网控制、局部电网控制。
(3)根据稳定类型可以分作失步控制、设备过负荷控制、电压稳定控制、频率稳定控制、暂态稳定控制。
五、变电站综合自动化技术在调度运行中的运用
1.概论变电站综合自动化技术
变电站为新近发展的一线新型技术,现在在我国的电网中还在试用的阶段。变电站的综合自动化技术的基础是计算机技术,手段为数据通信,目标为信息共享。它的主要功能有这样几个方面:四遥、保护和重合闸、五防、电度采集、故障录波、专家系统等等。历经全集中式阶段、TRTU阶段、分层分布式阶段等等。
2.进行调度工作时的相应要求
因为变电站综合自动化的优点,所以将来极可能在电力生产中进行大量的应用,因而增加了调度运行工作的难度,从设备的运行监视、保护投停、调整操作到事故处理等各方面,变电站综合自动化系统都会和原有的变电站不同,所以相应的调度人员必须深入研究这些课题。
六、雷电定位技术在电力系统调度运行中应用
雷害天气给电力系统造成的危害巨大,雷击线路造成跳闸事故,影响供电可靠性。如果发电厂、变电所建在雷害发生频繁的地带,就很容易造成大面积停电,影响各行业的安全生产。雷电定位技术在电力系统调度运行中应用的基本原理是利用计算机软件和网络技术,实现对大自然落雷情况的测量、接收,最终建成雷电信息网络系统,实现数据通信和信息共享,使用户可以采用C/S(B/S)方式浏览所需的雷电信息,统计出雷电的分布,方便快捷地查询雷击故障点,指导雷击故障的定位处理。在电力系统调度运行中的应用如下:
1.指导输电线路雷击故障点的查找:以往,每当输电线路发生雷击跳闸,根据调度命令,线路运行单位必须派遣大批巡线人员,仅能根据不算精确的保护故障测距结果,沿线逐杆查找故障点,效率较低。如果故障发生在山区,巡线人员翻山越岭,费力费时。对于严重故障线路,还有可能造成联络线功率超限、延误送电、电力系统安全稳定水平降低等严重果。通过利用雷电定位系统,在线路发生雷击跳闸后,只需调度运行值班人员提供跳闸精确时间,能比较准确地指示雷击故障点,避免全线巡视,缩短抢修时间,同时又大大减轻了线路工作人员的工作强度。
2.指导判断线路跳闸的雷击相关性:
以往发生在雷雨天气的线路跳闸,检测人员未能查找到明确故障点时,往往将跳闸原因都归咎雷击故障,运行单位进而忽视对真正事故原因的查找,留下了再次事故的隐患。应用雷击定位系统可以把调度自动化中的电力线路事故跳闸的开关信息与时间信息打包传送到雷电系统。根据调度自动化系统的实时信息,实现自动查询该线路附近的雷击点,并且在用户终端站显示结果,同时加速对雷击故障的查询和事故原因的分析。
3.掌握实时雷电活动情况进行方式调整和事故预想:雷电定位能
大范围实时监视闪光发生的时间、地点、雷电流幅值、极性和回击次数。通过该系统接收到的雷电信息,调度员可以判断雷电强度及走向趋势等信息。同时根据这些具体情况,在可能的前提下可以及时修正和改变电力系统的运行方式,及时做好相关防雷击措施及事赦预案,避免运行中的电网设施遭受雷击所导致的不必要经济损失和电力系统事故。
4.进行雷电统计分析,指导安排系统雷季运行方式:通过大量雷电数据的积累和分析,可以大致了解雷电多发区域的雷电分布及强度信息,从而合理制定雷区分布图。不仅可以指导线路运行单位加强雷电密集区段和线路的易雷击段的运行维护,指导安排全网雷季运行方式,还可以为电力设计部门进行电力线路、厂站等设计时提供必要的防雷依据。
七、结束语
文章中所涉及到的相关电力技术都是对调度工作有所帮助的,电力中的先进技术很多,能运用在电力技术中的也不止文中的这些,更先进的技术应用还需要进一步的开发和完善。
参考文献:
[1]杨永强,邓正涛.电力技术在调度运行中的应用[J].黑龙江科技信息,2012(22).
[2]李军,何攻.浅谈电力技术在调度运行中的应用[J. 广东科技,2012(3)