发布时间:2023-06-11 09:22:07
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的高效焊接方法样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
1 引言
高效焊接方法是现代船舶建造的主要生产工艺之一,其焊接效率高低直接影响着船舶建造周期,也是体现一个造船企业焊接技术水平和生产能力的重要标志。近年来,随着我国船舶制造业的蓬勃发展,船舶焊接逐步向设备大型化、技术自动化迈进[1]。本文结合生产实际情况,重点解决产品焊接关键技术和工艺,不断加强高效焊接方法的技术研究,同时扩大生产应用范围,为全面完成公司生产任务、提高产品质量发挥了巨大作用。
2 高效焊在船厂中应用探讨
高效焊在船厂的发展轨迹,可以明显发现有以下几大特点[2]:
2.1高效焊机械化率逐年提升,发展速度比较缓慢
加快分段建造速度、减少单船船台周期,是缩短造船周期、提高船舶生产总量的主要手段。不断扩大高效焊技术生产应用,从而提高自动化、机械化焊接生产比率是实现快速造船的重要保障基础。
通过三种高效焊方法比较,我们发现C02气体保护焊占有率从2000年到2005年提高近15%,且呈稳定上升趋势,埋弧焊应用率波动稍大,但占有率仅占总量10%左右,铁粉焊条占有率有下降趋势,但幅度不大。另外,从机械化率、高效化率及焊工人均焊材日耗量等技术指标可以看出,公司在船舶生产中焊接机械化率有所提高,但发展较慢,具体表现在焊工人均焊材耗量5年来仅提高了约3kg。
2.2自动化程度不高,焊接新工艺推广应用不多
自动化焊接技术在船舶建造中有着举足轻重的地位,FCB单面焊、薄板压力架单面焊、垂直气电焊等自动焊接工艺是我公司目前生产效率较高的几种焊接方法。
公司的TTS平面分段拼板焊接压力架采用FCB法三丝埋弧单面焊方法,焊丝直径4-6.4mm,主要用于平面组装阶段的船底外板、舷侧外板、双层底板、顶板、甲板和隔板等的拼板对接焊及相应结构的拼板对接焊,可焊接厚度5~35mm钢板的拼板焊缝,拼板尺寸大小为(1.5×6)mm~(3×12)mm,其中5-25mm厚度钢板可以采用单丝或多丝单道焊接完成,大大提高了拼板焊缝的焊接生产效率。
薄板压力架焊接设备对改善薄板焊接变形,提高焊接质量有重要作用。该设备具有双丝埋弧焊和单丝气保护焊的兼容性,埋弧焊丝适用直径2.4-5.0mm,气保护焊丝适用直径1.0mm-2.4mm,对3-20mm厚度钢板的拼焊可采用单面焊工艺,一次拼焊长度达到12m。通过采用适当焊接工艺,可以控制船舶上层建筑结构拼板焊接变形。另外,该设备投入生产使用后缓解了中、厚板拼板焊接的生产压力。
除拼板单面焊、垂直气电焊等典型自动化焊接方法外,公司船舶制造焊接工艺方法中大量采用的是C02半自动气体保护焊。而其他许多新工艺受设备、技术、生产设计、组织管理等因素影响,目前还未能在公司承接的船舶建造中应用。
2.3焊接设备技术更靳不快,焊条电弧焊机仍拥有一定数量
通过5年的设备更新和技术改造,焊条电弧焊机总量下降,且比例由原来的70%降低至50%左右,但仍拥有一定数量,这也是导致生产中手工焊条消耗总量居高不下的主要原因。这也是高效机械化率没有大幅提高、焊工人均焊材耗量增加不快、焊接生产效率依旧保持较低水平的原因之一。
3 船厂高效焊发展趋势
中国正朝着世界第一造船大国的目标迈进,船舶建造能力不断扩大。要实现目标,除了扩大船坞规模,提升造船管理水平外,加快高效焊接方法应用,提高焊接生产效率也势在必行。因此,今后几年的高效焊发展趋势有以下几大特点。
3.1焊接工艺、方法的多样化
为了适应船舶制造不同区域生产流程节奏,确保各生产节点有序按时完工。部件工场、血面分段区域采用的双丝埋弧自动焊拼板焊接装置将进一步提高焊接效率,此外,船坞大合拢焊接将根据船板厚度需要适时开发双丝垂直气电焊等新工艺。
3.2CO2气保护焊将完全替代焊条电弧焊方法
目前,手工焊条焊接仍是江南造船不可或缺的主要生产工艺。自动角焊、半自动角焊、垂直自动角焊等各类C02气保护焊将替代焊条电弧焊,甚至在船坞、平台区域和曲面分段制造车间也将不再采用焊条电弧焊方法,或许只在少量焊缝修补中可能会使用。
3.3焊接设备向大型化、系统化、集成化、自动化转变
造船基地由于造船模式、生产管理、工艺流程变化,对焊接生产提出了全新要求,焊接必将以机械化、自动化生产为主,这决定了选用的焊接设备具有大型化、集成化特点,以平面分段生产线为例,另外,曲面分段、船坞、平台等生产区域需配备C02气保护自动焊、双丝埋弧焊、垂直气电焊等各类自动化焊接设备。
3.4焊接材料的工艺、性能要求高
由于焊接方法的多样化和自动化程度提高,对焊材工艺要求进一步提高,自动化焊接势必提高焊接热输入量,为保证焊接接头综合力学性能,特别是焊缝强度、韧性等指标,船舶焊接生产中需要大量高性能焊材应用。对某些特殊船型,由于船板及部件的特殊性,焊接材料的性能同样需要具有特殊的技术特点。
4 结语
从目前情况来看,船厂新厂承接的船型与老厂有很大区别,板厚、等级强度都有所提高,产品种类更为丰富。我们应该珍惜江南搬迁的良好契机,充分利用现代化造船用焊接设备,通过对造船焊接工艺不断研究、改进,开发出适宜于新造船的焊接生产工艺,从而加快向现代化造船模式转化、把船舶焊接技术水平提高到一个新的高度。
参考文献:
关键词:现代焊接技术;发展;现状;展望
中图分类号:P755.1 文献标识码:A
焊接技术是在高温或高压条件下,使用焊接材料(焊条或焊丝)将两块或两块以上母材(待焊接的工件)连接成一个整体的操作方法。焊接技术作为制造业中传统的基础工艺和技术,虽应用到工业中的历史并不长,但发展却非常迅速。短短几十年间,焊接技术已被广泛应用于航空航天、汽车、桥梁、高层建筑、造船以及海洋钻探等许多重要工业领域,并且为促进工业经济发展做出了重要贡献,使得焊接已经成为一个重要的制造技术和材料科学的重要专业学科。
一、焊接技术发展的现状
(一)焊接生产率是推动焊接技术发展的重要驱动力
