发布时间:2023-07-23 09:24:19
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的欧姆定律的原理样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
在准确把握欧姆定律的基础上,初中电学的重要任务是会应用欧姆定律初步解决一些实际问题:一、提供一种测量电阻的方法,会用电流表、电压表测电阻(即伏安法测电阻),深化对电阻的理解;二、会利用欧姆定律和串、并联电路的特点,通过实验和推导的方法,得出串联电路、并联电路的等效电阻和计算公式,并能解答和计算简单的电路问题;三、通过测量电阻的其他方法,培养电学的基本解题思维和方法.
应用导航一、 “伏安法”测电阻
1. 实验原理:
根据欧姆定律公式R=U/I,分别用电压表测出电阻两端的电压和用电流表测出通过电阻的电流,就可以算出电阻的阻值.
2. 电路图:如图1
3. 注意点:
(1) 滑动变阻器在电路中可以改变通过电阻的电流(即改变电阻的工作状态);
(2) 该实验中,电流表的示数不仅包括待测电阻中的电流,也包括通过电压表的微小电流,这是产生误差的主要原因;
(3) 当电流通过导体时,导体因发热而使电阻变大,长时间通电时,前后测得的电阻值偏差较大,因此实验时多次改变滑动变阻器滑片的位置,在每次读出电压表和电流表的示数后都要及时断开开关;
(4) 测量定值电阻的阻值时,可以用多次测量求平均值的方法求电阻,而测量小灯泡的电阻时由于灯泡的电阻值与温度的变化有关,所以不能用求平均值的方法测量.
应用实战
例1 在测定电阻阻值的实验中:
(1) 小明根据图2所示的电路图,将图3中的实验器材连接成实验电路.同小组的小亮在检查时认为,从实验目的来看,实验电路上有一根导线连接错了,建议小明改接.
① 请你在接错的那根线上打“×”;
② 另画一根导线,使电路连接正确;
③ 如果不改接这根导线,对实验的影响是:?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇 ?摇?摇.
(2) 小明将电路改接正确后,合上开关,调节变阻器的滑片到某位置时,电压表和电流表的指示如图4所示,则电压表的读数是?摇 V,电流表的读数是 ?摇 ?摇?摇A,被测电阻Rx的阻值是?摇 ?摇?摇?摇 Ω.(3) 小明和小亮为他俩在全班首先获得测量结果而高兴,准备整理实验器材结束实验.你认为他们的实验真的结束了吗?给他们提出什么建议呢?
① 写出你的建议: ;② 建议的目的是: .
应用解读
(1) 欧姆定律中的电流、电压、电阻是对同一段导体而言的,电流表“+”到A接线柱为错误,打“×”,改为电流表“+”到C接线柱,否则测量的是Rx与滑动变阻器两端的总电压。
(2) 电压表读数1.8V,电流表读数0.24A,由R=U/I计算电阻值为7.5Ω。
(3)本题只测量了一组数据,所以建议:移动滑动变阻器,再测两组数据;目的是多次测量取平均值,以减小误差.
第1节 对欧姆定律的理解和应用
重点考点
欧姆定律是通过“探究导体的电流跟哪些因素有关”的实验得出的实验结论.应注意以下考点:(1)公式()说明导体中的电流大小与导体两端的电压和导体的电阻两个因素有关,其中I、U、R必须对应于同一电路和同一时刻.(2)变形式()说明电阻R的大小可以由()计算得出,但与U、I无关.因为电阻是导体本身的一种性质,由自身的材料、长度和横截面积决定.由此提醒我们,物理公式中各量都有自身的物理含义,不能单独从数学角度理解.(3)串联电路具有分压作用,并联电路具有分流作用.
中考常见题型
中考一般会从两方面考查欧姆定律的应用,一是对欧姆定律及变形公式的理解和简单计算,一般不加生活背景,以纯知识性的题目出现在填空题或选择题中:二是应用欧姆定律进行简单的串并联的相关计算.
例1 (2014.南京)如图1所示,电源电压恒定,R1=20Ω,闭合开关S,断开开关S1,电流表示数是0.3 A;若再闭合开关S1,发现电流表示数变化了0.2 A.则电源电压为____V,R2的阻值为____ Ω.
思路分析:闭合s,断开S1时,电路为只有R1的简单电路,可知电源电压U=U1=I1R1=0.3 Ax20 Ω=6 V;若再闭合S1时,两电阻并联,则U2=U=6 V,因为R1支路两端的电压没有变化,所以通过该支路的电流仍为0.3 A,电流表示数的变化量即为通过R2支路的电流,则I2=().
答案:6 30
小结:本题考查了并联电路的特点和欧姆定律的灵活运用,关键是能判断出闭合开关S1时电流表示数的变化即为通过R2支路的电流.每年的中招都有一个2分的这样的纯计算题目,以考查同学们对基础知识的理解和掌握程度.
例2(2013.鄂州)如图2甲所示的电路,电源电压保持不变.闭合开关S,调节滑动变阻器,两电压表的示数随电路中电流变化的图象如图、2乙所示.根据图象的信息可知____.(填“α”或“b”)足电压表V2示数变化的图象,电源电压为____V,电阻R1____的阻值为____ Ω.
