发布时间:2023-08-21 17:13:23
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的多层建筑的结构设计样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
中图分类号: TU97 文献标识码: A 文章编号:
多层建筑一般指8层以下的、不具备电梯设备的商业用房或住宅。为了提高建筑体的稳定性、整体性和抗外力性能,目前的多层建筑以框架结构为主,这就使得建筑主体框架结构设计在多层建筑结构设计中的应用日益广泛。在多层建筑造型和功能多样化的背景下,必须对多层建筑框架结构施工中可能遇到的问题进行不断探讨和研究,才能得出对应的有效解决措施。
1、地基基础设计
地基基础是多层建筑设计首先要考虑的问题,只有稳定的地基支撑,建筑体的安全与质量才有保障。从目前的情况看,多层建筑的地基基础一般都采用独立基础或条形基础,这就要求设计者严格遵守《建筑地基基础设计规范》,在选择地基维持力层时,必须根据地勘察报告,掌握建筑体地基的地质特征,综合考虑地基土层物理力学特征、地下水的影响、建筑物的构成要素、地基荷载性质与强度,结合地基承载力计算、地基变形验算、地基稳定性验算和基础截面设计验算,确定基础底面大小。对于地基工程设计应用较为广泛的复合地基,无论是柔性基础还是刚性基础都必须设置褥垫层,并通过增设基础圈梁和基础连系梁等措施使基础形心和长期荷载重心重合,实现基础整体性。
2、框架结构的计算简图
多层建筑的框架结构由横向框架和纵向框架组成。为了方便应力计算,通常将空间结构体系简化为横向和纵向平面框架体系,只取出某一榀框架作为独立计算单元(如右图),图b中以阴影部分表示该单元承受的荷载。在计算简图中,框架节点和柱子下端的基础顶面均按刚接考虑。梁柱以截面几何轴线来确定,如果上下柱截面尺寸相同,柱轴线取截面形心位置如果上下柱截面尺寸不同,则柱轴线取上层柱形心线。框架结构计算简图
实际工程中对计算模型可作如下修正:
(1)当横梁为斜梁时,如果其坡度≤1/8,可简化为水平直杆。
(2)不等跨框架,如果各跨跨差≤10% ,可简化为等跨框架,跨度取平均值。
3、框架梁配筋设计
框架建筑主体的承载结构由主次梁和柱通过节点构成,为保证建筑整体的构造强度,在框架主次梁的相交处应注意增设附加箍筋或附加吊筋,以解决梁的裂缝宽度超限和“强剪弱弯”问题。对于梁端纵向受拉钢筋的配筋率、梁端箍筋加密区的长度、箍筋的最大艰巨和最小直径等腰严格按《建筑抗震设计规范》GB50011-2001执行。在实际运用中,应该通过计算梁端剪力及柱轴力结合规范要求确定合适的参数。
(1)梁端剪力: 。(为梁上均布荷载引起的剪力,为梁端弯矩引起的剪力)。
(2)柱轴力: 。(为梁端剪力,为节点集中力及柱自重)。
4、短柱设计
所谓多层建筑框架结构的短柱就是柱净高与柱截面剪跨比小于2的柱。在遭遇较强地震时,短柱往往会由于变形能力和承载能力不足发生脆性破裂,给建筑物带来严重破坏。因此,短柱要采用对称配筋,纵筋的最小配筋率为0.6%。设计中要注意调整其剪力,提高其抗剪承载力和抵御形变能力。短柱剪力设计计算:
(1)短柱剪力:。(为柱净高;分别为柱上下端顺时针或逆时针方向截面组合的弯矩设计值)。
(2)柱的抗剪承载能力: 。(λ为框架的计算剪跨比,。N为考虑地震作用的框架柱轴向压力设计值,βc为混凝土强度影响系数)。
多层建筑框架结构设计是建筑结构设计中较为重要的一种形式,其实质是对梁、柱、板形成的基本单元的应力组合。由于设计中涉及各种力学原理,所遇到的问题当然不会只有上述几种。这就要求我们在设计过程中严格遵循国家相关技术规范,科学处理多层建筑框架结构设计中更多、更复杂的问题,选择出合理的结构体系,从而提高结构的设计质量。
参考文献:
[1]郭新伟浅谈多层框架结构设计中存在的问题《大科技•科技天地》2011年 第19期
[2]薛永军关于多层建筑框架结构设计的几个问题探析《城市建设理论研究》2012年第21期
[关键词]多层框架;房屋建筑;结构设计
中图分类号:TB21 文献标识码:A 文章编号:1009-914X(2014)18-0164-01
随着社会的不断发展对多层框架建筑结构提出了更高的要求,多层钢结构一般采用框架结构,所以也被称为多层钢框架结构。多层钢结构是工业于民用建筑中常用的结构形式,在工业建筑中可以运用矿井地面建筑、石油焦化结构和电子工业的建设等,在民用建筑中停车场、办公楼的建设。
一、多层框架结构建筑的设计问题及处理
(一)基础联系梁的设计问题
当建筑的基础埋置较深时,可以运用基础设计梁来减少底层柱的计算长度。在±0.00以下设置联系梁,形成一定的框架,联系梁下的柱可以按照短柱进行加强处理。有抗震要求时,基础间沿着两个主柱的方向设计基础联系梁。基础联系梁上作用有填充墙或楼梯柱等荷载时,要与所连接的柱子的最大轴力设计值,进行叠加设计,基础联系梁的受力要求。基础联系梁的顶标高要与基础的顶端标高保持一致。当基础形式为独立扩展基础,施工要将基础联系梁与独立基础之间的空隙部分进行混凝土浇筑,浇筑要和基础面保持水平,然后在浇注处理。这样可以减少基础联系梁的计算误差。当基础形式是桩基础,单桩承台要在两个互相垂直的方向设置横梁,如果采用基础系梁来平衡。那么基础联系梁的截面尺寸和配筋要按照横梁的来设计。此时的梁弯度钢筋要全部拉通。钢筋也要在1/2跨度上拉通,同时基础联系梁的纵筋在框架柱锚固和其他防震结构都要和上部的框架保持一致。