连接简单的构件以及制造毛坯是最初的焊接方式,随着技术的不断更新,焊接已成为制造业中一项不可代替的基础工艺以及生产精确尺寸制成品的生产手段。目前,焊接技术最需要的就是有效的保证焊接产品质量的稳定性及提高劳动生产效率。提高生产率的途径有两种:一是提高焊接熔敷率,焊条电弧焊中的铁粉焊条、重力焊条、躺焊条等工艺以及埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。二是减少坡口断面及熔敷金属量,其中窄间隙焊接效果最显著。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式,所需熔敷金属量会数倍、数十倍地降低,从而大大提高生产率。窄间隙焊接的关键是保证两侧熔透和电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。如果能够在以下方面取得进展,焊接方法的先进性会得到更高的评价:提高熔敷速度,减少生产周期,提高过程控制水平,减少返修率,减少接头准备时间,避免焊工在有害区域工作,减小焊缝尺寸,减少焊后操作,改进操作系数,降低潜在的安全风险,简化设备设置,高效快速优质焊接方法将成为主力军。
(二)焊接过程自动化、智能化
国外焊接技术发展速度快,国内焊接技术发展存在较大差距。工业发达国家焊接机械化、自动化率水平由1996年的19.6%增加到2008 年的70-80%以上,目前焊接技术与现代制造技术、焊接科学与工程、焊接自动化与焊接机器人不断融合,焊接技术已经向自动化,智能化方向发展。焊接过程自动化,智能化以提高焊接质量稳定性,推进焊接自动化进程,学习、吸收、借鉴、提高是十分重要的环节,应加强现有工艺的学习和提高。但是我国目前的工艺大多数都为手工操作,存在一定的局限性。目前我国焊接的自动化率还不到30%,相对而言,焊接生产的机械化以及自动化水平非常低,但是如果能够在学习的基础上利用现代的自动化技术进行嫁接改造,往往可以实现一定的突破。20世纪90年代以来,我国逐渐在各个行业推广气体保护焊来取代传统的手工电弧焊,现在已经取得了一定的效果。目前我国在焊接生产自动化、过程控制智能化、研究和开发焊接生产线以及柔性制造技术、发展应用计算机辅助设计以及制造技术等方面取得了很大的进步。计算机技术、控制理论、人工智能、电子技术及机器人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域中,取得了很多成果,焊接过程自动化已成为焊接技术的生长点之一。焊接过程控制系统的智能化是焊接自动化的核心问题之一,也是未来开展研究的重要方向。
(三)热源的研究和开发
热源是可提供热能以实现基本焊接过程的能源,热源是运动的。在焊接过程中,热源以点线面等传热方式来传导热能。焊接热源具有如下特点:能量密度高度集中、快速实现焊接过程、保证高质量的焊缝和最小的焊接热影响区。当前,焊接热源已十分丰厚,如电弧焊、化学热、电阻热、高频感应热、摩擦热、电子束等离子焰、激光束等。焊接热源的研讨与开拓始终在延续,焊接新热源的开发将推动焊接工艺的发展,促进新的焊接方法的产生。每出现一种新热源,就伴随一批新的焊接方法出现。焊接工艺已成功地利用各种热源形成相应的焊接方法,今后的发展将从改善现有热源,使它更为有用、便利、经济合用和开发。
(四)节能技术
随着社会的发展,节约能源已经成为各行各业首要考虑的问题,焊接行业也不例外。焊接产业发展节能、环保的焊接已成为必然的趋势;同时,高效焊接工艺的应用,对提高焊接效率,节约能源消耗意义很大。为了顺应节约环保的要求,手弧焊机以及普通的晶闸管焊机正在逐步被高效节能并能自动调节参数的智能型逆变焊接取代,同时为了适应当今淡化操作技能的趋势,焊接的操作也逐渐趋向智能化简单化。
二、现代焊接技术的任务和展望
(一)寻求解决制约焊接新材料、新结构的应用途径
在研究开发新材料的焊接技术时,应从材料的研制与焊接技术两个方面着手。由于先进的材料在实际焊接过程中并不一定容易焊接,因此造成材料的高性能和良好的焊接性要求之间的矛盾,而往往这又是难以协调的,所以要把矛盾的主要方面指向材料的研制,并且在研制高性能材料时,要把焊接性纳入材料高性能的技术指标。因此,寻求解决制约焊接新材料、新结构的途径时,焊接工程师必须和材料工程师进行合作,使新型材料的焊接质量更好、成本更低、生产效率更高、焊接产品更受市场欢迎。
(二)提高焊接产品质量,使焊接不再成为制造过程中的“薄弱环节”
在实际焊接工程中,形成了焊接是制造过程中的“薄弱环节”这一固化思维,我们必须消除这种老化思维的影响,提高焊接质量。为此,焊接界将进行长期的研究工作,开发新的焊接工艺,进一步提高焊接质量控制的智能化技术水平,使焊缝达到“零缺陷”,并提出实现这一目标的可行性方法。
(三)改善焊接能效,提高生产效率,降低焊接成本
新材料的研制将向着高效能、高性能和有益于保护环境的方向发展,焊接界将研究出更佳的焊接工艺,研制出更优良的焊接电源并开发出相应的控制技术,提高自动化程度,扩大机器人的应用范围;减少废品率和返修率,降低焊接成本,提高生产效率,彻底消除“焊接是制造工序障碍”的观念。
(四)全面改善焊接生产环境,提升焊接行业的整体形象,吸引高素质人才的加盟
新材料的研制、先进焊接工艺的应用不仅降低了材料与能源的消耗,而且将焊接对自然资源的影响降到最低程度,通过消除烟尘、噪音和辐射,使焊接工作环境更具吸引力;新型焊接技术的应用、焊接自动化及机器人的发展和多种高新技术在焊接领域中的应用,必将改变焊接行业的负面影响,吸引更多的年轻科技工作者,保证焊接技术领域的人才需求。
三、结语
焊接技术进步的需求是在经济和社会等多方面因素影响下形成的,这显著地促进了高效材料和设备的开发以及自动化技术的应用,规模生产和专业化生产开创新局面,高效快速优质焊接方法成为主力军,一个明显的趋势是在传统焊接过程中使用更先进的控制和监测技术。焊接新方法和先进材料技术的引入,提高了焊接技术的水平,同时也提出了新的挑战。国内外专家认为,焊接作为一种精确、可靠、低成本并采用高科技连接材料的方法,在未来的数十年内仍旧是制造业的重要加工工艺。我们广大焊接工作者任重而道远,务必树立知难而上的决心,抓住机遇,为我国焊接自动化水平的提高而努力奋斗。
参考文献:
[1]李洪涛.浅析中国焊接技术的现状与发展[J].黑龙江科技信息,2009(05).