思路分析:国先分析电路的连接情况和电表的作用:电阻R1和滑动变阻器R2串联,电压表V1测的是R1两端的电压,电压表V2测的是滑动变阻器(左侧)两端的电压.因为R1是定值电阻,通过它的电流与电压成正比,所以它对应的图象应是α,那么图象b应是电压表V2的变化图象,观察图象可知:当电流都是0.3 A(找出任一个电流相等的点,两图线对应的电压之和就是电源电压)时,U1=U2=3 V,根据串联电路中电压的关系可知,电源电压为6V,由于R1是定值电阻,所以在图象α上任找一点,代入欧姆定律可知()
答案:b 6 10
小结:欧姆定律提示了电流、电压、电阻三者之间的数量关系和比例关系,三个比例关系分别为:(1)电阻一定时,导体中的电流与导体两端的电压成正比,即()(2)电流一定时,导体两端的电压和它的电阻成正比,即().该规律又可描述为:串联分压,电压的分配和电阻成正比,即电阻大的分压多.(3)电压一定时,导体中的电流和导体的电阻成反比,即(),该规律又可描述为:并联分流,电流的分配和电阻成反比,即电阻大的分流小.图象可以很直观地呈现这种关系,学会从图象中找出特殊点足解决欧姆定律问题的一大技巧,
第2节 动态电路中物理量的变化
重点考点
由于滑动变阻器滑片的移动或开关所处状态的不同,使电路中电流和电压发生改变,这样的电路称之为动态电路.这类题目涉及电路的分析、电表位置的确定、欧姆定律的计算、串并联电路中电流和电压分配的规律等众多知识,因此同学们在分析过程中容易顾此失彼,下面我们通过例题梳理一下解决这类问题的一般思路,
中考常见题型
题日常联系生活实际,以尾气监控、超重监控、温度监控、风速监控、身高测量等为背景,考查该部分知识的掌握情况,存中考题中常以选择题的方式呈现,注意:如果题目中没有特别说明,可认为电源电压和定值电阻的阻值是不变的.
例3(2014.济宁)小梦为济宁市2014年5月份的体育测试设计了一个电子身高测量仪.图3所示的四个电路中,Ro是定值电阻,R是滑动变阻器,电源电压不变,滑片会随身高上下平移.能够实现身高越高,电压表或电流表示数越大的电路是().
思路分析:图A中两个电阻R。和R串联,电流表测量的是整个电路中的电流,当身高越高时,滑动变阻器接入电路中的阻值越大,电路中的电流越小,电流表的示数越小,图B中身高越高时,滑动变阻器连人电路中的阻值越大,电压表测量的是滑动变阻器两端的电压,根据串联电路分压的规律知道,R越大电压表的示数越大,符合题意.图B与图C中滑动变阻器的接法不同,图C中身高越高,滑动变阻器连入电路中的阻值越小,同理知道电压表的示数越小.图D是并联电路,电流表测的是支路电流,根据并联电路各支路互不影响的特点知道,不论人的身高如何变化,电流表的示数都不会发生变化,选B.
小结:分析这类问题依据的物理知识是:(1)无论串并联电路,部分电阻增大,总电阻随之增大,而电源电压不变,总电流与总电阻成反比.(2)分配关系:串联分压(电阻大的分压多),并联分流(电阻大的分流少).(3)在并联电路中,各支路上的用电器互不影响,滑动变阻器只影响所在支路电流的变化,从而引起干路电流的变化.解决这类问题的一般思维程序是:(1)识别电路的连接方式并确定电表位置.(2)判断部分电阻的变化.(3)判断总电阻及总电流的变化.(4)根据串并联电路的分压或分流特点进行局部判断.
例4如图4所示电路,电源电压不变,开关S处于闭合状态.当开关S.由闭合到断开时,电流表示数将____.电压表示数将 ________ .(均填“变大”“不变”或“变小”)
思路分析:当开关S.闭合时,电灯L被短路,电路如图5所示,电压表测的是电阻R两端的电压(同时也是电源电压),电流表测的是通过电阻R的电流.当开关S1断开时,电灯L和电阻R串联,电路如图6所示,此时电压表测电阻R两端的电压,它是总电压的一部分,所以电压表的示数变小;电流表测的是总电流,但跟S,闭合相比,这个电路的总电阻变大,总电压不变,故电流表的示数变小.
答案:变小 变小
小结:本题引起电表示数变化的原因是开关处于不同状态,解决本题的突破口是弄清楚当开关处于不同状态时,电路的连接情况和电表的位置.
第3节 欧姆定律的探究及电阻的测量
重点考点
电学实验探究题的考查比较常规,有以下几方面:(1)选取器材及连接电路:根据题目要求,分析或计算出电表的量程和滑动变阻器的规格,连接电路时开关应断开,滑动变阻器要“一上一下”接入,且滑片要放在阻值最大的位置.电表的量程和正负接线柱要正确.(2)滑动变阻器的作用:保护电路,改变电路中的电流或用电器两端的电压,实现多次测量.(3)分析实验数据得出结论.怎样分析数据才能得出结论是近年来考试的侧重点,要注意结论成立的条件和物理量的顺序.(4)多次测量的目的有两个,如定值电阻的阻值不变,多次测量是为了求平均值减小误差:灯丝电阻是变化的,多次测量是为了观察在不同电压下,电阻随温度变化的规律.难点是单表测电阻和创新型实验的探究与设计.
中考常见题型 中考常以“探究电流与电压或电阻的关系”“测小灯泡的电阻”和“测定值电阻的阻值”这三类题型,以实验探究的方式考查同学们的动手能力和解决实际问题的能力,在常规的考查基础上,近几年又融人器材的选取、电路故障的处理、单表测电阻及如何分析数据才能得出结论等探究内容的考查.
例5用“伏安法”测电阻,小华实验时的电路如图7所示.
(1)正确连接电路后,闭合开关前滑片P应置于滑动变阻器的________(填“左”或“右”)端.
(2)测量时,当电压表的示数为2.4V时,电流表的示数如图7乙所示,则,_____A,根据实验数据可得R2=____Ω.小华在电路中使用滑动变阻器的目的除了保护电路外,还有____.