(二)结构薄弱层的设计问题
结构薄层是指在强震动下,结构会产生很大弹性空间产生位移,这些结构薄弱部位的承载在设计时要满足承载力的要求,但是在地震发生时,容易出现薄弱现象。在一般情况下薄弱层对建筑抗震的会有很多的影响。因此在房屋的设计的过程中应该避免薄弱层的出现,防止薄弱层出现的最好方式就是加大抗震位移度,也就是采取加大薄弱层的横截面积的方法,也可以在一定程度上减少基础的埋置位置。
在薄弱层不能避免的情况下,要在结构计算时,保证按照规格采取相应的措施,要将薄弱层的地震剪力乘以1陪的系数,还要对房屋的结构强度系数进行计算。楼层的强度系数要按照构建的实际钢筋和材料的标准值进行计算。具体要根据楼层的剪力强度计算抗剪力值,在地震的强度在7-9度时楼层的强度系数要小于0.5,要楼层的结构要做弹性运算。符合建筑防震设计规则,要对不符合要求的建筑结构,进行重新调整。
(三)框架结构的设计问题
在对框架结构进行设计时,横梁下部的界面高度要集中荷载,要有横梁下部的钢筋承担,在机构设计的过程中要优先考虑附加箍筋,如在搭接主侧梁时,要在结构设计中进行说明,画上一节点,在横梁的部位要添加3根主梁箍筋进行补充。框架梁与次梁出现相交时,要在弹性支撑的墙体上,对于梁端支座要按照支梁方式进行处理,还要对梁的两端的箍筋进行加密处理,在设计横梁时,纵筋的距离要小于300mm,要小于梁的高度,在结构设计的过程中可以采用加大腰筋直径的方法来增加梁的抗扭力,纵筋预埋支座的长度要符合要求。对于箍筋的设计也要符合要求。
在反梁板吊底时,板的荷载要由箍筋来承担,在楼层结构设计的过程中要适当加大箍筋的间距,加大箍筋的承受力。对框架梁的截面的高度设计要在梁跨度的1/10-1/15之间选择,对于梁的宽度,可以设计到柱的两倍宽。
二、多层钢结构类型
(一)柱一支律体系
多层框架柱的节点要是铰接,在纵向和横向的之间进行柱间支撑时,空间刚度和抗侧力要柱支柱提供,适用柱间距不大的双边建筑物,特点是设计、制作过程简单,承载能力比较强大,用于抗侧力的钢耗量比较小。
(二)纯框架体系
多层框架在纵、横方向是多层钢架结构,承载能力和空间强度要由框架提供,适用柱间距很大起不到支撑作用的建筑物。这种建筑结构的特点是结构比较复杂,使用的钢筋量比较大,占用的空间比较大。
(三)框架-支撑结构
这种构造的建筑框架在一个方向为柱进行支撑。另一个方向为纯框支撑的混合体系,这种结构的特点是在同一个方向没有人流、物流的建筑功能的安排,可以简化设计过程和钢筋用量,是工程建筑中采用较多的体系。
三、多层框架结构的组成和布置
框架结构是由梁、柱组成的,一般的柱子要垂直布置,与梁水平。屋面要考虑到排水或者其他方面的要求,可以设置成斜梁。梁和柱的连接方式一般是刚性连接,为了符合施工要求。可以将多层建筑节点做成半铰节点。当梁、柱之间的连接方式是铰接时,就是多层排架,采用刚性的方式要比普通的连接方式要节约材料,使构造的横向连接方式强度比较好,横梁的高度设置的比较合理,可以有效的增加房屋的净空,是一种比较经济的构造方式,柱支座一般为固定支座,也可以进行铰支座设计。框架分为等跨和不等跨两种,层高可以相等也可以,不相等,在满足建筑工艺要求的基础上,进行框架结构设计,当框架的结构为高次超静定结构时,就要既承受竖向荷载要承受侧向作用力。有利于接受的受力、框架的对直,使梁柱在同一水平面上,有时因为建筑功能的特殊要求,框架的结构也可以做成抽梁、抽次、内收等。
框架的结构主要有实腹式、格构式以及横梁为格构式的混合框架。实腹框架的截面是矩形或梯形的,混凝土框架的截面常是矩形的,由于建筑的特殊要求也可以设计成圆形或者梯形的。
框架节点的应力作用很明显,框架结构的刚性较小,属于柔性框架结构,如果发生地震,结构发生水平的位移很大,会造成严重的非结构性破坏,只适用于非抗震的结构设计,这种结构对钢筋和水泥的需要很大,构件的总数会很多,吊装的次数会很多,增加了街头的工作量,造成了资源的浪费,施工会受到季节的影响,受环境影响很大,不适合做高层建筑。
四、多层框架房屋结构设计中要注意的问题
在一般情况下,多层框架房屋采用的是柱下独立基础形式,根据《防震规则》的要求,在地基的主要持力作用下,在建筑高度在25米以内的民用建筑,可以不对地基进行抗震承载力的验算。但是在进行基础设计时要考虑到风荷载的要求。所以不能因为一般建筑在地震区进行风荷载控制,一些建筑工程师要进行独立设计时,对柱脚的内力设计不合理,仅对轴力弯曲进行了设计,而没有考虑到剪力只取了轴力设计值,没有进行独立的荷载取值,造成了建筑结构的不合理和建筑材料的浪费。
基础拉梁层进行框架整体的计算多采用TAT或者采用SATWE等程序,由于基础拉梁板没有楼板的设计,所以在设计的过程中楼板的厚度要为零,而且要定义弹性节点要采用总刚的分析方法,还要注意到房屋平面不规则的设计热点。
结束语:
随着我国经济的不断发展,建筑行业也有十分广阔的发展前景,多层框架结构有很多优点,所以要广泛的应用于现代建筑中,虽然结构组成比较简单,但是如果在设计中考虑到周全,就会出现失误,在多层结构设计的过程中,要进行综合考虑,保证建筑结构的设计质量。
参考文献
[1]赵芝梅.浅谈施工的管理措施[J].才智,2013(3).
[2]叶兵.浅论如何实施工程项目绿色施工[J].中华建设,2013(2).
[3]张立山,孟德光朱天志等.影响我国绿色施工发展的原因及策略(综述)[J].河北科技师范学院学报,2012(3).
[4]曾笳.建设项目施工管理需关注的几个问题[J].科技信息,2013(2).