[2]陈字刚.现代焊接技术的应用与发展[J].大连铁道学院学报,1987 年 01 期.
关键词: 压力容器;管理;焊接质量;措施;发展
Abstract: with the boiler, pressure vessel and pipe parameters greatly increased and application field of expanding, about the welding technology requirements is increasing, the welding process of pressure vessel shall be in strict accordance with the national standards and relevant regulations, with many years experience and related inspection standard and the understanding of the laws and regulations, this paper discusses the pressure vessel in the production process of how to improve the welding quality control measures and management methods.
Keywords: pressure vessels; Management; The quality of welding; The measure; development
中图分类号: TH49文献标识码:A文章编号:
引言:
压力容器,英文为pressure vessel,是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热容器和分离容器均属压力容器。压力容器是保持内部或外部压力的容器。为保证压力容器安全正常运行,必须保证压力容器焊接质量,否则将可能发生泄漏甚至爆炸事故,危及操作人员的人身安全。本文对影响压力容器焊接质量的因素进行分析,采取相应的措施,对影响焊接质量的工序进行控制,从而保证压力容器的焊接质量。压力容器焊接质量的控制主要包括焊接前准备控制、焊接过程控制和焊接后检验控制。
1.压力容器的主要焊接技术分析
1.1锅炉、压力容器和管道均为全焊结构
锅炉、压力容器和管道均为全焊结构,焊接工作量相当大,质量要求十分高。焊接工作者总是在不断探索优质、高效、经济的焊接方法,并取得了引人注目的进步。以下重点介绍在国内外锅炉、压力容器与管道制造业中已得到成功应用的先进高效焊接方法。
1.2双面脉冲MAG 自动焊接生产线
为提高锅炉热效率,节省材料费用,大型电站锅炉式水冷壁管屏均采用光管+扁钢组焊而成。这种部件的外形尺寸与锅炉的容量成正比。一台600MW 电站锅炉膜式水冷壁管屏的拼接缝总长已超过万米。因此必须采用高效的焊接方法。
1.3.对接高效焊接法
锅炉受热面过热器和再热器部件管件接头的数量和壁厚,随着锅炉容量的提高而成倍增加,600MW 电站锅炉热器的最大壁厚已达13mm,接头总数超过数千个。传统的填充冷丝TIG 焊的效率以远远不能满足实际生产进展的要求,必须采用效率较高的且保接头质量的溶焊方法。
1.4.厚壁容器
厚壁容器纵环缝的窄间隙埋弧焊厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985 年哈锅从瑞典ESAB 公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20 年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。
1.5大直径厚壁管生产中的高效焊接法
随着输送管线工作参数不断提升,大直径厚壁管的需求量急剧增加,制造这类管材量经济的方法是将钢板压制成形,并以1 条或2 条纵缝组焊而成。由于厚壁管焊接工作量相当大,为提高钢管的产量,通常采用3丝,4 丝或5 丝串列电弧高速埋弧焊。5 丝埋弧焊焊接16mm 厚壁管外纵缝的最高焊接速度可达156m/h,焊接38mm 厚壁管外纵缝的最高焊接速度可达100mm/h。
2压力容器焊接质量的控制措施
2.1.焊工的管理
在压力容器的生产过程中对压力容器质量起到决定性作用的焊工不容忽视。因此,焊接压力容器的焊工必须按照《锅炉压力容器焊式考试规则》进行考试,取得焊工合格证后,才能在有效期间内担任焊接工作。焊工应按焊接工艺施焊。制造单位检查员应对实际的焊接工艺参数进行检查并做好记录。从事压力容器生产的焊工必须持证上岗。焊工必须通过相应考试取得焊工证,并在有效期内承担合格证规定范围内的焊接工作。持证焊工中断受监查设备的焊接工作六个月以上,必须重新考试并合格后,才能重新担任受监查设备的焊接工作。压力容器制造单位应建立焊工技术档案,这样可从焊工焊接业绩档案中全面了解每一名焊工的技术状况,便于管理和提出持证焊工免去重新考试的审请、定期组织焊工学习有关标准和法规等,制订焊工培训学习计划,不断提高焊工的技术业务水平,牢固树立产品质量第一的观点,确保压力容器的焊接质量。
2.2 压力容器的组焊的主要质量要求
在压力容器上焊接的临时吊耳和拉盘的垫板等,应采用与压力容器壳体相同或在力学性能和焊接性能方面相似的材料,并用相适应的焊材及焊接工艺进行焊接。临时吊耳和拉盘的垫板割除后留下的焊疤必须打磨平滑,并应按图样规定进行渗透检测或磁粉检测,确保表面无裂纹等缺陷。打磨后的厚度不应小于该部位的设计厚度。不宜采用十字焊缝。相邻的两筒节间的纵缝和封头拼接焊缝与相邻筒节的纵缝应错开,其焊缝中心线之间的外圆弧长一般应大于筒体厚度的3 倍,且不小于100mm。
2.3受压元件之间
受压元件之间或受压元件与非受压元件组装时的定位焊,若保留成为焊缝金属的一部分,则应按受压元件的焊缝要求施焊。
2.4 压力容器焊接部位
压力容器主要受压元件焊缝附近50mm 处的指定部位,应打上焊工代号钢印。对无法打钢印的,应用简图记录焊工代号,并将简图列入产品质量证明书中提供给用户。
2.5 焊接接头返修的质量要求
应分析缺陷产生的原因,提出相应的返修方案。返修应编制详细的返修工艺,经焊接责任工程师批准后才能实施。返修工艺至少应包括缺陷产生的原因;避免再次产生缺陷的技术措施;焊接工艺参数的确定;返修焊工的指定;焊材的牌号及规格;返修工艺编制人、批准人的签字。同一部位的返修次数不宜超过2 次。超过2 次以上的返修,应经制造单位技术总负责人批准,并应将返修的次数、部位、返修后的无损检测结果和技术总负责人批准字样记入压力容器质量证明书的产品制造变更报告中。
2.6返修的现场记录
返修的现场记录应详尽,其内容至少包括坡口型式、尺寸、返修长度、焊接工艺参数、焊接电流、电弧电压、焊接速度、预热温度、层间温度、后热温度和保温时间、焊材牌号及规格、焊接位置等、和施焊者及其钢印等。求焊后热处理的压力容器,应在热处理前焊接返修;如在热处理后进行焊接返修,返修后应再做热处理。
2.7 压力试验后需返修
压力试验后需返修的,返修部位必须按原要求经无损检测合格。由于焊接接头或接管泄漏而进行返修的,或返修深度大于1/2壁厚的压力容器,还应重新进行压力试验
3.我国焊接技术的新发展
3.1锅炉集箱密排接管的焊接技术