(3)如果身边只有一只电流表或电压表,利用一已知阻值为Ro的定值电阻、开关、导线、电源等器材也可以测出未知电阻Rx请仿照表1中示例,设计出测量Rx阻值的其他方法.
思路分析:闭合开关前,滑动变阻器的阻值应调到最大.由于测量的是定值电阻的阻值,所以,应该多次测量求平均值减小误差,这正是使用滑动变阻器的另一个目的.测电阻的原理是R=(),即用电压表测出未知电阻两端的电压,用电流表测出通过未知电阻的电流,就能计算出未知电阻的阻值.当只有电流表时,我们应设法“借到”电压,怎样让未知电阻两端的电压和已知电阻两端的电压相等呢?只有组成并联电路,示例也证实了这一点.同样道理,当只有电压表时,我们可以组成串联电路,这样可以借助通过已知电阻的电流来计算未知电阻,
目前一些学生家长及学校老师认为要培养优秀的学生,主要靠的是个别辅导及课外小组的研究活动,与课堂教学并无多大关系。我认为这种观点是片面的。实际上一切的研究活动都是以课堂教学为基础的,所以对于课堂教学教师一定要尽心尽力做到最好。比如学生学习物理的时候,首先接触到的就是物理定律,所以我们一定要首先搞好物理定律的教学。物理定律是我们以后做题、实验、推理的主要依据。教学物理定律,不能只是简单地依靠课本,课本上的知识往往比较注重结果,每一个物理定律的成立都有着一个复杂而漫长的过程。我们应该多讲解一些这个定律成立的路程,以及成立的依据,这样学生们会觉得这一个物理定律是活生生的,掌握和应用起来都会更加得心应手。学生掌握了这一物理定律就可以自如运用,能够在实验与试题中应用以后,我们就要引导学生思索这一物理定律之所以成功的原因。它之所以能够确立起来,其中一定有着恰当的思维和推理方式,还有比较合理科学的探究方式,这种探究精神的学习才是最为重要的,才是物理学科教研活动中最重要的东西。这可以说是物理教学甚至是一切的学习活动中最根本的东西。
比如学生在学习电学当中最著名的欧姆定律这一物理定律时,预习以后会觉得欧姆定律非常简单,仅仅认为就是研究通过导体的电流与导体两端的电压之间的关系而已,没有什么困难,不就是运用一定的实验器材,电压表电流表可变电阻器、电源、导线若干、连接一个恰当的电路就可以了吗?当然以一个现代的学生看一切都在情理之中,没有非议。可是我给他们的讲解是,在欧姆那个时代,不但没有电流表、电压表之类的仪器,而且连电压、电流、电阻的定义和单位都没有,欧姆在当时面临的困难是我们无法想象的。他到底是通过什么样的方式,经过什么样的思索获得这一物理定律的呢?这个时候学生的兴趣就被调动起来了。在学习欧姆定律诞生的过程时,我通过电脑多媒体教室等先进的教学设施,大量搜集演示各种可能的实验过程。在最后阶段我根据欧姆的实验方式,简单介绍了可以用图线探究新规律的方式。其实物理定律的教学与学习并不是我们想象的那么简单的,如果记住物理定律只是学会了皮毛而已,能够运用也只不过是为了取得高分,我们一定要让学生们学会思考、学会探究,这种学习精神是物理学习中最为宝贵的,有了这种探究精神就可以不断探索大自然的奥秘。
我听过这样一个笑话:有一位老师在参观一所美国的学校以后对校长说:能否给我们一套你们的教材,以便我进一步了解美国课程的情况。当时校长很为难,没有马上回答。那位老师觉得这校长挺小气的,几本教材还舍不得。可是过了两个星期,那校长突然打来电话说:“教材给你搞到了,马上送去。”结果来的是一个货运卡车,一共10大箱教材――从出版社直接运来的。里面不仅有学生和教师用书,还有光盘和图片等。这时,这位老师才知道为什么那位校长当时没有马上答应。原来对于美国教师而言,一套教材意味着所有的教学用书和教学辅助资料。这是价值上千美元的财产,没准儿经过学区董事会决议才能定。由此可以看出,我国的教育和美国的教育确实有很大区别,单单从观念上来说也是有很大不同的。我们在备课的过程中,一定要把眼光放宽一些,深挖教学资源的潜力,运用优质的教学资源、参考补充。不能仅仅依靠一本教科书和教材,否则太狭隘、太片面。要想让学生学好,我们一定要多参考多学习,一定要让学生学好物理,学会探究性学习。
[关键词] 直流电动机 电压 电流 功率
直流电动机的电压、电流与功率问题,一直是高中物理“电功与电功率”这节内容教学中的难点。因为电动机电路属于非纯电阻电路,欧姆定律并不适用,而学生往往没真真理解欧姆定律的使用条件,常常也用欧姆定律来解直流电动机的电压、电流与功率问题,导致这类题目错误率很高。接下来笔者结合自己的实践经验来谈谈对这部分内容的教学体会。
一、直流电动机的电压与电流
直流电动机是根据通电线圈在磁场中转动的原理制成的,其线圈的等效电路如图1所示(即可等效为一个定值电阻
与一个无阻值的理想线圈串联而成)。当给电动机通上电,线圈在磁场中转动时,线圈导线切割磁感线,这样在线圈中就会产生感应电动势。根据楞次定律可知,产生的感应电动势的方向与使线圈转动的电流方向相反,故称为反电动势ε。电动机线圈转动的越快,说明线圈的导线切割磁感线越快,所以反电动势ε就越大。又因为线圈本身具有直流电阻(等效为图1中的定值电阻R),因此加在电动机两端的电压应分为两部分:其一用来平衡反电动势ε;其二为线圈直流电阻上损失的电压U΄。