[关键词]大开间;大跨度;多高层建筑;结构设计;问题
中图分类号:TU208文献标识码: A
一、前言
在当前建筑设计过程中,无论是多层建筑还是高层建筑,结构的设计是至关重要的,合理的结构设计对整个建筑工程的质量都有重要的影响。在多高层建筑结构设计的过程中基础的合理设计、纵横刚度与主梁受扭问题、杆件轴向变形、次弯矩问题的影响问题都是设计的重点,我们在设计的过程中要根据相关的标准进行设计。
二、高层建筑结构设计原则
1.选择合理的结构方案
在当前建筑结构设计的过程中,方案的选择是至关重要的,不同的建筑,在选择方案时也会有不同,在选择方案时要遵守经济合理、安全实用、节能环保等原则。在不同的地域对施工材料、施工工艺、施工技术有着不同的要求这就要求方案的设计者和施工者要对当地的具体施工情况进行详细的了解,通过论证选择出最佳的结构设计方案,满足工程建设的需要。
2.选择合适的基础方案
对建筑进行结构设计,要充分考虑建筑所在地的周边环境,要对工程的地质条件以及周围建筑的施工及特点做好调研,充分保证后续建筑过程与周边环境的和谐统一。建筑结构设计中要选择合适的基础方案,基础方案要体现结构设计的方方面面,要尽量显示建筑的全貌。同时,要考虑建筑的经济成本和效益,最大限度发挥建筑周边条件的作用,保证建筑的正常实施。
3.选择合适的计算简图
高层建筑的结构设计要选择适当的设计简图,由此可以防止由于计算简图选择不当,导致建筑安全隐患的发生概率增大。建筑结构计算是以计算简图为基础,所以结构设计中要特别注重计算简图选取问题,从而可以保证后续结构计算的准确性和建筑设计的安全性。当然,建筑实际结构与选取的计算简图之间允许存在合理误差,但是要尽量把工程实际控制在计算简图精度要求范围内。
4.分析所得到的计算结果
当下,信息技术飞速发展,由此也带动了建筑结构设计对计算机软件的应用。由于不同计算机软件会产生不同的计算结果,所以要对不同结果进行分析处理。由此,建筑结构设计人员就要具备专业的建筑结构设计理念和知识,更要对计算机软件有充分详细地了解,便于对计算机计算结果进行客观分析。由于操作人员自身的问题或者计算机软件具有的自身误差,使得计算结果与实际情况出现一定的差异,这时就要求结构设计人员客观判断,并予以纠正。
三、常见的问题分析
1、纵横刚度与主梁受扭问题
在大跨度多高层建筑结构设计的过程中,要有预应力次梁的设计,一般情况下预应力次梁设计在大跨度方向,主梁设计一般放在开间方向,要根据具体的情况考虑是否在主梁上施加预应力,这样就将在框架设计过程中的习惯改变,由于设计习惯的影响,总觉得横向刚度存在一定的问题。但是通过计算能满足相关标准的要求,在结构设计的过程中只要能满足相关标准的要求就能满足设计的要求,在使用的过程中也不会出现文艺问题。
2、次弯矩问题
超静定结构张拉时,在次反力作用下产生的截面弯矩称为次弯矩。在静定构件中,验算跨中截面抗裂性时,计算混凝土应力只是把混凝土取为脱离体。而计算跨中强度时,是把混凝土和钢筋共同取为脱离体,计算弯矩就等于荷载弯矩。若左端铰支不变,右端为两跨连续梁的中间支座,就成为超静定结构。两跨连续梁配筋,张拉钢筋时梁的变形将受到约束,中间支座处有一个力要把拱起的梁拉回原来的位置。左端支座产生的次应力在跨度各截面上产生次弯矩。在进行跨中截面混凝土抗裂验算和截面强度计算时,所取的脱离体完全与前述静定构件相同,只是按连续梁计算的支反力和荷载弯矩值将有所不同。
3、杆件轴向变形的影响问题
施加预应力的杆件要产生轴向变形,其中的徐变收缩变形很难准确计算,差别可能很大,但一般考虑长期变形为短期变形的2倍,人们往往能够接受。种种条件有利时,长期变形值可以再少取一些。杆件轴向变形引起整个超静定结构的内力变化,要认真分析。当轴向变形很大时,一般是在施工时采取让杆件可以自由变形的措施。张拉后,等一段时间再做成整体连接,但这样处理比较麻烦。
四、高层建筑结构设计问题与策略
1、高层建筑结构设计高度问题及解决。
我国有关部门对于高层建筑结构体系的最大高度问题,出台了一系列的规章制度,对其进行了严格的规定与规范,其中之一便是《高层建筑混凝土结构技术规程》。该《高层建筑混凝土结构技术规程》对于高层建筑结构体系的高度问题规定,主要是从经济性以及适用性等方面进行规范的。《规程》适宜高度,不仅仅与我国建筑施工技术水平以及建筑水平相关,而且还与我国国民经济发展水平,与建筑工程规范体系相协调。但是在实际的高层建筑结构设计以及施工中,出现了许多与《高层建筑混凝土结构技术规程》规定相违背的高度。举例来讲,在有些建筑物设计以及施工过程中,甚至出现了高达四百多米的组合机构大厦以及三百多米的混凝土结构体系的广场。尤其是近几年来,建筑物的高度不断增加,建筑物自身的参考系数已经超出了《高层建筑混凝土结构技术规程》的规定,例如在安全指标、荷载取值以及延性要求、材料性能、力学模型选择等方面。为此,对于这些高层建筑结构设计高度问题,设计单位需要严格根据高层建筑混凝土结构技术规程》等有关规定,对设计高度保持科学严谨的态度。
2、钢筋混凝土梁承载力问题及解决。
一般来讲,城市高层建筑主要是以写字楼以及其他办公场所为主,因此,在实际的高层建筑结构设计过程中,设计单位需要着重考虑到空调、消防等设备。这些设备不同于其他设备,它们往往是布置于楼层的梁底之下的,如果没有梁底开洞,就没有办法进行设备的安装。因此,在设备安装之前,设计单位需要对梁的承载力进行分析以及计算,避免出现由于梁底承载力不足而出现安全结构问题。对于梁底开洞之后的承载力,设计单位可以通过孔洞周边补强筋以及开孔梁挠度、裂缝宽度等数据进行分析。对于钢筋混凝土梁腹部开孔,国家出台了有关政策,例如《高层建筑混凝土结构技术规程》《混凝土结构构造手册》等,对于钢筋混凝土梁腹部开孔的位置、流程、环节以及大小等进行了科学的规范。设计单位在进行钢筋混凝土梁承载力计算时,还需要参考不同种类腹部开孔方式,提高钢筋混凝土梁承载力计算的精确度,这对于提高建筑物的稳定性以及安全性意义重大。除此之外,还可以对钢筋混凝土梁承载力进行有效地计算。我们在对钢筋混凝土承载力进行计算的过程中还要对腹部的开孔方式进行考虑,不同的开孔方式对钢筋混凝土的承载了是不同的,例如,在南京国际会展中心工程设计的过程中,横向和纵向的长度分别我292米和158米,横纵向都没有设置缝,这就不能满足承载力的需要,在不同的工程建设过程中,我们要根据工程设计的特点和需要对承载力进行计算,可见承载力的计算对建筑结构设计有着十分重要的作用和意义。