集箱筒体上焊有密排接管是其固有的特点,一台200MW电站锅炉集箱上接管的总数接近1万个,焊接任务量极其繁重。由于这些接管大多数是密排布置,接管的间距较小,焊接自动化的难度较大。长期以来,大多采用焊条电弧焊,但效率低下,且焊接质
量不易保证。近期,许多锅炉制造厂改用实芯焊丝或药芯焊丝气体保护半自动焊,效率可提高0.5~1倍,焊材节约20%~30%,但仍摆脱不了手工操作,因气体保护焊焊枪重量大于焊条电弧焊焊钳,焊工的劳动强度反而增加,因此,推广这种半自动焊的阻力较大,且必须探索更先进和实用的解决办法。从近期的发展趋势来看,焊接机械手和焊接机器人是实现集箱密
集接管焊接机械化和自动化的有效途径。
3.2集箱接管焊接机器人工作站。
集箱密排接管采用焊接机器人自动焊接理应是最佳的解决方案,不少锅炉制造厂,如“武锅”、“上锅”和“哈锅”曾从国外引进了集箱接管焊接机器人,但使用效果不甚理想。这主要归因于早期的焊接机器人功能达不到集箱密排接管焊接的技术要求。最主要的是必须掌握以下两项关键技术,即焊枪在待焊接管起弧点的自动检测精确定位及焊枪在焊接过程中自动跟踪接缝的轨迹;其次应当选定适于机器人焊接,并能确保焊缝质量的焊接工艺方法。图19示出近期研制成功的集箱接管焊接机器人工作站全貌。其由倒置安装的6轴机器人、悬臂横梁、轨道行走平车、翻转机、焊接电源和送丝机及中央控制器等组成,配备焊缝检测定位和接缝轨迹跟踪系统,确保焊枪在待焊接缝起始点准确定位,通过对电弧参数的控制自动跟踪接缝的轨迹。中央控制器可按预编程序协调控制工作站的所有模块。计算机软件则对机器人工作站各运动轴的动作进行程序控制和管理,并使其具有人机对话和故障诊断功能。该机器人工作站在20000mm行程内重复定位精度为0.2mm,机器人各轴的重复定位精度为0.1mm;适用的接管外径为25~150mm,接管最大高度为1000mm,接管壁厚为3~15mm;最小轴向和周向管间距为50mm;焊接工艺方法为优化脉冲MIG/MAG焊;如改用自保护药芯焊丝电弧焊可将管间距减小至35mm。按上述技术特性数据,这种机器人工作站可以满足大多数集箱接管焊接的技术要求。
参考文献:
[1]赵淑珍,驻厂监检中应加强压力容器焊接工艺的审查.《中国特种设备
安全》.2010(10):40- 43.
[2]董正祥,刘峰,田为民,孙先强,王卫国,油田在用压力容器主要缺陷
关键词:焊接工艺;因素;措施;提高
随着现代工业的发展,对结构和材料的要求越来越高,如造船和海洋工程要求解决大面积拼板、大型立体框架结构自动焊及各种低合金高强钢的焊接问题;石油化学工业要求解决各种耐低温及耐各种腐蚀性介质压力容器的焊接问题;航空航天工业中要求解决铝、钛等轻合金结构的焊接问题;重型机械工业中要求解决大截面构件的拼接问题;电子及精密仪表制造工业要求解决微精密焊件的焊接问题。因此,优质、高效、节能的现代焊接技术正逐步取代能耗大、效率低和工作环境差的传统焊条电弧焊焊接工艺,焊接技术结构性的转变必将对装备制造业技术水平与生产能力的提升发挥更加重要的作用。
一、影响焊接质量的主要因素
1.操作人员因素。这一因素对焊接工作来说就是焊工,也包括焊接设备的操作人员。各种不同的焊接方法对焊工的依赖程度不同,手工操作占支配地位的手弧焊接,焊工操作技能的水平和谨慎认真的态度对焊接质量至关重要。即使埋弧自动焊,焊接规范的调整和施焊也离不开人的操作。由于焊工质量意识差、操作粗心大意,不遵守焊接工艺规程,操作技能差等都可能影响焊接质量。2.材料因素。焊接使用的材料包括各种被焊材料,也包括各种焊接材料、还有与产品配合使用的各种外购或外协加工的零部件。焊接生产中使用这些材料的质量是保证焊接产品质量的基础和前提。从全面质量管理的观点出发,为了保证焊接质量,从生产过程的起始阶段,即投料之前就要把好材料关。3.工艺方法因素。焊接质量对工艺方法的依赖性较强,在影响工序质量的各因素中占有更重要的地位。其影响主要来自两个方面:一方面是工艺制订的合理性;另一方面是执行工艺的严肃性。某一产品或某种材料的焊接工艺的制定,首先要进行焊接工艺评定,然后根据评定合格的工艺评定报告和图样技术要求制订焊接工艺规程、编制焊接工艺说明书或焊接工艺卡。这些以书面形式表达的各种工艺参数是指导施焊时的依据,它是模拟生产条件所作的试验和长期积累的经验以及产品的具体技术要求而编制出来的,是保证焊接质量的基础。在此基础上需要保证的另一方面是贯彻执行焊接工艺的严肃性。在没有充分根据的情况下不得随意变更工艺参数,即使确需改变,也必须履行一定程序和手续。不正确的焊接工艺固然不能保证焊接质量,即使有经评定验证是正确合理的工艺规程,不严格执行,同样也不能得到合格的质量。两者相辅相成,相互依赖,不能忽视或偏废任何一个方面。
二、分析提高焊接工艺水平的措施
1.做好焊接前的检查工作。焊接工作要进行,必须要在检查所有器材和周围环境以后才能开始。因为焊接对风速、电流、压力有着很高的要求,如果不能达到规范的要求,焊接时不能够很好的展开和达到预期效果的。同时焊接前要检查被焊接金属是否有油渍、铁锈,还要对环境进行检查,是否有明火、可燃物、危险气体泄漏等问题。2.做好焊件材质管理控制。焊接企业在进行金属焊接时,通常将焊接工作场地安排在野外,这必然导致焊接工作会受到外界环境的影响,因此,做好相应的防雨防雪工作是必不可少的,应该建立必要的防护设施,为焊接工作的顺利开展提供良好的环境。对于焊接好的金属应该给予保护,防止因外界的高温高热或是低温寒冻给焊缝造成损害。在焊件的材质方面,应该做到严格把关,从钢材入库起,工作人员应该对材质有严格的检验,一些材质不明的焊接应该严格禁止入库,在进行焊件保管工作中,将质量规格相应的材质放在一起,并挂上挂牌,防止使用时的乱拿乱放。3.焊接过程中的控制。一是在焊接的过程之中,为了对热量的损失进行一定程度上的减少,而且还需要保证操作者不会受到高温辐射的伤害,一般情况之下,只将相应的焊接部位留在外面,其余部分都被盖上,主要运用石棉或者其他的一些隔热材料进行对其的覆盖。同时,还需要重视周围的环境,注意不能在通风的环境下进行焊接。二是要保证焊接的速度,需要尽快的完成补焊操作,这样才能够对预热的温度进行保证,同时也在一定程度上保证了焊接操作的连续性。不仅如此,为了对焊缝接头的充分熔透进行保证,当相应的焊条运行到接头处需要对停留的时间进行延长。三是相应裂缝的成分主要是铸铁,其塑性相对较差,这样一来,对其进行一定程度上的锤击对消除应力的效果并不是很大。因此,一般情况下,并不进行对其的锤击。四是在补焊完成之后,需要对相应的电动机的机壳进行覆盖,通常情况下都是采用石棉粉。只有这样,才能够促使其进行缓慢的冷却,提高焊接的质量。4.焊接与计算机技术结合。焊接存在的一个最大问题就是操作不够精确和稳定,而且安全问题不能够保证。如果焊接工艺与计算机技术相结合,就可能很好的避免以前的不足之处。计算机技术能够通过软件编程,非常精确的控制焊接速度、电压、电流和气压等一些关键要素。而且自动化操作,可以避免一些人为操作所带来的危险,让操作人员处于一个相对安全的工作环境。
总之,要想节约能源,要想使焊接的效率得到一定程度的提高,必须使得高效焊接工艺得到广泛应用。现在,世界各国都在着手高效焊接的推广和研究,德国和美国在这方面具有很好说服力。对于我国来说,为了使我国的焊接技术水平能够有一个质的飞跃,应该加强高效焊接工艺的研究和新的工艺的推广,使其得到广泛的应用。
参考文献:
[1]熊腊森.焊接工程基础[J].机械工业出版社,2005-03-01.