即有:U = ε + U΄;①
由于直流电动机的电流Ι(即电动机的工作电流)就是流过电动机线圈电阻的电流。
所以有:U΄ = ΙR;②
有①、②两式可得:
直流电动机两端的电压U =ε +ΙR;③
因此直流电动机的电流Ι=(Uε)/ R;④
由此可见部分电路欧姆定律Ι=U / R对电动机是不适用的。
当电动机接通电源后,启动的开始阶段电枢的转速较小,产生的反电动势很小,所以启动电流很大,最大可达额定电流的15―20倍。这一电流会使电网受到扰动,机组受到机械冲击,换向器产生火花。
为了限制启动电流,常在电枢回路内串入专门设计的可变电阻,其接线原理见图2。在启动过程中随着转速的不断增大,应及时逐级将各分段电阻短接,使启动电流限制在某一允许值以内,这一启动方式称为串联电阻启动。这种启动方式非常简单,设备轻便,广泛应用于各种中小型直流电动机中。但由于启动过程中能量消耗较大,不适用于经常启动的电动机和中、大型直流电动机中。
二、直流电动机的功率
如果用Ι去乘③式中的各项就可以得到:
UΙ=εΙ +Ι2R;⑤
在物理课堂中巧妙使用生活化策略指的是授课教师在物理课堂中将现实生活中的经典物理案例引入课堂教学中。经过思考,学生可以将课堂所学的物理知识应用于解决生活中的问题,使物理学课堂充满勃勃生机。
一、学以致用,用以促学提能力
高中生学习物理学的目的不只是为了取得高分顺利通过高考,更是为了让学生体会物理学的实用性。物理学本来就是来源于实践的学科,是对生活现象中物理原理的总结和概括。然而,学生在高中时期学习的物理学知识确实非常抽象和枯燥,因此,授课教师在物理课堂中巧妙应用生活化策略,将抽象的物理学定律和原理结合着生活中的具体问题进行学习和分析。
例如,老师在讲授必修一第三章《摩擦力》这部分内容时,可以将实际生活中可能用遇到的实际问题放在学生面前,使学生在对题目进行正确解答的过程中,将各种能力进行全面的提升。粗糙的地面上,放着一个重50千克的箱子,两人逐渐加大力气对箱子进行推移。为什么两工人会有这样的体会:两人在逐渐加大力气推箱子的过程中,箱子会被突然推动,然后使用相对较小的力就可以保持箱子的匀速运动,试分析这种现象的原因?在匀速运动中两工人在水平方向上的推力为力250N,该粗糙地面的摩擦系数是多少?(g=10N/kg)
解答这个问题需要对《摩擦力》这章的知识框架了解的非常清楚。两工人在初始推箱子时,箱子受到的力小,箱子未动,此时水平方向上箱子受两个力,人推箱子的力F和箱子受到的静摩擦力f。且两力的关系为等大反向。静摩擦力的特点是与受力方向相反,人往东推箱子,虽然箱子未动,摩擦力f始终与人的作用力方向相反。在物理学中有一种力叫作最大静摩擦力,这个力的大小在理论上大于滑动摩擦力。这也就解释了工人在推箱子的过程中,为什么在推动箱子的一瞬间会突然出现 “轻松感”。一旦箱子开始运动,那么受力情况就与之前大不相同了。箱子一旦开始了匀速直线运动,水平方向上二力平衡,合外力就为零,此时仍然有F推=f滑。滑动摩擦力的计算与静摩擦力不太一样,滑动摩擦力的大小与物体的运动方向上的受力大小有关系,且只与受力大小有关。而滑动摩擦力则不然,与物体接触面的粗糙程度即μ和与运动方向垂直面上受到的力有关系。因此,该题的第二问的解答为F=Mg×μ。解答250N=50kg×10N/kg×μ,解得μ=0.5。综合解答,第一问物体开始运动时,摩擦力的性质由静摩擦力突然转变成滑动摩擦力,而通过书本知识的学习可知最大静摩擦要大于滑动摩擦力,由此可解答出问题一。对于第二问的解答更需要将实际问题转化为物理模型,一个物体的匀速直线运动,摩擦力的类型为滑动摩擦力。根据f滑=N×μ此处的N=Mg,故可解之。
这个问题放在课堂上让学生解答十分巧妙地应用了生活策略,想必学生在日常生活中也会有类似的体验,将这些问题引入到课堂教学中,必然能促进学生在物理学知识中努力寻求解决问题的方案。
二、激发潜能,自主探究勤动脑
授课教师将生活化策略巧妙应用于物理课堂,能促使学生对物理学知识进行自主化探求,能改变学生在传统教学中被动局面。学生在传统教学模式下,对物理学的学习仅仅停留在课本知识层面。学生仅仅把物理学学习当成是完成学业任务的一部分,做不到对物理知识的深入探究,更不会自主地动脑去将物理学知识应用于解决实际生活中去。