五、结束语
在大开闸大跨度多高层建筑结构设计的过程中要根据建筑的实际情况,采取相关的措施,保证建筑的结构设计能符合相关标准的要求,提升建筑结构设计的水平,促进大开闸大跨度多高层建筑结构设计的快速发展。
参考文献
[1]阴杰,曹京华,陈克勤.高层建筑的结构设计理念[J].山西建筑,2007
【关键词】多层钢结构;住宅;构件设计
一、钢结构设计思路和步骤
1.1 首先要判断结构是否适合用钢结构
钢结构并不适用于所有的结构,一般情况下,高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、密封性要求高、高温车间、要求能活动或经常装拆的结构中常用到钢结构。目前,钢结构以其自重轻和施工快的特性,被广泛应用在住宅、临时建筑、工厂、体育馆、大厦、歌剧院、大桥等建筑结构中。
1.2 钢结构设计时结构的选型与结构布置
因为结构选型广泛,实践经验较少的年轻工程师应该多向经验丰富的工程师共同研究后再慎重进行结构选型和布置。“概念设计”在钢结构的整体设计中占有相当重要的地位,所以设计时应注重这一点。对没有做出要求或无法得出精确的分析结论的部分,可按从整体结构体系与分体系之间的力学关系、震害、破坏机理、试验现象、工程经验所获得的设计思想,从整体上来确定控制结构的布置及细部措施。早期通过概念设计实现快速比选。所得结构方案便于手算,从而准确定性,进一步明确概念,同时也能省去结构分析环节的一系列复杂的运算。
进行结构选型的过程中,必须对各类结构的特点进行周密的分析。基本雪压大的区域,最好设计使积雪自动滑落的屋面曲线,而且要认真分析降雨量较大的区域。如果建筑条件允许,可在框架中布置支撑会比加大梁、柱截面对位移进行有效的控制,这样不仅会取得预期的效果,而且经济合理。有些建筑的屋面覆盖跨度稍大,单向受力可采用张悬梁、桁架等结构体系,双向受力可选用网架等结构体系。而钢混凝土组合结构通常应用在高层钢结构中。建设单位应该参照荷载的特性及其分布状况、体系特征等来进行结构的布置。正常情况下,应确保力学模型清晰,且刚度均匀,注意防止移动荷载或大荷载引起较大影响,尽量让其通过固定的线路直接传递到基础。柱间抗侧支撑要均匀分布,支撑的形心应最大限度的挨近侧向力的作用线,否则还要分析结构的扭转。框架结构的楼层平面次梁的布置,某些情况下,为满足各种不同的需求,必须对荷载的传递方向作出调整。为了减小截面,次梁可沿短向布设,但该措施可能会增大主梁截面,楼层净高也会随之缩小,顶层边柱可能因此而承载较大力。
二、多层钢结构住宅建设中的主要构件设计
2.1 柱
钢结构住宅一般为大开间,框架柱在两个方向都承受较大的弯矩,所以应该考虑强柱弱梁的要求,而目前广泛使用的焊接H型钢或I字热轧钢截面,强弱轴惯性矩之比3~l0,势必造成材料浪费。因此对于轴压比较大,双向弯矩接近,梁截面较高的框架柱采用双轴等强的钢管柱或方钢管混凝土柱是适宜的,对于方钢管混凝土柱,不仅截面受力合理,同时可以提高框架的侧向刚度,防火性能好,而且结构破坏时柱体不会迅速屈曲破坏。
2.2 楼盖
在多层轻钢房屋中,楼盖结构的选择至关重要,它除了将竖向荷载直接分配给墙柱外,更主要的作用是保证与抗侧力结构的空间协调作用;另外从抗震角度来看,还应采用相应的技术和构造措施减轻楼板自重。常用的楼盖结构有:压型钢板一现浇混凝土组合楼板、现浇钢筋混凝土板以及钢一混凝土叠合板,而以第一种最为常用。目前,在多层轻钢房屋整体分析时,还普遍不考虑楼盖与钢梁的组合作用,即使设置抗剪键,也偏保守地假设钢结构承受全部荷载,这样不仅增加材料用量和结构自重,反而会造成强梁弱柱的不利情况。有一6层算例,考虑楼盖组合作用对梁刚度以及结构整体刚度的影响。
2.3节点抗震
框架梁柱节点一般采用两种连接方法,根据“常用设计法”,即翼缘连接承受全部弯矩,梁腹板只承受全部剪力的假定进行设计。震害表明,这种设计不能有效满足“强节点弱杆件”的抗震要求,在高烈度区隐患很大。改进框架节点设计,在梁端上下翼缘加焊楔形盖板或者将梁端上下翼缘局部加宽盖板面积或加大的翼缘截面面积主要由大震下的验算公式确定,式中:为基于极限强度最小值的节点连接最大受弯承载力,全部由局部加大后的翼缘连接承担:为梁件的全塑性受弯承载力:为基于极限强度最小值的节点连接最大受剪承载力,仅由腹板的连接承担;为梁的净跨;为梁在重力荷载代表值作用下按简支梁分析的梁端截面剪力设计值。
三、多层钢结构住宅施工过程中应注意的问题
3.1 钢结构的焊接
施工时制定的焊接顺序:一般采用由平面中心向四周划扩展,采用结构对称、节点对称焊,先焊钢梁、后焊钢柱;在同一节点处,采用双人对称焊接方法;同一节钢柱的二层粱结构先焊上层,后焊下层;同一层梁先焊一行或列中间接头,然后向外扩展;同一根梁先焊一端焊缝,等其冷却后再焊 一端焊缝,严禁两端同时焊接,以减少应力集中;对同一梁节点,安装垫板后采用先焊下翼缘焊缝,再焊上翼缘焊缝。
在整个钢结构施工焊接过程中质量控制,严格遵循以下要求:雨天不安排焊工作业;焊接过程中每一条焊缝的焊渣都要清理干净,并认真检查焊缝质量;焊接完毕后用角向打磨机将焊缝两侧各100mm范围内打磨干净,以便探伤。对关键部位如挑梁、屋顶梁、钢柱对接焊缝100%探伤检查,其他部位按20%以上探伤检查,检测结果必须全部符合国家标准GB11345—1989《钢焊接手工超声波探伤和探伤结果分级》规定的Ⅱ级上质量要求,尤其是钢柱对接缝、挑粱的焊接的99%以上焊缝焊接质量必须达到I级标准。
3.2 钢结构的除锈与涂装
除绣和涂装是保证钢结构达到预期耐久性要求的重要保证,项目施工中制定了严格的施工步骤和质量控制措施。
(1)除锈与涂装质量控制。一是构件加工及安装完成后,进行全面除锈,及时进行涂装。二是运输、吊装过程中,安排专人随时检查涂装层,及时修补损坏处。三是安装节点的螺栓和焊缝,经检查安装质量符合要求后,在限定时间内完成除锈和涂层工作。