[2]《焊接工艺与操作技巧丛书》编委会.CO2气体保护焊工艺与操作技巧[J].辽宁科学技术出版社,2010-06-01.
[3]李颁宏.实用长输管焊接技术[J].化学工业出版社,2009-03-01.
【关键词】高职;焊接;教育改革
现在船舶行业的快速发展,船舶焊接所需的人才越来大,但是目前在岗工人大多是初中毕业生或者是八十年代末期的技校毕业生,知识和技能水平偏低,只能从事简单的焊接操作,对于先进设备的操作和新技术的应用显得力不从心,同时我国焊接生产一线严重缺乏高素质技术人才。我院高职焊接技术及自动化专业(以下简称焊接专业)人才规格定位:不仅能操作,还应读懂图纸、制定工艺参数、安排生产工序、分析工件焊接缺陷产生的原因、确定修复工艺、熟悉产品质量检验标准与方法等。造船焊接技术是现代船舶建造工程的关键工艺技术。在船体建造过程中,焊接工时占船体建造工时的30%~40%,焊接成本约占船体建造成本的30%~50%,焊接生产效率是影响船舶建造周期与生产成本的主要因素之一。因此,焊接技术进步对推动船舶工业或其他行业的发展具有十分重要的意义,培养越来越需要具有综合职业能力和全面素质的、直接从事生产、技术、管理和服务第一线的应用型、技能型的高级实用人才是非常重要的。为此,担负这一类人才培养任务的高职教育,必须切实加强实训教学的改革和建设。
1.适应行业发展的需要,学习先进的焊接技能及理论知识
随着社会科技的进步,对于焊接技术而言“高效焊接”越来越多的出现在我们的视线中。高效焊接方法主要指熔敷效率高、焊接速度快、操作方便且易于实现自动化的焊接工艺方法。高教焊接工艺方法的共同特点是生产效率高、焊接质量好、节约能源。在中国造船工业中,常用的高效焊接方法有:铁粉焊条手工焊、下行焊、重力焊、药芯焊丝CO2 焊、多丝埋弧焊、垂直自动气电焊等。推广应用低成本自动化焊接设备及技术,并在此基础上组建平面分段自动装焊流水线,从而可望进一步提高产品的生产效率。
2.教学改革,在教学内容、方式、方法、考核做出调整
一基础知识以够用为度,三学制的培养周期短,要培养出合格的高技能人才,就必须注重专业知识的学习。
二是课程内容改革,将社会需求量大、技能要求高的焊条电弧焊技术、气焊气割技术、C02 气体保护焊技术单列出来,作为核心课程和核心技能。重点学习《焊接结构生产》、《焊接方法与设备》、《焊接生产检验及管理》、《材料焊接性》、《金属材料与热处理》、《焊接专业英语》等,在学习过程中大量采用案例教学,突出针对性和应用性,强化新工艺、新技术、新设备的实际应用,组织编写相关课程的实验指导书、课程设计、生产实习和毕业设计指导书。英语越来越多的应用于焊接领域中,特别是船厂。
三是改革考核方法,在考核中采用开卷和闭卷相结合、理论考试与技能考核相结合、书面考试与答辩考试相结合的方式,把考核重点放在专业实践能力和创新能力上。
四是改革理论教学与实践教学环节,注重焊接技术应知应会,增加专业技能实训,强化焊接操作技能训练,培养焊接技术高等技能操作和技术性工艺规程编制人才并取得相应的资格证书。
3.专业实践能力的培养
焊接专业毕业生的工作岗位归纳为焊接工艺员、施工技术员、焊接检验员、产品推销员,所以要找到适合对焊接专业学生的实践能力的培养的方式。制定了适合于焊接专业实践能力培养的可行性方案;学生的实践技能得以提高,动手能力增强。
第一是对学生基本焊接实践技能的培养。该技能培养主要安排在大一学年的第二学期进行,此时学生正在进行专业知识的初步学习,通过实践技能的培养将能进一步掌握所学习的内容。
第二现是对现代焊接技术的掌握和软件培训。该技能培养主要安排在大二学年进行。通过半的专业知识的学习,学生已经对焊接专业的绝大多数理论课进行了较为系统的学习,因此,该阶段实践能力的培养一方面侧重于现代焊接技术的掌握,包括埋弧自动焊、C02气体保护焊、钨极氩弧焊、激光焊,以学生掌握技能为目标,在实训教学中加以渗透,并考取相关的资格鉴定证书如中级焊工证、CCS焊工证等,从而提升学生在就业时的实力。
第三是对综合实践技能的培养。该技能培养主要安排在大三学年的第一学期进行,借助于专科毕业设计,来提高学生的综合实验技能,为学生将来从事焊接工艺员、焊接检验员打下坚实的基础。
4.增强实训基地师资建设力量的投入
关键词:石油工程建设;储罐;管道;焊接技术;自动化;现状;问题
Abstract: In the field of petroleum engineering construction, welding technology is the application of one of the most important technology widely, making such as ball form, vertical storage tank, tank pipeline and refining equipment are inseparable from the welding technology. In petroleum engineering construction projects, engineering installation welding in the total workload of the accounting for 40% of the total. The welding efficiency has a direct impact on the progress of the project and the enterprise benefit, the welding quality has become one of the important factors of the service life of the project and the safety of people's life and property. This article since the nineteen sixties, vertical in the petroleum industry in our country in the tank, the tank ball form, especially the development of welding technology of long-distance pipeline is summarized and Gu, and in view of the present situation on China petroleum engineering construction welding technology and with the international advanced welding technology gap, combined with the development needs the next 10-15 years industry of oil natural gas, petroleum engineering construction in our country put forward new problem faced by welding technology.Key words: Petroleum Engineering Construction; storage tank ; bonding technique; robotization;present situation;problem