例如,在学习物理学选修2-1第一章,第四节的《闭合电路欧姆定律》一节时,老师应该将闭合电路欧姆定律与初中所学的欧姆定律的区别和联系进行细致化讲解,两者最主要的区别点在于:初中所学的欧姆定律将导线的电阻不予以考虑,电流表的电阻忽略不计;而闭合电路欧姆定律在对电路进行分析时,并不能忽略导线的电阻,这是二者的本质区别。老师可以向学生提出与生活息息相关的问题,例如:我们生活的周围被电线包围着,“高压线”这个名词可谓是家喻户晓,那么请问电能在输送过程中为何要使用“高电压”进行输送呢?这个问题问得非常巧妙,既不属于偏难类问题,真真切切的存在于现实生活中,又属于课本中欧姆定律这章的重点,与现实生活联系极为紧密。解答该问题要用到闭合电路欧姆定律,电能在远距离传输过程中,由于导线的距离非常长,有时甚至达到成百上千公里,此时的导线的电阻r就不得不引起我们的重视了。根据公式P=I2×r,而导线的电阻r又与长度成正比,因此在导线上损耗的电能就非常大。然而我们要输送的电线长度是不能变化的,根据公式只能降低电流I。根据公式P=U×I,功率一定的情况下,U越大,I就越小,由此可得为何要进行高压输电。
授课教师将生活化策略应用于物理学可以将生活中的物理现象在授课过程中讲述给学生,通过学生对知识的转化,激发学生的潜能,进而使学生养成勤动脑的良好学习习惯。
三、深化思考,查漏补缺弥不足。
老师在课程讲述中应用生活化策略的另外一个优势就是可以引起学生对所学知识的深入思考,促进学生对知识的全面掌握,帮助学生以最短的时间发现问题,以弥补不足。
例如,在学习选修2-1第三章《电磁感应》时,老师可以提出该章节中让众多学生困惑的问题:闭合线圈切割磁感线可以产生电流,这是发电机的原理;通电线圈在磁场中会运动,这是电动机的原理。可不可以用电动机的线圈来发电,再将发出的电用来带动电机,这样岂不是永远可以循坏利用吗?答案是否定的,这种观点忽视了能量的损耗,违背能量守恒定律。显然,老师的点拨和提问,能帮助学生找出弱项,从而进行深入思考。
关键词:课程改革;物理规律;规律教学
中图分类号:G633.7 文献标识码:A文章编号:1003-6148(2008)5(S)-0032-3
物理规律教学在中学物理教学中占有重要地位,其教学成效直接影响到物理教学质量和学生科学素养的培养。提高物理规律教学效果的前提是了解物理规律内涵、本质和特征,并在此基础上结合学生的认知特点设计科学的教学策略。
1 物理规律的内涵
“规律就是相互联系着的事物、现象、分子、元素(因素、要素)或方面的本质之间的关系”。相应的,物理规律就是物理现象、物理过程在一定条件下发生、发展和变化的内在、必然的联系。
1.1 物理规律的类型
经过2000多年的建设,物理大厦恢宏庞大,其组成规律自然纷繁复杂。为了认识物理规律本身,我们有必要对物理规律进行必要的分类。从物理规律获得途径的角度来看,物理规律可分为实验规律和理论规律;从物理规律知识形式的角度来看,物理规律可分为定律、定理、原理等类型;从过程中不同质的运动角度来看,物理规律可分为力学规律、热学规律、电磁规律、光学规律等;从“定性―定量”维度来看,物理规律可分为定性规律、定量规律。
1.1.1 实验规律与理论规律
从物理规律建立基础和过程的不同,可以将物理规律划分为实验规律和理论规律两种。实验规律是在观察和实验的基础上,通过分析归纳总结出来的,中学物理中的绝大多数规律都属于实验规律。如电磁感应定律、欧姆定律等即为实验规律。理论规律是由已知的物理规律经过理论推导,得出的新物理规律。动能定理、万有引力定律等即为理论规律。我们以万有引力定律为例来说明一下理论规律的建立过程。牛顿在伽利略的自由落体运动定律、牛顿自己的第三定律、开普勒的行星运动第三定律等前人工作的基础上,应用他超凡的数学才能,通过理论计算建立了万有引力定律。
1.1.2 定律、定理与原理
从物理规律知识形式的角度来看,可以将物理规律划分为物理定律、定理与原理三种类型。通过大量具体事实(包括实验和观察)归纳而成的结论称为物理定律,如牛顿第二定律、电磁感应定律、光的折射和反射定律等。通过一定的论据,经过逻辑推理而证明为真实的结论称为物理定理,如动量定理、动能定理等属于物理定理类。对大家公认的具有普遍性,而且可以作为其它规律基础的物理规律一般称为物理原理,如我们中学阶段比较熟悉的功能原理、叠加原理等即属于物理原理类。
1.1.3 定性规律与定量规律
从“定性―定量”维度来看,可以将物理规律划分为定性与定量两种类型。定性规律揭示的是各物理量间必然联系的存在和发展趋势;定量规律揭示的是必然联系中量的相互制约。例如牛顿第一定律就定性的描述了一切物体在不受外力作用或所受合外力为零的情况下的运动趋势,不反映外力与运动趋势之间的量化关系,属于定性规律。而定量规律则不同,如欧姆定律,除文字描述外,我们还可以用公式I=U/R来揭示各物理量之间的相互制约关系。
不同的物理规律分类之间并不是完全对立的,比如欧姆定律即属于物理定律,又是实验规律,同时也属于定量规律。
1.2 物理规律的特点
1.2.1 物理规律的实践性
物理学是一门以实验为基础的自然学科。中学物理的众多规律都是在实践、实验的基础上建立起来的。新课程标准倡导“从生活走向物理,从物理走向社会”,在教学中应重视引导学生运用物理规律解决生活实际问题,在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!