(2)防绣漆质量控制。钢结构在工厂涂装二底防绣漆,现场只需对高强螺栓接头、焊接接缝、运输吊装碰撞损伤部位进行补涂。
(3)防火涂料质量控制。现场涂装防火涂料,涂装前对涂装部位表面进行清理,按二级防火标准设汁要求的涂层厚度和遍数涂装施工。
四、结束语
钢结构住宅以自重轻、基础造价低、施工快、周期短、投资回收快、施工污染环境少、抗震性能好等综合优势而受到各方的重视。在我国努力建设节约型社会、大力推广住宅产业化的形势下,钢结构体系必将成为住宅体系的主流,钢结构住宅体系的发展和应用一定会有广阔的前景。
参考文献:
【关键词】多高层建筑;结构设计;特点;问题
中图分类号:TU97 文献标识码:A
1、前言
多高层建筑结构设计的优劣关系到建筑后期的使用效果和安全性,所以,分析过高层建筑结构设计的特点,并分析需要注意的问题,提出设计的有效策略极其重要。
2、多高层建筑结构设计的特点
2.1、轴向变形不容忽视
高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
2.2、结构延性是重要设计指标
相对于底层建筑而言,高层建筑的结构更柔和一些,在地震作用下的变形更大一些。为了使高层建筑结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
2.3、水平荷载成为决定因素
一方面,因为高层建筑楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度变化。
3、高层建筑结构设计选型
高层建筑的结构体系作为抵抗来自垂直和水平方向荷载的传力途径,它主要是利用抗侧力体系和相关的水平构件与竖向构件将荷载传到基础部分。
高层建筑结构体系按照建筑材料可以分为钢、混凝土组合结构,钢、混凝土混合结构,钢结构。这其中钢筋混凝土结构体系因为其成本低、耐火耐久等优良的性能而广泛应用于各类工程中,但是它本身仍旧存在一些如施工慢、自重大等缺点。而钢结构体系除了具有施工方便、抗震性能好、强度高等优点外,同时还有着例如防火性差、成本高等缺点。钢、混凝土组合结构虽然继承了二者的优点,但是其节点部分的构造复杂,所以并不能被广泛应用。同样地,钢、混凝土混合结构一样结合了两者的优点,但是在两种材料的连接方面仍旧存在技术问题。高层建筑结构体系常用的有框架、剪力墙结构,框架-剪力墙结构。框架结构因为是利用柱、梁等结构来承重的,所以这种结构体系的侧向位移相对较大,一般适用于低于50m的建筑。剪力墙结构因为是靠高层建筑的墙体来承重的,所以这种结构的整体性能相对较好,不易产生水平方向的变形,一般多应用于高层建筑,但是因为其在平面上的布置不够灵活,所以很少在公共建筑设计中使用。而框架-剪力墙组合结构则是结合了两者的优点、改善了其中的缺点,所以被广泛应用于高层建筑的结构设计中。另外还有筒体结构、框-筒结构等。
4、对高层建筑结构进行设计的一些实例分析
某员工宿舍,建筑共九层,总高33.5米,综合长度是85.96米。第一层为员工食堂,从二层到六层为员工的宿舍,七层到九层作为公司高级员工的住所。结构设计中,按七度区设防,特征周期是0.35S,地震加速度是0.15进行抗震设计,主体采用现浇钢筋混凝土的框架结构。在结构分析时,将整个的建筑结构主要分成两个单元,并且通过设缝将单元的长度均为42.7米。因本工程室内的墙体比较多,导致了边柱与中柱都要承受很大荷载。在建筑的底层柱上应用的是C40的混凝土材料,中柱的横截面积大约在950*1000。在最开始试算时,第一个周期为扭转周期。依照技术规程之中所规定的内容:结构扭转为主要内容的第一自振周期是Tt和平动为主第一自振的周期T1的比值,A高度的高层建筑这个比值不可以大于0.9。在最开始的试算之中,Tt和T1的比值,均超过规范要求大于0.9,在之后的试算之中。通过以下措施进行调整。
将底层的角柱横截面积调整为850*800,同时将底层中柱的横截面积调整成950*950,底层边柱的横截面接调整成900*950,通过结构试算,第一个周期为平动周期,且Tt/T1的比值为0.87,满足规范要求,使整个结构顺利完成。但是一旦框架柱的横截面积过大,就会对下面的一些楼层平面在使用功能上有一定的影响,比如房间与卫生间的框架柱截面太大,就会对使用功能造成一系列影响。对于此工程来说,如果在一些适当的位置进行剪力墙的假设,使底层的角柱截面调整成500*500,而底层中柱和边住的横截面积调整成600*600,并将其进行计算,会使经济上的指标有一定的提高。
一般在建筑结构设计时,普遍都是依照传统设计的经验与结构规范以及建筑任务书所要求的内容,来将结构的类型确定之后,依照规范对于各种横截面积的大小与位置进行确定,而且一般依照实际的建筑平面以及功能对建筑构件进行位置的确定之后,普遍先对截面与剪力墙的尺寸进行确定,之后再实行复核的计算。一旦截面大小不合适或者是构件的位置不适当,就需要进行重新的调整而进行释放的核算,直到取得了合理的构件位置与数量以及截面的大小。这个过程之中一般需要进行很多的试算与调整,体现了建筑结构布置合理的重要性质。而在此工程剪力墙的实际布置之中,出现了很多的困难,因为建筑平面功能里一层到六层的格局是不相通的而地下还要求有大空间的车库与汽车的坡道。在设计中不但要满足于上下的剪力墙能够对齐,还要不影响建筑的功能,通过多次的试验之后在该剪力墙的布置处理之中应用相应原则来处理。
5、设计殊问题的处理
5.1、框剪结构中剪力墙的数量与位置
剪力墙的布置应本着均匀分散的原则尽量布置在建筑的周边,并使其刚度中心和质量中心尽量重合,可以按底层结构截面面积与楼面面积之比为5%初步确定剪力墙截面厚度与柱截面,通过初步设计调整截面,使结构分析结果的周期和位移,控制在合理范围之内。
5.2、竖向刚度变化的处理
为了调整刚度沿竖向的均匀分布,混凝土墙厚和柱子截面尺寸沿竖向逐渐变小,混凝土强度等级也应由下至上逐渐变小,并相互交错。在结构刚度有明显变化、受力有可能突变的楼层,如地下室顶板、裙房顶板及裙房过渡层的上下层楼板、塔楼的大屋面及开大洞口的楼层,均将楼板加厚,并双层配筋,以增加楼板的平面刚度,起到刚性横隔板的作用。