中图分类号:TU74 文献标识码:A文章编号:2095-2104(2013)04-0000-00
一、石油工程建设焊接技术现在的情况及所发现的问题
1.1 焊接技术基本状况
截至2007年9月底,石油工程建设队伍中从事焊接施工的企业共30家,其中的职工总人数大约有7万人。据统计。就有2234人是焊接技术人员,10410人是焊工, 69人是焊接技师,1137位焊工,其中持有44位工程师拥有国际执业资格,各类焊接设备共17470台,其中进口设备4850台。各类焊接设备中,手工焊机11383台,半自动焊机4222台,球罐自动焊机108套,储罐自动焊机422套,气电立焊设备174套,管道外自动焊机470套,管道内自动焊机5套,管道打底焊机340台。进入“十五”规划以来,企业的技术装备得到了较大的提升,设备新度系数平均为0.73,自动化焊接施工装备新度系数普遍提高到0.8以上,大幅度提高了技术装备水平。
1.2焊接技术存在的主要问题
近年来,我国石油工程焊接技术有了长足的进步,球形储罐、立式储罐、管道的建设逐步开始推行了半自动焊技术、和新的自动焊技术。但是,目前自动焊的比例只占到20%左右,与发达国家的70~80%还有较大差距。其中球罐自动焊应用较少,不到5%,大型储罐自动焊技术应用在80%以上,长输管道自动焊技术自西气东输工程开了先河应用约16%,其中,高效自动焊打底技术依然是制约工程质量和效率的瓶颈;炼化安装现场施工大部分采用手工焊或半自动焊;海上石油设备的钢结构及管道现场焊接自动焊比率几乎 为零。但是总体来看,我国石油工程焊接术主要存在以下几个方而的问题:焊工基础理论薄弱,操作技能需要提高;焊接科研机构分散,研究力量相对薄弱;焊接设备和焊接材料的国产化研究不足;专业人才不足等很现实的问题。
二、发展石油工程建设焊接技术的思考和建议
2.1 建设中国石油集团焊接技术中心
作为石油工程技术的主要专业之一,焊接技术必须统筹规划,全而提升,满足新时期日益迫切的技术需求。建设中国石油集团焊接中心,以中国石油集团工程技术研究院现有的焊接试验室为基础,重新的规划,新的整合组成六个专业试验室,和建了一个机械加工中心:①焊缝理化及性能检测、金相试验室;②焊接结构完整性、安全性评价试验室;③焊接工艺及无损检测试验室;④激光一电弧复合备开展在焊接冶金、焊缝力学行为、
焊接结构完整性及安全性评价、高效自动焊技术、特殊条件下焊接等的研究试验基础条件。焊接试验室;⑤焊接自动控制试验室;⑥水下焊接试验室,以形成具备开展在焊接冶金、焊缝力学行为、焊接结构完整性及安全性评价、高效自动焊技术、特殊条件下焊接等的研究试验基础条件。
2.2改善技术人员待遇,关心一线科技人员
一定要重视科研人才队伍建设,全力支持年青人岗位成才,关心一线科技人员的待遇和职称,让他们在科研管理氛围中享受职业自豪感,达到稳定科研队伍,保障企业健康发展。
2.3实施差异化管理,重点突出建设色技术
石油工程建设企业当中,一般都设有焊接培训中心,大多承担着企业内部焊工培训、焊接工艺试验、新焊接方法的掌握和运用等应用研究性工作。实行差异化管理,突出特色技术是今后焊接技术管理工作的要点。今后将根据不同地域和上、中、下游技术需求,在油田建设、长输管道、炼油化工、海洋工程领域,引导企业走特色焊接技术发展之路。
2.4加强焊接共性新技术的研究与开发
当前,石油工程建设焊接技术的共性技术研究是结合长输管道工程、海洋石油工程、石油战略储备库、LNG接收站等工程开展高效自动焊技术、配套工艺技术和焊接材料的研究。
2.4.1LN G工程焊接技术;
2.4.2高强管线钢焊接工艺;
2.4.3高效管道自动焊技术;
2.4.4海洋工程焊接技术;
2.4.5水下焊接技术;
2.4.6焊接结构完整性和安全评价技术;
2.4.7高速高效焊接新方法的研究与应用。
2.5实施“一三四”工程,发挥焊接专委会核心作用
早在1999年,焊接专委会就提出了实施“一三四”工程,就一个中心:把工程院焊接所作为科研中心;根据三个层次:以大庆、管道局、中油一公司三个培训中心为骨干层,其紧密层是以石油企业焊培中心,把大专院校、生产厂家等作为合作层;和四个功能:实现“科研、培训、交流、服务”等功能,使其做到一体化。“一三四”工程得到了集团公司和协会领导的高度重视和支持,目前,紧密层由3个发展到了7个,合作层的成员也在不断扩大,己经取得了卓有成效的工作业绩。今后将继续紧密围绕实现“科研、培训、交流、服务”一体化的功能定位,开展好各项工作。
2.5.1科研:瞄准世界先进水平,组织实施焊接装备、焊接材料、焊接工艺的科研攻关,引领全行业焊接技术进步。
通过这几个方面工作的不断发展,几个层次之间的紧密合作和相互支持,努力的使焊接专委会真正成为具有强大的辐射功能,使其成为重要的技术核心,同时,也要做到让焊接专委会真正拥有引领、维系和执行的功能,使其在推动石油行业焊接技术的发展中发挥重要的作用。
三、结论
我国石油工业正处于稳步发展时期,随着国民经济的快速增长,石油需求量也迅速增加,中国的石油工业将进入一个新的发展阶段。石油工程离不开钢铁材料,随着其使用条件的严酷复杂,对钢铁材料的性能要求也越来越高。石油工业建设用钢正朝着高强度、高韧性方向发展,并要求焊接各种耐高、低温及耐各种腐蚀介质的压力容器,从而对新钢种和特殊性能材料如高强钢、超高强钢、耐热钢、不锈钢、铝合金、钦合金、耐热合金及异种金属材料的焊接问题也提出了更高要求。解决有关焊接关键技术也是未来石油工程建设中的重要发展方向。
参考文献:
[1]冯标石油工程建设自动焊技术进程及面临的新课题.石油工程建设,200s, 31(1): 14-17.