1.2.2 物理规律的联系性
物理规律都存在一定的联系,包括物理规律内在的概念、现象之间的联系;规律与规律之间的关系。
以牛顿运动定律为例,牛顿第一定律是说物体不受外力时做什么运动;牛顿第二定律公式F=ma揭示了物体的惯性质量、所受到的合外力与由此而产生的加速度之间的关系,是阐述物体受力时做什么运动,二者是从不同的角度回答了力与运动的关系。第一定律是第二定律的基础,没有第一定律,就不会有第二定律。虽然第一定律可以看成是第二定律的特例,但不能取消第一定律。
1.2.3 物理规律的对应性
物理规律中的各物理量都针对于某一研究对象。如果是状态量则对应于某一时刻、某一位置、某一状态。如果是过程量则对应于某一段时间、某一个过程、某一空间等,这就是物理规律的对应性。如,欧姆定律U=IR中各量均对应于同一导体、同一段电路在同一时刻的量值。
1.2.4 物理规律的因果性
因果性是物理规律的重要特点,任何物理规律都是在规律所表述的具体条件下才具有规律所阐述的结论。例如牛顿运动定律是在研究宏观低速运动物体的“前因”下,才有其结论的“正果”修成。
1.2.5 物理规律的发展性
物理规律是认识的结果,是在一定的事实基础上,归纳、推理得出的结论,具有历史局限性,只能部分地反映客观世界及其内在联系。规律会随着人的认识能力的提高和认识的深入不断发展。发展有时是温和的――是对已有规律的修正、丰富;有时是激进的――是对已有规律的否定、颠覆。换言之,物理规律不是绝对的真理,而是逐渐发展变化的,具有一定的相对性。如从经典力学到相对论、量子力学的发展变化过程。
2 物理规律教学的重要性
物理新课程改革强调改变过去过于注重知识传授的一维目标而向三维课程目标迈进。教学要以人为本,在学生获得知识的过程中,同样注重学生终身学习与发展所需的各种能力的培养。如何实现物理规律教学由传统向新课程理念的转变,应进一步明确物理规律教学在新课程实施过程中所发挥的重要作用。
2.1 物理规律教学,有助于学生对知识的理解
新课程改革倡导从三个维度对学生进行全面的培养,知识的理解历来是一个重要培养目标。依据布鲁纳的认知结构学习理论,我们教学的目的,就是引导学生建构一个理解物理知识的学科结构,从而运用知识解决具体问题。在最终建构的物理知识结构中,分散的各个点表示物理概念,联接各点的线就代表了物理规律,通过点和线及其之间的相互联系的讲解,引导学生在头脑中建构物理知识网络图。
2.2 物理规律教学,有助于学生思维能力的发展
作为智力核心的思维能力的培养对学生的发展是至关重要的。物理规律教学既是物理知识教学的核心内容,同时也是对学生思维能力培养的重要途径。
物理规律教学是在学生的感性认识(已有的对实验和事实认识)基础上,教师指导学生探索物理规律的过程。根据规律建立的思维过程和学生的认知特点,选择适当的途径方法,指导学生对感性材料进行思维加工,认识到物理规律中某些物理概念之间的内在联系,考虑到物理规律的近似性与局限性,从而概括出物理规律。作为近似反映物理对象、物理过程在一定条件下发生、发展和变化的物理规律的建立,离不开观察、实验和数学推理,也离不开物理思维,是诸多因素相结合的产物,学生在理解具有这些特点的物理规律的同时,其思维能力就会得到培养。
2.3 物理规律教学,有助于学生科学方法的掌握
物理规律的教学过程,其实也是科学方法教育的过程。我们知道物理规律的获得,少不了一些科学方法的使用,在物理规律教学过程中,合理运用一些研究方法并适时适当地进行显性教育,使学生不仅学到了物理规律,同时也学到了科学方法,培养了能力,可谓一举多得。
例如,在牛顿第一定律的教学过程中,教师重点要向学生说明的,除了牛顿第一定律的内容外,就是讲解这个规律获得过程中所用到的一个重要的科学方法――理想实验法。在欧姆定律、牛顿第二定律等的实验探究过程中,可以重点要求学生设计实验方案,在这一过程中,使学生明确研究3个变量的关系时,通常采用“控制变量”的方法。
2.4 物理规律教学,有助于学生科学探究能力的形成
提倡对学生进行科学探究能力的培养,是新课程改革的一大亮点,在新教材的编写中贯穿了科学探究精神并安排了一些科学探究的内容。由于物理规律的实践性特点,便于在课堂教学中开展实验教学,创设问题情境,从而激发学生探究物理问题的兴趣,经历物理规律发现的过程,培养学生的科学探究能力,并能使学生更好地运用物理规律去解释生活中的物理现象、解决生活中遇到的物理问题。
2.5 物理规律教学,有助于学生情感、态度与价值观的培养
我们知道,情感、态度与价值观培养,是物理新课程改革所倡导的三维课程目标中的一个维度。在物理规律的教学过程中,无时无刻不渗透着对学生情感、态度与价值观的培养。我们在进行物理规律教学时,可以通过创造良好的物理学习氛围、对相关物理学史内容的选择性介绍、开展科技创作活动、采用科学探究的教学方式等等,对学生进行情感、态度与价值观的培养。
比如,在进行牛顿第一定律的教学过程中,就可以适当地给学生讲述一下它的发展历史,激发学生的学习兴趣,同时使学生在了解亚里士多德、伽利略、笛卡儿、牛顿等大科学家的观点的基础上,使其不畏权威、理性求真的科学态度与科学精神得到培养。而在进行万有引力定律教学的时候,可以联系神舟六号载人飞船的发射与回收过程进行讲解,把物理知识与科技发展、应用技术相结合,能使学生获得一个更为宽广的视野,有助于学生形成科学的价值观。
3 物理规律教学的基本策略
当明确了物理规律教学在新课程实施过程中所发挥的重要作用之后,为行之有效的进行物理规律教学,我们提出以下基本策略。
3.1 活化物理实验教学:为学生提供主动获得规律的机会
在物理学的产生、建立和发展过程中,物理实验是归纳物理规律、产生物理假说的实践基础,是验证理论预言和假说的主要依据;在物理规律教学中,物理实验是培养学生操作技能的主要途径,是发展学生非智力因素的一个重要环节。通过实验重现物理规律的发现历程,使学生在实验操作过程中体悟物理规律所反映的各物理量之间的相互关系,有助于更新学生头脑中的物理观念、提高物理规律的教学质量。
3.2 强化物理思想教学,使学生感受物理学的理性美
在进行物理规律教学时,为了让学生最有效地掌握好物理规律,达到课程标准所规定的能力要求,应该在规律教学的过程中渗透科学史、科学思想的教育,引起学生对物理思想在物理规律建立过程中所发挥作用的重视,使学生感受到物理学的理性美,同时给学生以更多的启示。
教师在采用此策略教学时,应明确两点:一是渗透物理思想的教学策略主要是指向学生展示物理规律建立的思想史;二是科学史的历史发展逻辑与课本上的知识逻辑并不相同,规律教学过程中要引导学生感悟到二者的异同,处理好二者之间的辨证关系,在了解真实历史发展过程的同时明了知识逻辑的呈现脉络。
3.3 重视规律应用教学,让学生体会物理学在社会发展中的作用
物理规律来源于生活实践,反过来应锻炼学生将物理规律运用于社会生活实际的能力。因此,在教学中应重视引导学生利用物理规律解决实际问题,让学生体会到物理学在社会发展中的重要地位,增强学习兴趣,进而在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!
3.4 提升教师科学素养,为实施新课程背景下的物理规律教学奠定良好基础
我们将其作为一项策略提出,重在强调教师对新课程理念与目标的钻研、对物理规律的理解、对物理规律教学的整体认识与把握等。同时该策略也是关系到物理规律教学实施效果的重要因素,教师应努力提升自己的科学素养,进而才会有足够的信心调控物理规律教学,为学生的全面发展创造最好的先决条件,从而取得最佳教学质量。
参考文献:
关键词:复杂直流电路;计算方法;对口升学
DOI:10.16640/ki.37-1222/t.2017.11.196
首先我们要了解什么是复杂直流电路。复杂直流电路并不是指电路元件很多,线路很复杂,而是指不能用串、并联分析方法化简为无分支的单回路的电路,即无法用闭合电路欧姆定律解题的电路,而能够运用这些方法计算的就是简单电路了。复杂直流电路的计算方法有很多,考试大纲中所要求掌握的有四种:支路电流法,叠加定理,戴维南定理,电压源与电流源等效变换。复杂直流电路计算方法其实就是把复杂直流电路转换成简单直流电路来分析的方法,掌握了这些分析方法,就可以运用简单电路的方法进行计算了。所以,要学好复杂直流电路的计算,必须先熟练掌握简单直流电路的计算方法。以下我们逐一介绍各种复杂直流电路计算方法。
1 叠加定理
叠加原理是线性电路的重要基本原理,它说明了线性电路中各个电源对电路的影响是独立的。我们只需要将各个电源单独作用的电路图分别画出来,并明确该电源对待求元件作用的电压或者电流的方向,之后就是运用串、并联电路特点和欧姆定律进行计算了,最后根据方向确定几个单独作用的电压或电流叠加是相加还是相减。需要注意的是,叠加定理只适用于线性电路,只能用来计算电压和电流,而不能计算功率。可以启发学生根据功率公式P=I2R或P=U2/RM行分析。
在实际运用中,学生出现问题的地方主要有以下这些:把电源置零的状态记反了;将各个电源单独作用时电压或者电流的方向标错了;不会计算并联电路的分电流等。可以针对这些问题对学生进行强化练习。
2 基尔霍夫定律
学习基尔霍夫定律首先要了解清楚支路,节点,回路,网孔这四个概念。支路电流法的解题步骤为:(1)任意设好各支路的参考电流方向和网孔的绕行方向;(2)列节点电流方程,方程数为节点数减一;(3)列回路电压方程,方程数为支路数减节点电流方程数;(4)运用消元法解方程组,解得的值为负,则表示之前所设的参考方向与电流的实际方向相反。支路电流法列式很容易,但若支路太多,解方程组时比较繁琐。学生主要出问题的地方就是方程组解不出,其次是在列回路电压方程时电位的升降有时判断不清。近些年湖南省对口升学高考没有出支路电流法的解答题,但在选择填空题中多次出现。
3 戴维南定理
戴维南定理可以说是对口高考考得最多的一种方法,其常规题型可以分成以下三个步骤:(1)断开待求支路或元件,根据开路电压等于电源电动势的原理,将开路电压等效为一个等效电压源,可运用电位或KVL进行计算;(2)将电源置零(同叠加定理),得无源二端网络,求其等效电阻;(3)将有源二端网络等效成一个实际电压源,再把之前断开的待求支路或元件接回去,利用闭合电路欧姆定律计算。三个部分实际上就是三个知识点,电位计算,电阻混联计算和闭合电路欧姆定律,掌握这三点,做戴维南定理的常规题并不难。需要注意的事,有时我们发现,断开待求支路或元件后,剩下的有源二端网络依然是个复杂电路,则需要将其再次运用复杂直流电路计算方法计算。
除了常规计算题,戴维南定理也有很多技巧题,大部分都是利用了闭合电路欧姆定律的特点。如湖南省对口高考2009到2012连续考的负载获得最大功率的问题,此时负载电阻等于二端网络等效电阻;如保持有源二端网络不变,改变外电路状态,解二元一次方程组等,都是把有源二端网络直接看作实际电压源来分析,在选择填空题中多次出现。
学生主要出现的问题的地方就是等效电压源的计算,可通过电位计算的题型进行训练,电位计算也是对口高考的常考题型。
4 电压源与电流源等效变换
对于特定的一些题目,运用电压源与电流源等效变换的方法进行计算非常快捷方便。首先要明确两点:(1)只有实际电压源和实际电流源才能够相互转换;(2)待求元件不参与转换,这也是很多学生容易出错的地方,可以像戴维南定理那样先把待求元件断开,转换到只剩一个电源时再把待求元件接回去。具体方法是:(1)几个实际电源串联时,全部转换成电压源利用串联分压的原理合并;并联时,全部转换成电流源利用并联分流的原理合并;(2)实际电源与电阻或理想电源串、并联时,同样根据串并联特点讲实际电源转换后再与电阻或理想电源合并;(3)特别的,与理想电压源并联的元件和与理想电流源串联的元件可以全部去掉(不含待求元件)。熟练掌握电源等效变换对快速解选择填空题和验证计算题答案非常有帮助。
学生常犯的错误除了前面所说的将待求元件进行转换外,还有电源转换的方向分不清,这可以按电源上电流方向为电动势从低到高的方向来记忆;分不清电阻的串、并联等。
5 其他应用
下面就本人在教学中遇到的问题举例分析.