5.3、钢骨柱节点的处理
钢骨混凝土柱节点处钢筋较密,混凝土浇筑困难。设计中梁柱纵筋均采用Ⅲ级(HRB400)钢筋,以减少钢筋根数,柱子钢筋则集中布置在四角,同时采取宽扁梁方案,纵横交叉梁选择不同梁高和梁宽,窄梁纵筋部分(大于1/3)从钢骨穿过,部分与节点钢板焊接。宽梁纵筋部分从钢骨两侧绕行,部分与节点钢板焊接。
5.4、位移的限值问题确定
在高层建筑中,决定其顶点位移的限值因素不仅是数值大小,还与振动频率密切相关。一般人对高层建筑中的振动频率感知是很敏感的,而对震动幅度的大小则相对较弱,因此只要结构的摆动频率不是过高就能满足建筑的应用舒适度,对于为了避免由于结构的变形过大而产生的层间相对位移现象,限值在现有的规范中是较严格的,可以适当放松其指标规定。再加上各种计算程序在算法中的区别,同一个结构若采取不同的程序进行计算,那么对层间位移数值也会造成较大差异,最主要原因就是每个软件对“层间位移”的定义各不相同,有些是充分考虑楼层在经过转动后其最大角点的位移状况,有些则单指楼层的形心位移情况。对于较规则的高层建筑而言,形心位移是十分重要的,而角点位移则主要反映出结构楼层实际位移状况,也是工程师在结构设计中应注意的问题。
6、结束语
综上所述,多高层建筑结构设计的过程中,要注意设计的要点问题,同时,设计方案必须要科学合理,要结合项目工程的实际情况,重点问题要重点分析,展开设计。
【参考文献】
关键词:钢筋混凝土 多层框架房屋 结构设计问题
多层框架结构设计是进行结构设计较为基础的设计,也是结构设计中较为重要的一种结构形式的设计。本文结合施工中的各个方面,针对建筑钢筋混凝土多层框架结构设计问题展开论述。
一、设计构造方面的问题
(1)框架节点核芯区箍筋配置应满足要求对于规范中规定的框架柱箍筋加密区的箍筋最小体积配箍率的要求,绝大部分设计人员都能给予足够的重视,但对于《建筑抗震设计规范》(GB50011-2001)中规定的“一、二、三级框架节点核芯区配箍特征值分别不宜小于0.12、0.10、0.08且体积配箍率分别不宜小于0.6%、0.5%,0.4%。”设计中经常被忽视,尤其是柱轴压比不大时,常常不满足要求。这一规定是保证节点核芯区延性的重要构造措施,应严格遵守。
(2)底层框架柱箍筋加密区范围应满足要求建筑抗震设计规范》(GB50011-2001)中规定:“底层柱,柱根处箍筋加密区范围为不小于柱净高的1/3”这是新增加的要求,设计中应重点说明
(3)框架梁的纵向配筋率应注意《建筑抗震设计规范》(GB50011一2001)中规定:“当框架梁梁端纵向受拉钢筋配筋率大于2%时,梁箍筋最小直径的数值应比表6.3.3中规定的数值增大2mm.”在目前设计中,这一规定常被忽视,造成梁端延性不足。
(4)框架梁上部纵筋端部水平锚固长度应满足要求《混凝土结构设计规范》(GB50010-2002)中规定:“框架端节点处,当框架梁上都纵筋水平直线段锚固长度不足时,应伸至柱外边并向下弯折,弯折前的水平投影长度不应小于0.4LaE.”当框架柱截面尺寸小于400×400mm时,应注意梁上部纵筋直径的选择,否则这一项要求不容易得到保证。
二、结构的抗震等级
在工程设计中,多数房屋建筑按其抗震设防分类属于丙类建筑,如民用住宅、办公楼及一般工业建筑等等,其抗震等级可根据烈度、结构类型和房屋的高度按《抗震规范》确定。而电讯、交通、能源、消防和医疗等类建筑以及大型体育场馆、大型零售商场等公共建筑,首先,应当根据《建筑抗震设防分标准》(GB50223-95)确定其中哪些建筑属于乙类建筑。乙、丙类建筑,地震作用均按本地区抗震设防烈度计算。对于乙类建筑,一般情况下,当抗震设防烈度为6~8度时,抗震措施应符合本地区抗震设防列度提高一度的要求。所谓抗震措施,在这里主要体现为按本地区设防烈度提高一度由《抗震规范》确定其抗震等级。例如,位于8度地震区(如北京)的乙类建筑,应按9度由《抗震规范》确定其抗震等级为一级;当8度乙类建筑的高度过规定的范围时,还应经专门研究,采取比一级抗震等级更有效的抗震措施。如北京某大型零售商场和某三级医院的门诊楼本属乙类建筑,但设计人员错当成丙类建筑来设计,使建筑物的抗震能力为降低,不得不对设计计算做重大修改。
三、地震力的振型组合数
地震力的振型组合数,对高层建筑,当不考扭转耦联计算时,至少应取3;当振型数多于3时,宜取3的倍数,但不应多于层数;当房屋层数≤2时,振型数可取层数。对于不规则的结构,当考虑扭转耦联时,对高层建筑,振型数应取≥9;结构层数较多或结构刚度突变较大,振型数应多取,如结构有转换层、顶部有小塔楼、多塔结构等,振型数应取≥12或更多,但不能多于房屋层数的3倍;只有当定义弹性楼板,且采用总刚分析,必要时,振型数才可以取的更多。《抗震规范》指出,合适的振型个数一般可以取振型参与质量达到总质量的90%所需的振型数。SATWE等电算程序已有这种功能,可以很方便地输出这种参与质量的比值。有些设计人员不大重视电算程序使用手册的应用,选取振型数时比较随意,这是应当改进。此外,由耦联计算的地震剪力通常小于非耦联计算,仅当结构存在明显示扭转时才采用耦联计算,但在必要时应补充非耦联计算。
四、结构周期折减系数
框架结构及框架――抗震墙等结构,由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震剪力偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但对框架结构的计算周期不折减或折减系数取得过大都是不妥当的。对框架结构,采用砌体填充墙时,周期折减系数可取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.7~0.8;完全采用轻质墙体板材时,可取0.9。只有无墙的纯框架,计算周期才可以不折减。
五、框架梁、柱箍筋间距