[2]刘家发.大型立式储罐高效自动焊接技术金属加工(热 加工),2008(6): 36-39}48.
[3]陈炳伟.大型储油罐焊接技术探析.黑龙江科技信息,2007 (21)
[4]朱新昭.浅谈油气管道焊接工艺方法、应用及发展前景管理观察,2oo9(s): 99
[5]荆雷.油气管道焊接技术及其发展前景.石油工业技术监督,2008 (11): 21-24.
关键词:炉壳;焊接;应用
中图分类号:TG333 文献标识码:A
前言
钢铁生产的集中专业化、和设备的大型高效化是现代国内外钢铁工业发展的趋势。高炉大型化是炼铁原料、设备、操作综合发展的结果,同时也是衡量一个国家生产水平的重要指标。作为钢铁生产的主要设备,在生产中承担着主要角色。长时间使用,会影响其使用寿命,降低高炉的安全可靠性。而高炉炉壳局部更换则是解决这一问题的主要途径。当今冶炼事业飞速发展,高炉新旧炉壳焊接,被越来越多的炼钢生产厂家和冶金施工企业所采用。高炉局部更换的恢复性大修比较常见,目前我国没有专门的有关高炉结构、焊接规程和规范,现行相关设计规程和控制标准;相关的科技文献也极少,基本上还是以经验和参照国外设计图纸为主方式进行。
1 高炉炉壳更换
对高炉炉壳局部更换或者焊接,主要还是凭借经验进行操作。采用拆一块、镶补一块的逐块更换施工法,有时炉壳要分成十几块进行更换,这种方法使炉壳的更换质量难以得到保证。施工工期长,不利于高效生产。高炉本体炉壳更换分两种情况:
第一种情况:为满足工艺需要进行的更换。即高炉炉壳在生产中变形超过设计允许的变形范围时;
第二种情况:为满足施工需要进行的炉壳更换。即位现场开控部分而进行的炉壳更换。新炉壳是用新轧制的钢板冷制作出来的,其材质一般选用Q235B,化学成分未发生任何变化。而旧炉壳则在日常炼铁生产中常年处于高温环境,其化学成分已经发生了非常大的变化。通过对两者的成分进行分析,和在新、旧炉壳间的焊接实验证明,新、旧炉壳结合焊接在改进焊接工艺的基础上是可以进行的。
更换高炉炉腰以上的炉壳时,有时采取将需要更换的炉壳以上的炉体及附属部件悬吊处理,从而实现炉壳整圈更换。这样可以加快工期,有利于施工质量。无论采取哪一种更换方式,都存在由于上部炉体在自身重力、新旧炉壳水平缝焊接时的收缩应力和其他因素的作用下,上部炉体会出现下沉现象。因此,必须要有可靠的措施将其下沉量控制在允许范围内。
2 焊接方法
在新、旧炉壳的焊接过程中,要根据新、旧材料的机械性能、化学成分、工作环境等制定撞门焊接工艺,严格对辅助材料进行选择,对焊条要按照规范烘干,对焊接规范、焊接顺序等进行调整。在考虑钢板的进料时,应考虑因制造和安装时需要的对焊缝收缩余量以及气割缝等的加工余量。还应该考虑旧炉壳的制造安装误差和实际生产过程中的可能变形量等因素。炉壳焊缝竖缝时为x型坡口,采用数控自动火焰切割;水平缝时为单面V型坡口,采用机械刨削加工。
为保证新、旧炉壳焊接牢固,密封严密,新、旧炉壳一律打双面K形坡口,双面焊接,坡口角度45°,钝边2mm,对口间隙2mm,坡口形式日下图:
炉壳安装过程中,如果发现旧炉壳变形比较严重,与新炉壳对接焊接错边比较大时,需要用火焰将其烤软,然后用大锤或其他工具进行捶击,使其向相反方向变回初始状态,以便与新路口入对接焊接。所有新、旧结合处焊缝必须都用磨光机将焊道打磨干净,露出金属光泽,并经技术人员检验确认后方可施焊。所有新、旧炉壳的焊接尽量采用CO2气体保护焊,以减小焊接变形,加快焊接速度。焊接过程中,应采用大电流、快速度的方法进行焊接。赶热闹局对缝隙的间隙和板材的厚度,掌握焊缝熔敷系数和焊接的热循环规范参数要求进行施焊。
一般情况下,高炉炉壳的厚度都在3mm以上,所以,要进行多层次的焊接,对每层焊接缝都要清理干净后,方可进行下道焊缝的焊接。在对新、旧炉壳结合吃进行打底焊接、填充焊接的过程中,必须进行分段对称焊接,尽量减小焊缝变形中的残余应力。新、旧炉壳结合焊接也可以采用电焊条进行焊接,此时应根据母材选择焊材,常采用E4316焊条焊接。E4316焊条是低氢型焊条,主要用于焊接重要的低碳钢和低合金钢的结构,如造船、桥梁、压力容器等。焊接参数列表:
结语
按照上述方法焊接后的新、旧炉壳焊缝,表面不会有裂缝、焊瘤、气孔等缺陷,焊缝表面非常平整光滑。焊接完毕对其进行探伤,合格率在100%。随着高炉大修、检修的新探索新实践,新、旧炉壳结合焊接的成功案例越来越多,其独特的技术优势和经济效益越来越明显。此技术既节约了临时支撑的材料用量,同时也节约了制作、安装费用,为今后高炉炉壳检修施工提供了宝贵经验。
参考文献
[1]周勇.大型转炉托圈与炉壳吊板安装施工技术[J].安装,2011(11):21-23.
[2]舒秀海.大型高炉炉壳开裂焊接处理技术的应用[J].科技信息,2011(16):24-26.
【关键词】:锅炉;压力容器;焊接
[ Abstract ] : With the increase of boiler, pressure vessel and pipe working parameters and the expansion of the application field, put forward more and more requirements on welding technology. The selection of welding method, welding process, welding materials and welding equipment must first guarantee the high quality of welded joints, but also must meet the high efficiency, low consumption, low pollution requirements.
[ keyword ]: boiler pressure vessel; welding;
中图分类号:TU74
引言
我国焊接行业经过了40多年的发展壮大,目前已经形成了一批有一定规模的企业,基本可以满足国民经济的需求。随着我国改革开放和企业与产品结构改革的不断深化,目前,电焊行业各类企业的总数仍保持在900家左右,其中:原机械部定点企业38家,与焊接设备有关的各部委和地方所属设计研究院(所)30余个,设有焊接设备专业的大专院校35个,以及设有焊接专业的中等专业学校10余个等。
一、锅炉部件材料的发展
从锅炉主要部件用钢的发展阶段来看,即便是工作温度相对较底的水冷壁部件,也必须采用铬含量大于2%的Cr-Mo钢或多组元的CrMoVTiB钢。按现行的锅炉制造规程,这类低合金钢,当管壁厚度超过规定的界限时,焊后必须进行热处理。由于膜式水冷壁的外形尺寸相当大,工件长度一般超过30m,焊后热处理不仅延长了生产周期,而且大大提高了制造成本。为解决这一问题,国外研制了一种专用于膜式水冷壁的新钢种7CrMoVTiB1010。最近,该钢种已得到美国ASME的认可,并已列入美国ASME材料标准,钢号为A213-T24。这种钢的特点是含碳量控制在0.10%以下,硫含量不超过0.010%,因此具有相当好的焊接性。焊前无需预热。当管壁厚度不大于10mm,焊后亦可不作热处理。
在特超临界的蒸气参数下,当蒸气温度达到700℃,蒸气压力超过370bar时,水冷壁的壁温可能超过600℃。在这种条件下,必须采用9%Cr或12%Cr马氏体耐热钢。这些钢种对焊接工艺和焊后热处理提出了严格的要求,必须采取特殊的工艺措施,才能确保接头的焊接质量。
对于锅炉过热器和再热器高温部件,在超临界和特超临界蒸汽参数下,其工作温度范围为560~650℃。在低温段通常采用9~12%Cr钢,从高温耐蚀性角度考虑,最好选用12%Cr钢。在600℃以上的高温段,则必须采用奥氏体铬镍高合金耐热钢。根据近期的研究成果,对于高温段过热器和再热器管件,为保证足够高的高温耐蚀性和抗氧化性,应当选用铬含量大于20%的奥氏体钢,例如25Cr-20NiNbN(HR3C),23Cr-18NiCuWNbN(SAVE25),22Cr-15NiNbN(Tempaloy A-3),和20Cr-25NiMoNbTi(NF709)等。
在相当高的蒸汽参数下(375 bar/700℃)下,在过热器出口段,由于奥氏体钢蠕变强度不足,不能满足要求,而必须采用镍基合金,如Alloy617。
现代奥氏体耐热钢与传统的奥氏体耐热钢相比,其最大特点是含有多组元的碳化物强化元素,从而在很大程度上提高了钢材的蠕变强度。
对于超临界锅炉机组的高压出口集箱和主蒸汽管道等厚壁部件,主要采用改进型的9-12%Cr马氏体铬钢。
9~12%马氏体铬钢的发展规律与前述的奥氏体耐热钢相似,即从最原始的Cr-Mo二元合金向多组元合金演变,其主攻方向是尽可能提高钢材的高温蠕变强度,减薄厚壁部件的壁厚,以简化制造工艺和降低制造成本。上述钢种由于严格控制了碳、硫、磷含量,焊接性明显改善。在国外超临界和特临界锅炉已逐步推广应用,取得了可观的经济效益。
二、锅炉受热面管对接高效焊接法
锅炉受热面过热器和再热器部件管件接头的数量和壁厚,随着锅炉容量的提高而成倍增加,600MW电站锅炉热器的最大壁厚已达13mm,接头总数超过数千个。传统的填充冷丝TIG焊的效率已远远不能满足实际生产进展的要求,必须采用效率较高的且能保持接头质量的溶焊方法。为此,哈锅和上锅相继从日本引进了厚壁管细丝脉冲MIG自动焊管机,其效率比传统的TIG焊提高3~5倍。后因经常出现根部未焊透和弧坑下垂等缺陷而改用TIG焊封底MIG焊填充和盖面工艺。改进后的焊接工艺虽然基本上解决了根部未焊透的问题,但降低了焊接效率,增加了设备的投资,同时也使操作程序复杂化。最近,上锅,哈锅又从国外引进了热丝TIG自动焊管机。热丝TIG焊的原理是将填充丝在送入焊接熔池之前由独立的恒压交流电源供电。电阻加热至650~800℃高温,这就大大加速了焊丝的熔化速度,其熔敷率接近于相同直径的MTG焊熔敷率。另外,TIG方法良好的封底特性确保了封底焊道的熔质量。因此,热丝TIG焊不失为小直径壁厚管对接焊优先选择的一种焊接方法。然而不应由此全面否定脉冲MIG焊在小直径壁厚管对接中应用的可行性。曾通过大量的试验查明,在厚壁管MIG焊对接接头中,根部未焊透90%以上位于超弧段,而弧坑下垂起因于连续多层焊时熔池金属热量积聚导致过热。如将焊接电源电弧的功率作精确的控制,则完全可以消除上述缺陷的形成。但由于引进的MIG焊自动焊管机原配的焊接电源为晶闸管脉冲电源,无法实现电弧功率的程序控制。如改用当代最先进的全数字控制逆变脉冲焊接电源或波形控制脉冲焊接电源(计算机软件控制小),则可容易地按焊接工艺要求,对焊接电弧的功率作精确的控制,确保接头的焊接质量。
我们建议对现有的管子对接自动焊MIG焊机组织二次开发,将原有的晶闸管焊接电源更换成全数字控制逆变脉冲焊接电源,并采用PLC和人机界面改造控制系统,充分发挥MIG焊的高效优势。
三、厚壁容器纵环缝的窄间隙埋弧焊
厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985年哈锅从瑞典ESAB公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。
为进一步提高窄间隙埋弧焊的效率,国内外推出串列电弧双丝窄隙埋弧焊工艺与设备,但至今未得到普遍推广应用。这不仅是因为增加了操作的难度,更主要的是交流电弧的焊道成形欠佳,不利于脱渣,容易引起焊缝夹渣。
最近,美国林肯(Lincoln)公司向中国市场推出交流波形参数(脉冲宽度、正半波电流值、脉冲频率,脉冲波形斜率)可任意控制的AC/DC1000型埋弧焊电源。采用这种新一代的计算机控制埋弧焊电源,可使串列电弧双丝埋弧焊的工艺参数达到最佳的组合。不但可以获得窄间隙埋弧焊所要求的焊道形成,而且还可进一步提高交流电弧焊丝的熔敷率。可以预期,波形控制AC/DC埋弧焊电源的问世必将对串列电弧双丝窄间隙埋弧焊的推广应用作出积级的贡献。
四、大直径厚壁管生产中的高效焊接法
随着输送管线工作参数不断提升,大直径厚壁管的需求量急剧增加,制造这类管材最经济的方法是将钢板压制成形,并以1条或2条纵缝组焊而成。由于厚壁管焊接工作量相当大,为提高钢管的产量,通常采用3丝,4丝或5丝串列电弧高速埋弧焊。5丝埋弧焊焊接16mm厚壁管外纵缝的最高焊接速度可达156m/h,焊接38mm厚壁管外纵缝的最高焊接速度可达100mm/h。