一、动态电路问题
例1图1所示电路,电源电压不变.在滑动变阻器的滑片P移动的过程中,电压表的示数变化范围是0~5 V,电流表的示数相应的变化范围是1.0~1.5A,求:(1)R2的阻值;(2)电源电压是多少伏?
解析第一问,求R2的阻值.R2是滑动变阻器,所以第一问就是求滑动变阻器的最大阻值,那应该怎么办呢?知道了滑动变阻器两端的电压,再知道通过它的电流,就可以求出来了.可是已知条件并不没有给出,“在滑动变阻器的滑片P移动的过程中,电压表的示数变化范围是0~5 V,电流表的示数相应的变化范围是1.0 A~1.5 A”,那么电压表什么情况下是0 V,什么情况下是5 V呢?接下来我们首先要弄清楚这个电路是什么连接方式,通过判断,这是一个串联电路(R1与R2串联),电流表测电路中的电流,电压表测的是R2两端的电压.说到这,仔细的同学可能有疑问了,这个滑动变阻器连了3个接线柱呀,反复看电路后发现黑色部分被局部短路(即滑片P右边的电阻被短路了),这里考查局部短路的连接,因此更准确的应该说电压表测的是R2接入电路部分电阻的电压U2.
既然是串联电路,电路的总电阻就等于各个用电器电阻之和.当滑片P滑至最左端时,滑动变阻器接入电路中的电阻为0,所以此时的电流是最大的,即I=1.5 A;当滑片P滑至最右端时,滑动变阻器接入电路中的电阻为最大阻值,此时总电阻也增加了,电源电压不变的情况下,根据欧姆定律,电路中的电流是最小的,即I′=1.0 A,又根据分压规律可知,滑动变阻器两端的电压为最大U2=5 V,接下来根据欧姆定律可得出
R2max=U2 I′=5 V1.0 A=5 Ω.
第二问,求电源电压U.根据上面的分析可知道,在滑片P滑至最左端时,电路中只有R1连入电路,所以电源电压U=I・R1,因为R1未知,所以无法求解;在滑片P滑至最右端时,滑动变阻器是最大阻值,此时R总=R1+R2max,所以电源电压U=I′R总= I′(R1+R2max),R1还是未知,还是没法得出答案.所以只要求出R1就能得出.从上面的分类讨论情况,我们可以知道I・R1= I′(R1++R2max),只有R1是未知,其他都是已知的,可以求出来R1=10 Ω,然后再代入任何一个求电源电压的式子,就可以求出U=15 V.
二、串并联电路的特点
例2如图2所示,电源电压12 V,R2=20 Ω,当S1、S2合上时,电流表示数为0.8 A,当S1、S2断开时,电流表示数为0.2 A,求R1和Rs的阻值分别是多少?
解析电路题目首先第一步要做的就是分析电路的连接方式,即是串联还是并联.
第一问求R1的阻值
当S1、S2合上时,Rs被短路,此时R1和R2并联,电流表测的是干路的电流,即I=0.8 A.
根据并联电路电压的规律,并联电路中,各支路两端的电压相等.所以U=U1=U2=12 V,接着根据欧姆定律可得,通过R2的电流I2=U2R2=12 V20 Ω=0.6 A.
又根据并联电路电流的规律,并联电路干路中的电流等于各并联支路中的电流之和,因此通过R1的电流
I1=I-I2=0.8 A-0.6 A=0.2 A.
最后根据欧姆定律的变形公式R=UI可得,
R1=U1I1=12 V0.2 A=60 Ω.
第二问求Rs的阻值
当S1、S2断开时,R2和Rs串联连接,电流表测电路中的电流,即I′=0.2 A.因为要求Rs的阻值,这里已知条件给出了电源电压U,还通过分类分析,知道此时的电流I′,根据欧姆定律的变形公式R=UI可得出串联电路的总电阻
R总=U I′=12 V0.2 A=60 Ω.
从串联电路的电阻规律,我们知道
Rs=R总-R2=60 Ω-20 Ω=40 Ω.
三、物体的浮沉条件及应用
例3把一个小球轻轻放入盛满水的容器中,溢出100 g水,则小球质量
A.一定等于100 gB.大于或等于100 g
C.小于或等于100 gD.一定大于100 g
解析很显然这是一道考查阿基米德原理和物体浮沉条件的综合应用题,从“盛满”、“溢出”关键词可以判断出溢出的水就是排开的水,有阿基米德原理可知F浮=G排,但试题给出的提干中没有说明小球的沉浮情况.