《抗震规范》第6.3.3条及6.3.8条对不同抗震等级的框架梁、柱箍筋加密区的最小箍筋直径和最大箍筋间距做了了明确规定。根据这些规定,工程习惯上常取梁、柱箍筋加密区最大间距为100mm,非加密区箍筋最大间距为200mm。电算程序总信息中通常也内定梁、柱箍筋加密区间距为100mm,并以此为依据计算出加密区箍筋面积,由设计人员要据规范确定箍筋直径和肢数。架梁的跨中部位有次梁或有较大的其他集中荷载作用却仅配两肢箍筋时,多数情况下,非加密区箍筋间距采用200mm会使梁的非加密区配箍不足,因此建议程序内定梁箍筋改为取梁的非加密区间距200mm。这样,既可保证梁非加密区的抗剪承载力,又可适当增加梁端箍筋加密区(箍筋间距为100mm)的抗剪能力,梁的强剪性能更能充分体现。当框架梁由于种种原因纵向钢筋超筋时,梁端适当加大抗剪承载力对结构抗震非常有利。这也是为什么当梁端纵向受拉钢筋配筋率大2%时,规范规定梁的箍筋直径应比最小构造直径增大2mm的原因。对于框架柱,当框架内定柱加密区箍筋间距为100mm时,在某些情况下,亦可能因非加密区箍筋间距采用200mm引起配箍不足。因此,我们也建议程序内定柱的箍筋间距改为取柱的非加密区的箍筋间距200mm。这里需要指出的是,梁、柱箍筋非加密区配箍验算时可不考虑强剪弱弯的要求,即剪力设计值取加密区终点处外侧的组合剪力设计值,并且不乘以剪力增大系数。
六、柱部分
(1)地上为圆柱时,地下部分应改为方柱,方便施工。圆柱纵筋根数最少为8根,箍筋用螺旋箍,并注明端部应有一圈半的水平段。方柱箍筋应使用井字箍,并按规范加密。角柱、楼梯间柱应增大纵筋并全柱高加密箍筋。幼儿园不宜用方柱。
(2)原则上柱的纵筋宜大直径大间距,但间距不宜大于200。
(3)柱内埋管,由于梁的纵筋锚入柱内,一般情况下仅在柱的四角才有条件埋设较粗的管。管截面面积占柱截面4%以下时,可不必验算。柱内不得穿暖气管。
(3)柱断面不宜小于450×450,混凝土不宜小于C25,否则梁纵筋锚入柱内的水平段不容易满足0.45La的要求,不满足时应加横筋;否则在梁柱节点处钢筋太密,混凝土浇筑困难。异型柱结构,梁纵筋一排根数不宜过多,柱端部纵筋不宜过密,否则节点混凝土浇筑困难。当有部分矩形柱部分异型柱时,应注意异型柱的刚度要和矩形柱相接近,不要相差太大。
(4)柱应尽量采用高强度混凝土来满足轴压比的限制,减小断面尺寸。
(5)尽量避免短柱,短柱箍筋应全高加密,短柱纵筋不宜过大。
(6)考虑到竖向地震作用,柱子的轴压比及配筋宜留有余地。
关键词:多层砌体;房屋结构;结构设计
砌体结构是一种脆性材料,使用其砌成的结构也是比较脆弱的,尤其是在遭受地震作用时,可能比较容易坍塌。但是由于多层砌体房屋的造价低、施工期比较短等,在我国的中小城市和农村地区还有着广泛的使用。因此,我们必须高度重视其设计。
一、多层砌体房屋结构的设计要点
(一)严格控制房屋层数和高度
调查表明,房屋的层数越多,高度越高,则在遭受地震时,其损失的程度也就越大。因此,要严格控制房屋的层数,严格控制房屋的高度,对于医院和学校教学楼等多层砌体房屋结构,其高度应比规定的低3m。
(二)严格控制房屋层高和横墙间距
如果多层砌体房屋的建材是普通砖、小砌块或者多孔砖,则其层高不能超过3.6m。在同等的条件下,降低房屋的层高,可以提高房屋的整体性能,从而有利于房屋的抗震。
众所周知,房屋的抗震能力取决于房屋结构的整体刚度和稳定性。通常而言,房屋的横向尺寸应小于纵向的尺寸,但如果情况相反,加上横墙的间距比较大,则房屋的刚度也就比较下,容易遭到破坏。
(三)科学合理布局房屋结构
房屋的平面布置应遵循简单、规则和对称的原则,且应有较好的整体性。而结构的侧向刚度变化应均匀,其自上而下逐渐增加。因此,房屋平面布置要避免不规则。
另外,要严格控制墙段的开动率,从而提高房屋的整体刚度。房屋不宜设计的太薄,而太薄易容易影响其抗震性能。
(四)选择最优的房屋建筑场地
房屋建筑场地的选择应该避开地基不稳定、承载能力差和地基不均匀的地段,因为这些因素均会影响房屋建筑的质量,甚至可以对房屋建筑的安全产生严重的威胁。
房屋建筑场地的选择有一定的原则:第一,地基必须具有很强的稳定性,避开地震发生时地基可能失效的松软场地;就是说,应当选择基岩或者干燥密实的土层作为房屋地基;其次,应避开填土层、松散砂层以及淤泥层、古河道等不良地段。
(五)科学合理确定房屋结构体系
多层砌体房屋结构应当采用横墙承重或者是纵墙共同承重的房屋结构体系。其中,纵横墙的布置必须达到对称和均匀的要求,且沿着平面内对齐,上下之间应连续。
此外,还应当按照相关的要求来合理设置房屋的沉降缝、伸缩缝和防震缝等。总而言之,不管在平面上,还是在立面上,房屋结构的布置应当力求使尺寸、刚度以及质量、延展性等均匀和对称,避免突然发生变化。对于现浇的混凝土楼,其应有较好的传递水平力。
二、多层砌体房屋结构设计中存在的问题
(一)基础方案不合理
当前,多层砌体房屋结构设计的地基处理方法不合理,处理的深度、范围和效果等均无法满足设计要求。基础类型的选择和不合适,不能与基础上部的结构协调一致,共同发挥应有的作用。
此外,基础的刚度也达不到要求,基础面积偏小,无法较好地调整地基的不均匀沉降,也无法有效控制沉降量。
(二)地质勘察工作不严密
地质勘察不详细主要表现在钻孔的位置不恰当、钻孔的数量不足等,以及钻孔的深度达不到要求等,也没能对房屋地基现场进行实地的勘察,从而影响设计人员的房屋结构设计,使其无法做出正确的判断。有时,勘察人员图省事,借用临近房屋的地质勘察资料,进而出现不小的设计问题。
(三)结构的计算不准确
多层砌体房屋结构计算不准确主要表现在存在少算和漏算结构荷载的情况;承载力的计算不完整,虽进行了总承载力的计算,但墙体的高厚比和局部承压计算却遭到忽略,从而使墙体的承载力达不到相关的设计要求。
(四)设计说明不详细
房屋结构设计不详细主要是指设计说明不完整或者不清楚,在大多数情况下,房屋结构设计说明虽然对建筑结构设计的有关事项进行了较为详细的说明,但是对于房屋建设的施工工艺、施工程序和验收标准,以及专业配合过程中应注意的事项均没有做出必要的说明,从而导致施工过程中的随意性较大,进而影响房屋施工作业的质量。
(五)构造措施不完善
房屋构造柱和圈梁的设置不妥当,墙体缺少必要的拉结筋,在采用预应力多孔板时,梁与板、板与板之间缺少必要的拉结,从而导致房屋结构的整体性不佳。
结语:
当前,在中小城市和广大的农村地区,多层砌体房屋建筑仍然被广泛采用。但是这一房屋结构存在着比较明显的缺点,也就是其脆弱性比较强,因此其抗震性能很差。这就要求在设计时,尽可能克服这一缺点。在本文中,笔者结合自身的工作实际,分析探讨了多层砌体房屋的设计要点,以及其中存在的问题。
参考文献:
[1]任玉兰,寇贤庆.民用建筑机构设计要点分析[J].华章,2012(23)
[2]赵伟玲.浅谈多层砌体房屋结构的抗震设计[J].陕西建筑(建筑设计),2012(25)
[关键词]地震;抗震设计;建筑结构设计;实证探讨
文章编号:2095-4085(2015)07-0059-02
为了保证工程建设的施工质量与建设的速度,最大程度的降低地震这种自然灾害对于建筑物的破坏,在建筑项目开发设计阶段,应重视抗震结构的设计并将其放在一个十分重要的位置上。从建筑结构人手,逐步探究抗震设计在建筑结构设计中的应用,有助于帮助我们更好的改进现有的抗震设计,对于提升建筑物自身的抗震性能,增强其使用性有着重大的现实意义。
1.抗震设计的发展现状
随着城市化的进行,多层建筑物数量的增多,建筑结构设计中的抗震设计受到越来越多的青睐,我国抗震设计虽然取得了一些进步,但是仍然缺乏必要的理论支持与实践借鉴,发展的速度较为缓慢。
我国建筑行业在进行抗震结构设计与施工时,较为普遍的采用框架与砌体两种设计结构。这两种建筑设计结构虽然在一定程度上能够满足建筑抗震性的功能需求,但是其自身依旧存在着一些不足。框架设计针对地震发生时,建筑物承受横向破坏力的情况,加强了建筑物横向上的抗震性,增强了其在抗震性能,但是框架设计也对建筑物本身的结构造成了一些不必要的影响,致使建筑物的某些结构与功能发生变化,使得建筑物竖直方向上的抗震性能受到削弱,形成一个薄弱区域,从而影响建筑物的实际抗震效果,建筑物整体的抗震性得不到最为充分的发挥。在进行防震框架设计时,建筑开发项目的设计人员很难根据实际建筑需要进行防震框架的模拟,这就造成了框架设计抗震性能的模糊性与不确定性,开发设计者很难明确使用框架结构的建筑物的抗震能力,无法科学而全面的对建筑结构的抗震性能进行评估,导致框架设计在抗震结构中很难得到广泛的应用。加之框架设计为了增强建筑主体结构的抗震性,在建筑物项目施工建设中普遍采用填充墙这种建筑结构,但是填充墙自身在地震发生时就是一种安全隐患,地震时所引发的竖直方向上的震动,极易导致填充墙的倒塌,极易给人们的生命财产带来损失。因此要加强对填充墙的结构设计与质量监督,保证其质量,同时在竣工验收之后,要对填充墙进行定期的检查与维护,保证其一直处于良好的状态,保证其抗震性得到最大程度的发挥。
随着城市化进程的不断加快,多层建筑逐渐兴起,成为城市建筑的主流。多层建筑在满足城市发展需要的同时,也给建筑物的抗震性能带来了一定的困扰,形成一定的抗震隐患。多层建筑的大空间与砌体之间逐渐形成一种矛盾,即建筑物主体内存在的巨大空间很难依靠砌体结构满足抗震性的需求,当代人在选择居住环境或者居住环境时,更倾向于选择大空间,为了满足这种需求,建筑项目的开发者更多是采取降低墙体厚度的方式,相对性的增加建筑物的主体空间。这虽然满足了人们的消费需求,但是无法满足建筑物的抗震要求,所以在进行砌体设计时应该对空间大小与墙体厚度之间的比例关系进行全面的考量,科学的协调好二者之间的关系,在满足建筑物功能的同时,增强建筑物的抗震性。
2.增强建筑结构设计中抗震设计的方法途径
对建筑结构中抗震设计的提高与增强是一个复杂的过程,在这一过程中需要我们在相关理论的指导下,进行正确的探讨,从而增强抗震设计的安全性,提高建筑物的抗震性能。这一目的的实现就需要我们从框架与砌体两种结构出发,进行合理高效的设置。
2.1框架设计
建筑项目的规划设计人员在建设开发项目的设计阶段要根据建筑物主体构建布局进行全面的考量与综合的判断,从而使得抗震性设计能够够好的满足建筑开发项目的实际需要,同时加强对建筑物自身刚性重要程度的认识,将建筑物的形变量有效地控制在合理的范围之内,保证建筑物在地震过程中能够承受较大的形变力量,从根本上提高建筑物主体的抗震能力与效果。在建筑物结构中建筑物的抗震性能扮演着重要角色,发挥着一定的作用,因此建筑项目的施工建设者需要对建筑物的非结构性构建进行科学的评估,以保证非结构建筑构件的抗震性能的发挥。为了达到这一目的,最大限度的提升框架结构的稳定性,在进行框架结构设计与施工的过程中必须要将保塑性铰安置在框架梁的首端,以此来加强框架设计对于地震发生时竖直方向上作用力对建筑物的破坏。为了提升建筑物中填充墙的稳定性,减少因填充墙的损害降低建筑物主体抗震性能,因此当相关的设计与施工人员在进行填充墙设计和施工的时候一定要加强填充墙的墙体质量,最大限度的降低填充墙在地震中出现裂缝的可能性,同时按照科学的周期,对填充墙进行定期的检修与维护,保证填充墙一直处于一种良好的状态。
2.2砌体设计
墙体厚度作为墙体刚性与延展性的重要载体,其对建筑物的抗震性产生了极为重大的影响,通过对墙体厚度的科学合理设计能够极大的提升建筑物的稳定性,从而能够提升建筑物的抗震性能。例如在地震多发地带开展建筑开发项目时,就需要建筑项目的设计者与施工者在设计与施工阶段对墙体的厚度进行适当的增加,在进行多层建筑的设计施工的过程之中,开发建设单位不能只是一味的强调提升建筑物的高度,还需要充分的考虑到多层建筑的稳定性与安全性。为了加强建筑物主体的抗震能力降低地震对建筑物与人员的伤害,更好的保护人身与财产安全。在进行建设开发项目设计时要在国家相关法律与法规的指导下进行建筑物抗震性能的设计与施工,确保建筑物的设计与施工能够符合国家性的技术要求。
3.结语
总之,建筑物的抗震性设计应引起重视,使其设计与技术进一步提高,以确保人们的安全。在建筑开发项目设计与施工的各个具体环节之中,相关部门也要根据自身的职责做好相应的工作,确保建筑物的工程质量与抗震性能,监理单位更应该严格地做好监理的工作,而勘察单位就应该如实出具勘察报告,从而确保房屋建筑的安全性。
参考文献: