首页 优秀范文 高层建筑结构抗震设计

高层建筑结构抗震设计赏析八篇

发布时间:2023-08-30 16:36:40

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的高层建筑结构抗震设计样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

高层建筑结构抗震设计

第1篇

关键词:高层建筑;结构;抗震设计;措施

1高层建筑结构抗震设计的布置原则

在高层建筑结构设计中,当结构体系确定后,结构总体布置应当密切结合建筑设计进行,使建筑物具有良好的造型和合理的传力路线。因此,结构体系受力性能与技术经济指标能否做到先进合理,与结构布置密切相关。

一个先进而合理的设计,不能仅依靠力学分析来解决。因为对于较复杂的高层建筑,某些部位无法用解析方法精确计算。因此,还要正确运用“概念设计”。“概念设计”是指对一些难以做出精确计算分析,或在某些规程中难以具体规定的问题,应该由设计人员运用概念进行判断和分析,以便采取相应的措施,做到比较合理地进行结构设计。以下论述的诸方面均须用概念设计的方法加以正确处理。

1.1结构平面布置

高层建筑的开间、进深尺寸和选用的构件类型应符合建筑模数,以利于建筑工业化。在一个独立的结构单元内,宜使结构平面形状和刚度均匀对称。需要抗震设防的高层建筑,其平面布置应符合下列要求:

1)平面宜简单、规则、对称、减少偏心。

2)平面长度不宜过长,突出部分长度不宜过长,值宜满足有关要求。

3)不宜采用角部重叠的平面图形或细腰形平面图形。

1.2结构竖向布置

高层建筑的高宽比不宜过大,一般将高宽比控制在5~6以下,当设防烈度在8度以上时,限制应更严格一些。高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收。

1.3变形缝的设置

在结构设计中,为防止结构因温度变化和混凝土收缩而产生裂缝,常隔一定距离设置温度伸缩缝;在高层部分和低层部分之间,由于沉降不同设置沉降缝;在地震区,建筑物各部分层数、质量、刚度差异过大或有错层时,设置防震缝。温度缝、沉降缝和防震缝将高层建筑划分为若干个结构独立的部分,成为独立的结构单元。在高层建筑里,应尽量少设置变形缝,当不可避免地需要设置变形缝时,应确保各单元间的变形缝有足够的宽度。

2高层建筑抗震设计存在的问题

2.1 缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。

2.2抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(GB 50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。

2.3结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。

2.4结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值B1/B不满足≥0.75的要求。

2.5框架结构砌体填充墙抗震构造措施不到位。砌体护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。

2.6抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。

2.7结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。

3加强高层建筑结构抗震设计的基本措施

3.1场地和地基的选择

选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,对抗震有利、不利和危险地段作出综合评价。对不利地段,应提出避开要求;当无法避开时应采取有效措施;选择地基时,一般而言,岩石、半岩石和密实的地基土对房屋抗震最有利,是最好的建筑场地;而松软的,软弱粘性土等,尤其是易发生砂土液化的地区,都对房屋的抗震不利。同一结构单元的基础不宜设置在性质截然不同的地基上;同一结构单元不宜部分采用天然地基不采用桩基。

3.2建筑结构的规则性

建筑及其抗侧力结构的平面布置宜简单、规则,刚度和承载力分布均匀。平面宜为矩形,方形、圆形等规则的平面,因为形状规整,地震时能整体协调一致,并可以使结构处理简化。否则当平面为L、T形时,形状凸出凹进,结构的质心和刚心不重和,地震是转角应力集中,扭转震动明显,导致远离刚心的刚度较小的构件,侧移量加大,所分担的水平地震力与显著增大,很容易发生破坏,甚至导致整个结构因一侧结构失效而倒塌。竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。如果竖向不规则的建筑结构,应采用空间结构计算模型,其薄弱层的地震剪力应乘以1.15的增大系数,应按规范有关规定进行弹塑性变形分析。

3.3建筑结构材料的选取

在高层建筑结构方案的设计中,结构材料的选取是很重要的。从抗震角度设计来说,结构体系的抗震等级,其实质就是在宏观上控制不同结构的延性要求,例普通钢筋宜选用延性、韧性和可焊性较好的钢筋;普通钢筋的强度等级,纵向受力钢筋宜选用HRB400级和HRB500级热轧钢筋,箍筋宜选用HRB335、HRB400和HPB300级热轧钢筋。这要求我们应根据建设工程的各方面条件,选用既符合抗震要求又经济实用的结构类别,按此标准来衡量,使用不同材料的几重结构类型,依其抗震延性性能优劣的顺序是:钢结构,型钢混凝土结构,现浇钢筋混凝土结构,装配式钢筋混凝土结构,配筋砌体结构。

3.4隔震和消能减震设计

隔震和消能减震设计,应主要用于使用功能有特殊要求的建筑,对于高层建筑,选择坚硬的场地土建造高层建筑,可以明显减少地震能量输入减轻破坏程度。错开地震动卓越周期,可防止共振破坏。隔震设计应根据预期的水平减震系数和位移控制要求,选择适的隔震支座及为抵抗地基微震动与风荷载提供初刚度的部件组成的隔震层。提高结构阻尼,采用高延性构件,能够提高结构的耗能能力,减轻地震作用,减小楼层地震剪力。

3.5抗侧力体系的优化

对一般性构造的高楼,刚比柔好,采用刚性结构方案的高楼,不仅主体结构破坏轻,而且由于地震时的结构变形小,隔墙,围护墙等非结构部件将得到保护,破坏也会减轻。提高结构的超静定次数,在地震时能够出现的塑性铰就多,能耗散的地震能量也就越多,结构就愈能经受住较强地震而不倒塌。改善结构屈服机制,使结构破坏十按照整体屈服机制进行,而不是楼层屈服机制。设计结构时遵循强节弱杆、强柱弱梁、强剪弱弯,强压弱拉的原则。在进行结构设计时,应该选定构件中轴力小的水平杆件,作为主要耗能杆件,并尽可能使其发生弯曲耗能。从而使整个构件具备较大的延性和耗能能力。

3.6常用的加固设计

针对抗震鉴定结论,根据建筑结构不同体系及不同特点,在抗震加固时宜从以下几个方面来考虑具体的加固方法:对了原有结构体系存在明显不合理的情况,条件许可时可采用增设构件的方法予以改善,否则采取能同时提高承载力和变形能力的方法,使整体抗震能力满足要求;对于需要提高承载力或结构整体刚度的情况,可以增设构件,扩大原截面,设置套箍等方法;对了结构的整体性连接不符合抗震要求的情况,可以以提高变形能力为思路;对于局部构造不符合要求时,可进行局部处理或改变传力途径,使地震作用由增设的构件承担,从而保护局部薄弱构件;对于次要的非结构构件不符合抗震要求的情况,可仅对可能倒塌伤人的部位加以处理。

3.7控制结构变形

地震时建筑物的破坏程度,主要取决于主体结构变形的大小。水平地震作用下高层结构各楼层的侧移,包含四种成分:整体剪切变形,整体弯曲变形,整体平移,整体转动。对不同的结构应采取针对性的措施,控制结构的变形。结构实验和震害调查表明,采用层间侧移角度来评估结构的损坏程度是比较合理的,《抗震规范》对高层结构不同水准下的层间侧移角限值作出了规定。减小结构侧移的途径主要有:减小框架的柱距和梁距,采用弯-剪双重抗侧力体系,设置刚臂,竖向支撑的交错布置,变平面构件为立体构件,围护结构参与抗震,倾斜立面的利用,扭转体型的应用,双曲线圆筒的应用,加大房屋等有效宽度。

3.8减轻房屋自重

在高层地上部分的总重之中,各层楼盖的自重越占40%左右,所以可通过采用密肋楼板、无粘结预应离平板,预制多孔板,现浇多孔板、应用防火隔热涂料等方法减轻楼板重量。钢筋混凝土墙体较多的高层结构中,应在满足承载力要求的前提下,适当减薄墙体。使用高强混凝土、轻骨料混凝土、加气混凝土、轻型隔墙、轻型围护墙等措施也是减轻房屋自重的有效途径。

4结语

未来,随着城市人口的逐渐增多,建筑用地的日益减少,城市高层建筑必定会成为人们最佳选择。而保证高层建筑结构的安全性、特别是要保证建筑结构的抗震强度是十分重要的。而高层建筑结构的抗震设计就逐渐成为建筑工程设计的重中之重。加强高层建筑的抗震设计的理念和实践的创新,保证建筑结构的安全性,是建筑结构设计的关键点之一,也是促使高层建筑物持续发展的重要条件。

参考文献:

[1]陈维东.高层建筑结构抗震设计存在的问题及其对策[J]. 中国高新技术企业. 2009(05)

第2篇

关键词:高层建筑 转换结构 抗震 设计

中图分类号:[TU208.3] 文献标识码:A 文章编号:

一、问题的提出

随着经济的发展,对房屋建筑使用功能的要求越来越高,立面体型变化多样化,竖向构件上部与下部不能贯通,例如酒店、公寓、高层住宅底部设有局部大空间门厅,甚至底部几层作为商业用途而全部采用较大柱网的大空间。上述要求与结构的合理、自然布置趋势正好相反,由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常布置时下部刚度大、墙多、柱网密,到上部墙少、柱网稀疏,结构的正常布置与建筑功能之间就产生了矛盾。为了解决这种矛盾,就必须在结构转换的楼层设置转换层。

二、高层建筑转换结构的形式

带转换层高层建筑结构主要归纳为两大类,一类是其主体结构由上部剪力墙结构与下部筒体框架结构或框架剪力墙结构通过转换层组成;另一类是其主体结构由上部小柱网框架、筒体、剪力墙结构与下部大柱网框架、筒体、剪力墙结构通过结构转换层组成。而结构转换层的类型又可分为两类:一类是梁式转换,包括梁、桁架、空腹桁架、箱型结构、斜撑等,另一类是板式转换,一般是由一块整体浇注的厚平板组成。除此之外,近年又出现许多新的转换结构形式,如搭接柱转换结构、宽扁梁转换结构、斜撑转换结构。

梁式转换层结构,由于其受力、传力比较直接,且还可提供一定的建筑设备利用的空间,因而是目前得到最广泛应用的转换结构形式;板式转换结构,受力、传力比较复杂、不够明确,板内应力分布复杂,而且经济性较差,所以此结构形式较少被采用。

三、震害实例[1]

A.美国橄榄景医院主楼(1971年2月9日美国加利福尼亚州圣费南多发生里氏6.4级地震),震害如下:

震害分析:1~2层为框架,2层有较多的砖填充墙,3层 以上为框架—抗震墙,上刚下柔,上下部的刚度相差悬殊,建筑上部3~6层的刚度比下部1~2层的大10倍以上,底部两层在地震后破坏严重,平均残余侧移达380mm,最大为710mm。

B.帝国县行政办公大楼(ICSB大楼)(1979年10月15日美国加利福利亚El Centro发生里氏6.4级地震),该建筑平面布置如下

ICSB大楼平面

(a)首层平面(b)2~5层平面

震害如下:一层G轴4根柱严重破坏,柱下端混凝土压碎,主筋呈灯笼状外鼓,外端两根柱的破坏比中间两根柱严重,剪力墙和楼板没有明显的剪切破坏。

震害分析:该建筑表面看似简单、规则,但第一层剪力墙的布置是不对称的,且2~6层东西两侧的剪力墙在第一层中断,设计者为了改善首层的刚度和承载能力,在第一层增设了4片剪力墙,通过这样,2~6层的绝大部分剪力和倾覆力矩由东、西两侧剪力墙承担,到了第一层需通过第二层楼板将剪力墙的剪力传递到中间4片短剪力墙;由于这4片剪力墙的布置不对称,东侧第一层的4根柱由于到刚度中心的距离最远,必将承受一定的剪力,所以东侧框支柱在地震中破坏严重,而西侧框支柱由于离刚度中心较近,承受的地震剪力较小而无明显破坏。

C.日本神户A公寓(1995年日本阪神大地震),震害如下:

震害分析:该建筑西楼框支层(1~3层)的层刚度与上部楼层(4~10层)相比,不但没有减弱,还大于上部楼层刚度,但框支层剪力墙布置严重偏心,西楼西部有相当多的落地剪力墙,但1~3层的东侧布置了5片框支墙,使框支层(1~3层)与上部刚度偏心率很大,地震中扭转效应大,加剧了原本薄弱的框支柱的破坏,框支柱的破坏严重,出现东侧第3层倒塌破坏的结果。

D.日本FY大楼(1995年日本阪神大地震),震害如下:

FY大楼A轴1层南侧边柱上端破坏FY大楼A轴1层北侧边柱脚破坏

震害分析:1)、该建筑沿东西向层数不同,东侧仅3层,西侧7层,地震作用下,使得西侧的扭转影响较大,加剧了西侧框支柱的漂亮;2)、地震作用下,上部剪力墙的倾覆力矩使1、2层的框支柱产生较大的轴向拉、压力,上部剪力墙的剪力不能全部传递到落地剪力墙上,使框支柱承受一部分剪力,7层部分的西侧框支柱轴力最大,破坏也最严重。

转换结构地震破坏的例子很多,这里只对以上几种典型的情况做了简要介绍,目的是为了使结构设计师加深对转换结构,尤其是高层转换结构设计的认识和理解,并在设计中引起足够的重视。

四、高层结构抗震概念设计的特点

(1)带转换层高层建筑结构由于上、下层竖向构件不连续,结构竖向刚度发生变化转换层上下楼层构件内力、位移发生突变,对抗震不利。研究表明,影响带转换层高层建筑结构抗震性能的主要因素为:1)转换层设置高度---转换层位置越高,转换层上下层间位移角包络及剪力分配和传力途径突变越明显,转换层下部的框支框架越易开裂和屈服;2)转换层上下楼层刚度---转换层上下楼层的剪切刚度宜尽量接近;对转换位置较低的结构,控制侧向刚度比可以控制转换层附近的层间位移角及内力突变;对转换位置较高的结构,还应控制转换层上下部结构的等效刚度比。

(2)转换构件除满足刚度、强度、延性的要求外,还要注意保证转换层楼盖的整体刚度。一般而言,转换层楼盖受力较大,除协助转换梁工作外,楼盖还要承受上部结构竖向构件传来的水平力传递到下部竖向构件上去。震害表明,转换构件的刚度较弱,楼盖的刚度和抗剪承载力较弱,使楼盖破坏严重、转换构件上部的剪力墙、柱破坏严重。

(3)落地剪力墙与框支柱的布置宜均匀、对称,结构刚度偏心不宜过大,以免地震中由于扭转效应使框支柱严重破坏。框支柱的设计还要注意上部墙体地震倾覆力矩产生的框支柱轴向拉、压力的影响,尤其是单跨框支框架,轴向拉、压力往往会成为框支柱破坏的主要原因,抗震设计一般不宜采用单跨框支框架。

(4)抗震设计中需要加强的部位应包括底部及转换层以上1~2层的楼板、剪力墙和柱。结构的延性耗能机制宜呈现在加强部位以上的结构中

五、高层转换结构设计的原则

尽管高层结构本身有一些抗震不利的因素,但是只要能合理设计,把握好几个原则,还是能达到比较满意的抗震效果的,下面对转换结构设计的原则做如下总结。

尽量减少转换

在可能的情况下尽量减少主体结构的转换,核心筒、剪力墙、框架柱等竖向主体构件应尽量落地,以满足受力直接,刚度连续,既经济又合理。

使传力直接

在可能情况下注意主体结构上部和下部竖向构件的协调对应关系,使转换结构尽可能处于传力比较直接。上部剪力墙宜尽可能采用大开间剪力墙结构,既容易满足上下部刚度比的要求,又便于下部大开间框支柱、转换梁的布置;上部小柱网的结构,宜尽量使其柱网与下部大柱网的轴线有较好的对应插入关系,以使转换梁的布置比较合理明确。总之,应尽量避免多级转换梁转换,慎重采用传力复杂、抗震不利的板式转换。如上下柱网确实无法对齐时,尽量采用箱型转换。

强化下部、弱化上部

对于上部剪力墙下部筒体框架、剪力墙框架的结构,要注意适当增强下部筒体、剪力墙,适当减弱上部剪力墙,以使转换层上下部分主体结构间剪切刚度比尽量接近,且不大于2。对于框架结构上部小柱网,下部大柱网时,要注意上部框架梁截面适当减弱,下部框架梁截面适当加强,从而可以做到上下部的层间刚度比接近。

加强下部结构的措施:加大筒体及落地墙厚度、提高混凝土强度等级、必要时可在房屋周边增加部分剪力墙、壁式框架或楼梯间筒体,提高抗震能力。

弱化上部结构的措施:不落地剪力墙开洞、开口、减小墙体厚度等。

优化转换结构

抗震设计时,却因建筑功能需要采用高位转换时,转换结构宜优先选择地震作用下、不致引起框支柱柱顶弯矩过大、柱剪力过大的结构形式,如斜腹杆桁架、空腹桁架和扁梁等,同时要注意需满足重力荷载作用下承载力、刚度的要求。

计算细致全面

带转换层的高层结构,在转换层及其上下几层的主体结构筒、墙、框架中应力比较集中、复杂,除满足结构的整体分析外,还应辅以该部分结构的有限元分析,取转换以上至少两层结构进入局部计算模型,并注意模型边界条件符合实际情况。整体结构计算需采取两个以上不同力学模型的程序进行抗震计算,还应进行弹性时程分析计算并宜采用弹塑性时程分析进行校核.

六、结语

本文对高层建筑转换结构的形式做了简要介绍,并通过几个较典型的震害实例对高层结构抗震概念设计的特点进行分析,最后总结高层建筑结构设计时应注意的原则,希望本文对初次做转换结构设计的工程师们有一定的指导作用。

[1]徐培福,复杂高层建筑结构设计,北京:中国建筑工业出版社,2005(2)

[2]李国胜,多高层建筑转换结构设计要点和实例,北京:中国建筑工业出版社,2010(6)

第3篇

关键词:建筑结构高层多地震抗震设计

Abstract: with the development of society and the rapid development of science and technology, building structure to gradually complicated, the high-level structure of the high-end forward, the our country is a earthquake country, therefore, the seismic design of high-rise buildings will face more severe challenges.

Keywords: building structure high-level earthquake seismic design

中图分类号:S611文献标识码:A 文章编号:

本文从当前我国高层建筑在抗震设计方面存在的问题出发,详细阐述了高层建筑结构的抗震设计,以期提高建筑结构的稳定性,从而最大程度的保障人们的生命财产安全。

一、当前我国高层建筑在抗震设计方面存在的问题

1、建筑高度方面的问题

伴随着我国经济发展水平的快速提高,施工技术水平也迅速增长,与之相适应的还有对于建筑结构的科研水平,依据我国当前的高层建筑结构技术规定,在一定的结构模式下,高层建筑必然有一个非常合适的高度,但是,在实际施工过程中,有相当多的高层建筑都超出了这一合适的高度值,建筑物的高度增加,会使得许多因素超出先行规范的规定,例如材料性能、延性要求等都会发生变化。

在地震的作用下,很有可能使得结构发生变形甚至是破坏。

2、建筑结构体系问题

在地震发生较为频繁的地区,建筑结构体系的选择是一个非常重要的问题。

在我国,高层建筑主要有三种不同的结构体系:(1)框架结构。框架结构主要是通过量、柱等构件在节点处的连接而形成的一种承载结构。这种承载结构在建筑平面布局方面具有较大的灵活性,但是伴随着建筑结构越来越高,框架结构底部梁、柱等构件在水平载荷的作用下剪力和弯矩都大幅的增加,从而使得配筋量也随之而增长,这会给建筑平面布局和施工带来很大的影响,所以框架结构受到建筑结构层数的限制。(2)剪力墙结构。在钢混结构中一般会采用剪力墙承重,剪力墙承重就是将钢混墙板替代框架结构中的梁、柱等承重构件,剪力墙承载所有的水平载荷和竖向荷载,如重力载荷、风载荷以及地震载荷等,此时,剪力墙的就犹如是一根悬臂深梁,底端嵌固,在水平和竖向荷载作用下,所产生的弯曲和剪切变形构成水平位移,相对于框架结构来讲,空间和水平位移小,抗震性能好,但是混凝土的用量很多,导致自重比较大,房间格局不能随意改变。(3)框剪结构,框架结构结合了框架以及剪力墙结构的优势,在布置和使用空间上比较灵活,同时抗震性能较高,刚度比较大,因此应用非常广泛。

3、轴压比问题

在当前的高层建筑中,为了达到控制轴压比的目的而使得柱的截面尺寸偏大,而控制轴压比是为了让柱在大偏压的情况,避免钢筋在没有达到屈服极限时混凝土遭到破坏,建筑结构的延性与柱的塑性变形能力关联很大,柱的塑性变形能力越大,则建筑结构的延性就越好,一旦发生地震,吸收和耗散的地震能力少,则建筑结构就很容易遭到破坏。如果梁的延性比较好,那么柱达到屈服极限的可能性也会相应降低,而轴压比的限制也可以相应的放松。当前有一些学者认为在现行抗震条件下最后采用比较高的轴压比,实际上,在轴压比稍微增大的情况下,柱断面的大小变化不会很明显。

二、高层建筑结构的抗震设计

1、抗震设计原则

一般情况下,建筑结构应该按照以下原则进行抗震设计计算:(1)在高层建筑结构的两个主轴方向,最后分别进行水平地震作用下的抗震计算,不同方向下的水平地震作用由各方向抗侧力构件进行承担。(2)在建筑结构中若有斜交角度大于15℃的抗侧力构件,最好对各个抗侧力构件方向的水平地震作用分别进行考虑。(3)如果建筑结构的质量和刚度不对称、不均匀,那么必须对水平地震影响下的扭转作用以及双向水平地震作用进行考虑。

2、抗震设计计算方法

当前,对于高层建筑的抗震设计主要采用以下几种方法:

(1)底部剪力法。当建筑物高度小于四十米,且质量、刚度分布均匀、以剪切变形为主时,采用底部剪力法进行抗震设计计算。此种方法是将地震作用看作是等效静载荷,从而计算出结构的最强地震反应。

(2)振型分解反应谱法。主要是利用振型分解以及反应谱理论计算结构的最强地震反应。

(3)时程分析法。这种方法主要是通过选定一定的地震波,对结构的运动平衡微分方程进行数值积分,从而得到在整个地震时程区域内的地震反应。

对弹性时程进行分析时,每一条时程曲线所计算出的结构底部剪力都必须大于按照振型分解反应谱法计算所得结果的60%,否则,要提高地震波加速峰值。

3、抗震设计时重力载荷的考虑

结构的重力载荷包括自重和可变载荷这两种,可变载荷的变动较大,当发生地震时,可变载荷不一定到底我国载荷规范规定的可变载荷标准值,一般都会比标准值小,因此,重力载荷的代表值可对可变载荷进行折减,计算时可按下列公式:

式中:为重力载荷代表值,为自重标准值,为可变载荷组合值系数,为可变载荷标准值,其中,按照下表进行取值:

在多遇地震情况下,对结构进行允许弹性变形验算,从而避免非结构构件的破坏,,其中,为多遇地震作用标准值产生的楼层间的弹性位移,h为层高,为层间弹性位移角值,主要按照下表进行取值,

参考文献:

[1]陈维东.高层建筑结构抗震设计存在的问题及其对策[J].中国高新技术企业.2009(05).

[2]李志勇,高晓静.浅谈抗震概念与高层建筑结构设计[J].城市建设,2011(03).

[3]和佳一.浅谈高层建筑结构抗震设计[J].中国新技术新产品,2011,(12).

第4篇

【关键词】高层建筑;结构抗震;抗震防线;消能减震

一、地震对高层建筑的作用影响分析

(一)对高层建筑构件形式方面

1、在高层建筑的框架结构中,通常地震对板和梁的破坏程度轻于柱;

2、地震作用经常在多肢剪力墙(钢筋混凝土结构)的窗下引起交叉斜向的裂缝;

3、如果混凝土柱配置螺旋箍筋,即使地震引起较大的层间位移,对柱以及核心混凝土作用并不明显;

4、钢筋混凝土框架结构,如长、短柱并用于同一楼层,长柱受损害较轻。

(二)对高层建筑结构体系方面

1、对于钢筋混凝土柱、板体系的高层建筑,各层楼板因楼层柱脚破坏或者侧移过大以及楼板冲切等因素而在地面坠落重叠;

2、对于“填墙框架”体系的高层建筑,由于受窗下墙的约束,因而容易发生外墙框架柱在窗洞处短柱型剪切现象;

3、对于“填墙框架”体系的高层建筑,地震对采用敞开式框架间未砌砖墙的底层破坏严重;

4、对于框架-抗震墙体系的高层建筑,地震损害不大;

5、对于“底框结构”体系的高层建筑,地震严重破坏刚度柔弱的底层。

(三)对高层建筑地基方面

1、如果地基自振周期与高层建筑结构的基本周期相同或相近,地震作用因共振效应而增加;

2、如果高层建筑处在危险和地形不利的区域,则容易使高层建筑因地基破坏而受损;

3、地基处地质不均匀,在地震作用下容易使上部结构倾斜甚至倒塌;

4、若高层建筑的地基处有较厚的软弱冲积土层,则地震作用对高层建筑的损害显著增大。

(四)对高层建筑刚度分布方面

1、对于采用L形以及三角形等平面不对称的高层建筑,地震作用能够使建筑结构发生扭转振动,因而损害现象严重;

2、对于采用矩形平面布置的高层建筑结构,如果该建筑的抗侧力构件(如电梯井等)布置存在偏心情况时时,同样会使建筑结构发生扭转振动。

二、高层建筑结构抗震设计常见的问题

(一)缺乏岩土工程勘察资料或资料不全

主要表现在:

一是建筑场地岩土工程的勘察资料在扩建初设计阶段还没有到位。

二是在扩初设计会审之后就直接进入了施工图设计。

三是施工图设计只是在简单的规划设计或方案设计会审后就直接出来了。

四是没有岩土工程勘察资料。这样设计就成了无源之水,无水之木,没有依据。结构的平面布置中外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。

(二)一个结构单元内采用两种不同的结构受力体系

如这一边选用砌体承重,而另一边或局部选用全框架承重或排架承重;还有一种是底框砖房中一边为底框,而另一边为砖墙落地承重,这种情况比较常出现在平面纵轴与街道轴线相交的住宅,一般设计为底层为商店,设计成一半为底框砖房(有的为二层底框),而另一半为砖墙落地自承,造成突变在平面刚度和竖向刚度二者之间,对抗震非常的有作用。

三、高层建筑结构抗震设计的方法

(一)选择合适的抗震场地

每次地震发生时高层建筑都遭到很大的破坏,这除了是因为地址破坏了高层建筑的结构外,跟高层建筑的场地也有很大的关系。地震可能会引起的地表错动与地裂,还可能会引起地基土的小均匀沉陷,滑坡和粉、砂土液化等。因此,我们应该选择对建筑抗震有利的地段,同时应避开对抗震不利的地段,即使无法避开时,也应采取适当的抗震加强措施,应根据抗震设防类别采取加强地基和上部结构整体性和刚度,和根据地基液化等级部分消除或全部消除地基液化沉陷的措施;当地基主要受力层范围内存在软弱粘性土层、新近填土和严重不均匀土层时,采用桩基、地基加固和加强基础和上部结构的处理措施,应估计地震时地基不均匀沉降或其他不利影响,对于地震时可能导致滑移或地裂的场地,应采取相应的地基稳定措施。

(二)尽可能设置多道抗震防线

一个带有抗地震性能的结构不能仅仅是一个单独的结构,必须要由多个具有良好延展性的结构分体系来构成,从而使得各个延展性结构之间的构件能够互相连接起来从而进行协同工作。比如框架剪力墙结构就是由带有延展性的框架以及剪力墙这两个分体结构来组成的,其剪力墙主要是由双肢或者多肢的建立墙体结构组合而成的。

高层建筑在受到强烈的地震之后,还会受到多次的余震影响,如果建筑结构在进行设计的过程中仅仅建立了一道抗震的防御结构,那么在第一次的强震破坏之后,如果再遭遇到余震,必然会使得建筑结构因为损伤的不断累积而导致倾斜或者坍塌的现象发生。建筑的结构体系通常来说都是都是分别建立在建筑的内部和外部,在受到地震破坏的过程中,内部和外部所分布的屈服区,能够有效的将各个方向的能量进行最大限度的释放,从而有效的提升了建筑结构的抗震性能,防止建筑发生倒塌的现象。

(三)对可能出现的薄弱部位,应采取措施提高其抗震能力

1、构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

2、要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

3、要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

4、在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

(四)提高短柱抗震性能的应对措施

1、提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

2、采用钢管混凝土柱

钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋,其管径与管壁厚度的比值不应大于90,配筋率也应控制在4.6%以内。

3、采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态,分体柱方法已在实际工程中得到应用。

(五)隔震和消能减震设计的推广和应用

现在,我国和世界的许多国家都采用适当的控制结构物的刚度,越来越受到人们的青睐,被称为“延性结构体系”,但这种允许高层建筑结构构件(如梁、柱、墙、节点等)在地震进入非弹性状态,而且会有很大的延性,减轻地震反应是以消耗地震能量的方法,使结构物“裂而不倒”。这在很多情况下是有效的,但也存在很多片面性。随着社会的发展和人们生活水平的提高,人们对安全意识越来越注重,对各种建筑物和构筑物的抗震减震要求越来越高,传统的抗震结构体系和理论越来越难以满足人们的要求,传统的抗震体系不具备隔震消能和各种减震控制体系,但是隔震消能和各种减震控制体系又越来越受到人们的重视,在未来的建筑结构中将起到非常重要的作用。

参考文献

[1]闫旭梅.高层建筑结构抗震设计分析[J].科技传播,2010.8.

第5篇

随着社会经济的发展,城市建筑建筑的高度越来越高,体型变得更加复杂,抗震设计也变得愈加困难。“小震不坏、中震可修、大震不倒”的设计理念是得到普遍认可的,在这种情况下,如何做好建筑的抗震设计是工程设计的重要话题。

1荷载与应力分析

1.1荷载与外力的种类

建筑的荷载指的是使结构或构件产生内力和变形的外力及其它因素,分为竖向荷载,以及水平荷载。此外,又分类为经常作用于建筑上的力,以及临时作用于建筑物上的力(临时荷载)。在结构设计上,因固定荷载产生的长期应力,以及在固定荷载上再加上临时荷载时,视作短期产生的应力。对于在结构支承上的主要部分所施加的长期与短期的应力值,必须确定它们不得超过各容许应力值。

1.2荷载与结构因素

刚接是指构件与构件之节点上的角度,即使受到外力使钢架产生变形之后,其角度仍然不会产生变化的连接形式。而框架结构则是指各节点的构件由刚接而成的构架。在对应于竖向荷载的结构方式上,比框架结构更能够加长跨距,或降低框架的重量。在对应于水平荷载方面的构件上来说,若与框架结构相比,由于能够加强水平荷载,于是就被当作补强框架结构的抗震要素来使用。

1.3连接点的种类

在建筑结构上,支点与节点都是的重要连接点,我们把连接建筑地基与其他结构体的接点称作支点,而把两支以上之构件的交点就称作节点。当构件上有外力作用时,在支点上产生反力的构件会维持静止状态。支点上所产生之反力的数量,会因支承方式而有差异,移动端在垂直于移动方向的方向上出现一个反力,回转端在直交方向上出现两个反力,固定端在直交的两个方向与固定端弯矩的一个方向上产生反力。

1.4应力与变形

轴方向力是当外力作用于材轴方向时的应力,若在任意点上相互产生拉力时就称作拉力,相互产生压缩时就称作压力。剪力则是指外力想要从构件轴线呈垂直方向切断构件之时,在任意点上产生之一对应力。弯矩是指外力想要对于构件产生弯曲作用时而在任意点上产生之一对弯矩。屈曲是指外力持续增加时的某一时刻急遽产生变形的现象。

2基础结构种类

基础的作用,乃是针对作用于建筑物的力,避免建筑物横向移动、下陷,或浮起,在地基上坚固地支持建筑物。为了支承建筑物,基础必须由拥有足够支承力的坚固地基去支承。至于将支承地基设置于哪一个地层中,是基础设计时的非常重要问题。另一方面,当结构体基础的下沉量不均匀,且因位置不同下沉量出现差异时,就称不均匀下沉。若发生不均匀下沉时,结构体就会倾斜,或在结构体重发生龟裂。

3抗震设计

地震是难以预测以及精确计算的,地震作用而使建筑物承受的力,因地震作用的大小、地基的坚固度,以及建筑物固有的周期而异。地震作用的大小被评估为静态的水平力,通常都会随着建筑物的高度的增加,建筑物水平力的比例就会变小。对于某一方向的地震作用,相同方向的抗震要素的抵抗,会与其刚度成正比。

3.1施加于建筑物的地震作用

由震源传来的地震波,当地表附近的地基越软弱时就越会增强,而且随着建筑物增高及固有周期变长时,摇动的力就变小,而且越到建筑物的上方楼层,摇动的力(加速度)就有变大的倾向。基于这些因素的考虑,定出施加于建筑物的地震作用,这被当作施加于建筑物各楼层的水平力来评估。

3.2抗震因素的配置

毫无疑问,建筑物会从各方向承受地震作用,如果将整体建筑物当作是二维框架的集合体去考虑力的传递就容易使人理解。与地震作用的水平方向平行的框架负担着水平力,各层柱子与抗震墙等则按刚度比例负担地震作用。

3.3构架的变形抵抗

对结构体施加水平力时,若超过其支承的弹性限度,变形就会急遽地增加,达到最大强度。在设计时,对于频度高的地震,通常都停留在支承力的弹性极限以下,大地震时则不要超过其最大强度。

3.4构件的强度与韧性关系

强度大的抗震因素不需要韧性。墙壁与斜撑的韧性较小,框架构架的韧性较大。

3.5抗震因素平面上的平衡

抗震因素平面上的平衡不良的建筑物,在承受地震作用时容易产生伴随扭力回转的变形,刚性弱的部分就会产生很大的变形,使该部分的破坏有增大之虞。由于地震作用是属于惯性力,因此力的作用中心要与重心一致。所谓的在平面上采取平衡,也就是地震作用的中心,亦即重心与抗震因素之刚度的中心(被称作刚心)必须一致。即使框架的刚度一致的建筑物,当它向后退缩时,由于下方楼层的重心会从中心偏离,将会产生失稳。此外,如抗震墙与钢骨框架之类的刚度大的抗震因素呈偏心配置的建筑物,就容易产生失稳。

3.6抗震因素之剖面上的平衡

当抗震因素的刚度在上下方向不均匀,且硬楼层部与软楼层部混合在一起时,地震作用就会集中于软楼层部,使该楼层部分承受的力及变形变大,会有增大破坏之虞。尤其是二楼以上的部分墙壁多且一楼没有墙壁的建筑物,称作悬挑建筑物,有许多在地震时会发生一楼瓦解的破坏。建筑物由几种构架构成,且各种构架的上下方向能够采取平衡时则很理想,而以各层之框架的刚度总和采取平衡亦可。

4隔震结构设计

隔震结构的建筑物是指在建筑物下方设置一种地震时比其他层产生更大水平变形的“隔震层”,使得上层建筑物不容易与地基共振,同时集中吸收振动能量。这不仅能保护建筑物使用者的生命,也能够使功能的维持以及收藏物的保护变得可能,也可缓和地震时的恐怖感。隔震层采用即使发生50mm~60mm之水平变形也无妨的构造。

4.1构成隔震层的隔震构件

(1)铅制缓冲构件:利用高纯度的铅材料的塑性变形而制成的铅缓冲器。除此之外,尚有利用摩擦原理的缓冲器,利用油通过小孔时的阻抗而成的缓冲器,以及利用黏滞体的剪断阻抗原理而制成的缓冲器等。(2)叠层橡胶:为了支承上方的建筑物,避免与地基共振,需要垂直方向坚硬,水平方向柔软的支座。叠层橡胶是将厚度数毫米的橡胶与钢板交互重叠接合,施加热与压力,发挥橡胶特有的弹性,就能够满足这个条件。(3)钢制缓冲构件:在隔震层吸收振动能量,担任衰减振动的作用而制成的缓冲构件。由于隔震层在水平方向产生很大的变形,因此根据变形状况,采用将振动能量消耗的机制方为合理。

4.2隔震层的位置

根据建筑物的功能与结构性质去选择隔震层的位置。基础的隔震需要基坑,但是其与非隔震层部分之间的衔接,采用最低限度,就能够给建筑物整体带来隔震的效果。中间隔震层的电梯与楼梯的连接困难,适用于地下楼层多的情况,或无法设置基坑的情况时,还有地震时上方楼层比特定楼层更容易振动的构造的情况时。这类情况之下,隔震构件需要防火包覆。

4.3隔震构件的能力与特性

大变形时的垂直支承能力:隔震构件要求即使在大变形时也能够确实支承建筑物的质量。叠层橡胶需要设计成当最大变形发生时重叠部分不得小于直径1/2以下的尺寸。采用直径小的叠层橡胶时,必须采用在大变形时可支承建筑物之质量的构造。

5.结束语

目前,建筑业发展迅速,高层建筑也不断增加,对建筑的抗震设计的要求越来越高。建筑的抗震设计方案要根据建筑物体型、结构特点、荷载性质和地质条件等综合分析。

参考文献

[1]吴炳傅承诚,高层建筑结构抗震设计的讨论[J]科技与生活,2011.08.

[2]GB50011-2010,建筑抗震设计规范[S].

第6篇

关键词:高层建筑; 箱形转换层; 短肢剪力墙; 抗震设计

中图分类号:TU97文献标识码: A

1 工程案例

某工程原设计塔楼为2 栋32 层公寓式写字楼, 裙楼5 层, 采用梁式转换框-筒结构, 地下室及裙房施工完毕后因故停建。4 年后业主为适应市场发展的需要, 将塔楼改为2 栋33 层住宅楼。修改设计后塔搂为全剪力墙结构。塔楼剪力墙和裙楼柱网严重错位, 且塔楼平面比裙楼柱网平面尺寸大, 如果仍用转换梁来转换, 转换构件传力路线长、不直接, 而且有挑梁转换, 转换形式不合理, 改用箱形转换。箱形转换层位于第7 层, 层高3 m, 上、下板厚均为300 mm。转换层的结构布置如图1 所示。

图1 结构平面布置图

2 建筑结构建模

运用有限元分析软件ANSYS 建立整体结构模型。墙体采用弹性壳单元shell63, 墙体的厚度可以通过实常数反映。杆采用梁单元beam188。为了节约计算时间和计算机内存, 在有限元网格划分时, 将墙体壳单元的尺寸控制在1.5m以内, 而楼板单元则根据短肢墙体的位置, 考虑墙板节点耦合后定下单元尺寸, 所以对于楼板单元的尺寸会出现尺寸较大的情况。但因为在结构整体计算时, 楼板刚度对结构的侧向刚度影响较小, 楼板壳单元仅为结构提供质量和部分刚度( 平面内非无限刚) , 所以这种大尺寸的出现不会对计算精度产生太大影响。

3 建筑工程振型分解反应谱分析

对结构进行反应谱分析。该工程地处Ⅱ场地, 建筑设防裂度为6 度, 基本风压0.4kN/m2, 地面粗糙度为C 类。设计地震分组为2 组, 查规范得场地特征周期T g 为0. 35 s, 水平地震影响系数最大值为0.04。根据以上条件和模态分析结果, 计算各个控制点所对应的地震影响系数, 再将地震影响系数乘以重力加速度,即得到反应谱分析中所用到的加速度反应谱值,见表1,其中ƒ代表频率,ɑ代表加速度。

表1 加速度频谱关系表

结构计算时各振型以位移为基础进行作用效应组合, 采用SRSS 法计算结构的作用效应。在结构计算时, 将表1 的数值分别作用在结构的X 方向、Y 方向上, 计算出的地震作用效应, 包括节点位移、单元力和层剪力。

图2 给出了X 方向、Y 方向的水平地震作用时, 结构层位移及相应的层间位移角变化曲线。

图2 结构层间位移角图

在X 方向水平地震作用下, 结构整体变形中, X 方向的位移分量占据主要成分, 其他方向的位移分量很小; 同时X 方向的基本振型在参与组合时, 也占据着很大的成分。Y 方向水平地震作用时, 结构Y 方向的变形特点与X 方向相同。

计算出的最大层间位移角远小于弹性层间位移角限值( 1/1 000) 。层间位移角的变化趋势基本同该方向基本振型的变化规律, 转换层上部结构表现出明显的弯剪变形特性。虽然转换层的层间位移和层间位移角数值都很小, 但转换层附近的层间位移角发生一定程度的突变, 转换层成为层间位移角曲线的转折点。在X 方向层间位移角图中可以明显地看到与转换层相连的上下楼层, 层间位移角在明显减少。

转换板上几层层间位移角在迅速增大, 意味着倾覆力矩的变化加剧。整个结构相当于单根悬臂梁, 依据梁的初等理论中弯矩和曲率的基本关系式, 层间位移角为结构侧移的一阶导数, 层间位移角的导数即可得到弯矩的变化规律。

对结构X 方向、Y 方向层间位移角比较分析可知, 转换层下部结构, 各楼层的X 方向层间位移角变化速度大于Y 方向, 而转换层上临近楼层, Y 方向层间位移角的变化速度大于X 方向; 转换层上部结构X 方向的弯剪变形特性弱于Y 方向。这些变化规律与结构的抗侧抗度是相符合的。转换层下部结构抗侧刚度X 方向小于Y 方向, 转换层上部抗侧刚度X 方向大于Y 方向, 同时结构的Y 方向含有较多的短肢剪力墙,表现出部分框架结构的变形特征。

从层间位移角的图中可以看出, X 方向层间位移角变化图中, 除结构顶部几层层间位移角相差较大外,其他部位两者之间相差较小。在Y 方向层间位移角变化比X 方向要强烈一点, 而且位移角在转换层上下和结构顶部都有较大的变化。说明在Y 方向的地震力作用下, 结构受扭较为严重。

在不考虑楼板平面内无限刚的情况下, 同一楼层内的竖向构件层间位移角也存在较大差异, 除部分受扭转影响外, 主要还是来自于竖向抗侧构件分配剪力的差异。

对上述计算结果进行比较, 分析结果如下:

1) 在箱形转换层存在的情况下, 转换层附近的层间位移角有明显减小趋势。在结构弹性范围内, 转换层附近的层间位移角不会出现超过规范的限值。最大层间位移角均出现在远离转换层的楼层。原因是因为箱形转换层有很大的侧向刚度和平面外刚度, 转换层有很大的抗侧刚度和平面外刚度, 转换板对上下抗侧构件有较强的约束, 因而此处楼板的层间位移角出现明显的减小现象。

2) 转换层上、下楼层的层间位移角在发生明显变化。转换层以下楼层层间位移角曲线出现在以下楼层中部出现反弯点, 在转换层处位移角出现最小值; 转换层以上临近楼层( 7—13) 的层间位移角随着与转换层的远离, 迅速增大。超过13 层以后层间位移角曲线继续增大, 但变化速度趋于缓和, 并在结构中上部( 22 层左右) 达到最大值, 形成位移角曲线的第2 个反弯点。箱形转换层上下变化趋势的加大, 意味着该部分楼层地震倾覆力矩的增大。

3) 转换层附近楼层层间位移角的变换趋势加快, 上部比下部变化更快, 说明下部的框架相对于上部短肢剪力墙来说, 有更大的抗弯刚度, 上部短肢墙体使结构上部柔性增大。

4) 结构的顶部由于局部的缩进, 刚度的突变, 易造成位移角的突变, 即产生较大的地震倾覆力矩。在抗震设计时, 须对此部位竖向构件采取一定的加强措施。

4 结 论

a. 下部的框架相对于上部短肢剪力墙来说, 有更大的抗弯刚度, 上部短肢墙体使结构上部柔性增大。在地震力作用下, 转换层下部主要受剪, 上部主要受弯。

第7篇

关键词:基本原则;控制技术;抗震设计

中图分类号:S611文献标识码: A

随着经济的迅速发展,超高层建筑越来越多,并且向着普遍化、更超高化、功能综合化、管理智能化、环境生态化的方向发展,高层建筑的设计问题变得日益突出。设计人员不仅要掌握先进的设计方法及各种先进软件,还要掌握高层建筑的设计原理、设计特点、体系选择、抗震设计等方面的知识,如此才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。

1 超高层建筑结构体系类型及减震、抗震结构设计的基本原则

1.1超高层建筑的结构体系类型

超限高层建筑的类型主要有大底盘、大裙房、多塔楼建筑带有外挑、悬挑层的建筑。超限高层建筑经常采用的结构体系有钢筋混凝土框架―核心筒结构, 它的整体性、抗侧刚度好;混凝土钢框架结构, 具有自重轻、断面小、承载力大的优势; 随着技术的发展, 在高层住宅中也出现了新的结构体系, 如现浇框架―短肢剪力墙、现浇框支― 短肢剪力墙。

1.2 超高层建筑减震、抗震结构设计的基本原则

1.2.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。

(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

1.2.2 尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架- 剪力墙结构由延性框架和剪力墙两个分体组成。

(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

1.2.3 对可能出现的薄弱部位,应采取措施提高其抗震能力

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

2 超高层建筑结构的减震控制技术

目前, 我国和世界各国普遍采用的抗震体系和方法是传统的抗震体系和方法, 即对基础固结于地面的建筑结构物适当调整其结构的刚度, 允许结构构件( 如梁、柱、墙、节点等) 在地震时进入非弹性状态, 并具有较大的延性, 使结构物"裂而不倒"。这种抗震设计原则, 在很多情况下是有效的, 但也还存一些问题和局限性。

因此在实施抗震设防时,必须寻找一种既安全(在突发的超烈度地震中不破坏、不倒塌) ,又适用(适用于不同烈度、不同建筑结构类型,既保护建筑结构, 又保护建筑物内部的仪器设备) ,又经济(不增加建筑造价)的新的抗震新体系, 这就是建筑结构减震控制新体系。这样, 隔震体系、消能减震体系、结构被动及主动控制体系就应运而生了。而由于隔震、消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性, 即明显有效减震( 能使结构地震反应衰减至40%~10% 或更低)、安全、简单、经济及适应性广等,它将作为一种崭新的抗震体系和理论, 必将引起专家们的关注。

隔震和减震体系类型主要有:隔震、摩擦耗能体系、被动控制体系、主动控制体系和混合控制体系。

3 超高层建筑结构的抗震设计

3.1建筑体型和结构体系

超高层建筑平面和立面的选定, 和结构的可行性、经济性密切相关。由于高层建筑是以水平荷载为主要控制荷载, 所以在抗震设计中为达到“ 小震不坏, 大震不倒” 的设计原则, 应力求平面布置简单、规则和对称, 避免有应力集中的凹角、收缩和楼、电梯间的偏置, 尽量减少扭转的影响。在风力作用下则要求建筑物外形选择合理, 提高结构的刚度。圆形、椭圆形、正多边形, 都可以大大减少风荷载影响。采用刚度较大的建筑, 可以减少风振影响和避免建筑物较大的位移。同时为了使结构具有良好的受力特性, 并满足建筑上的使用要求, 还必须选择一个合适的结构体系。

3.2适宜的刚度

在超高层建筑结构设计中, 恰如其分地确定建筑物的刚度是十分重要的。建筑物的刚度既不宜过大,结构刚度越大, 自振周期就越短, 建筑物的截面及自重也越大, 地震时受到的地震力也越大。

但也不宜将建筑物结构设计的过柔。过柔的建筑, 在风力或地震力的作用下, 会产生过大的位移及变形, 因此影响建筑物的强度、稳定性和使用性。此外, 通过调整刚度可避免地震时建筑物的震动与场地土的震动特性相同而引起共振, 造成建筑物严重破坏或倒塌。

3.3结构计算

3.3.1确定总的结构计算层及划分计算标准层

在项目中由于地下室为车库(含6级人防),主楼的中心为筒体之外均为大统间, 所以把地下室作为一层计算。

3.3.2周期折减系数

在框架剪力墙结构中, 结构的自振周期一般采用计算的方法确定, 由于在计算中只考虑了主要承重结构(梁、柱和剪力墙)的刚度, 而刚度很大的砌体填充墙的刚度在计算中未反映, 仅考虑其荷载作用。因此计算所得的周期较实际周期长。如果按此计算地震力偏小, 偏于不安全。所以必须对计算周期进行调整折减。

3.3.3连梁刚度折减系数

剪力墙中的连梁跨度小, 截面高度大, 因此连梁的刚度也大。在地震力作用下其弯矩、剪力很大, 难以按弹性分析结果去设计。现考虑到地震时允许连梁局部开裂, 可采用连梁刚度折减系数βy 。最低可取到0.55。

3.3.4连梁高度的取法

连梁的高度一般情况下为洞口顶至上层楼面,或下层洞口至上层洞口底。但有时当上下两层层高不同并且洞口离地、楼面距离不统一时, 往往会出现连梁高度大于层高高度的现先。

3.3.5梁扭矩的折减系数

由于在结构受力计算中, 没能考虑楼板的作用。梁的计算扭矩远大于实际所承担的扭矩, 特别是对于现浇楼板结构,因此应对梁扭矩折减,折减取值范围0.4-1.0。

3.3.6计算时构件刚度及配筋超限的调整

为了使结构受力合理可行, 需要进行结构调整。使其具有合适的刚度和内力。当刚度过大时, 可采用减小构件截面尺寸的方法或开洞的方法加以解决。结构计算的孔洞开设位置, 可结合剪力墙的受力特性来进行。一般单肢剪力墙长度不宜大于8m。

3.4墙肢端部配筋的调整

在地震力作用下, 墙肢端部钢筋是主要受力钢筋, 由偏压、偏拉计算决定。当计算值较小, 按构造配置。当若干个墙肢交汇于一点时, 局部配筋则会太多,而使设计困难, 为此必须进行相应的调整。

4 结束语

随着经济的发展及社会需求的多样性,建筑的高度越来越高,体型变得更加复杂,并且建筑设计追求多功能、多变的使用空间及丰富的立面设计效果。因此,就常采用复杂高层建筑结构体系,从而使超高层建筑抗震工作成为结构设计的重点。

参考文献:

[1] 李洪恺.高层建筑结构抗震设计之我见[J].科技与企业,2012,(13).

第8篇

关键词:高层建筑结构;抗震设计

随着经济的发展和社会需求的多样性,建筑的高度越来越高,体型变得更加复杂,抗震设计也变得愈加重要;从20世纪最初提出的简单抗震设计思想,到目前国际上普遍认可的“小震不坏、中震可修、大震不倒”的设计理念,再到基于性能的抗震设计思想,结构抗震设计经历两次质的飞跃。我国处于地震多发区,高层建筑抗震设防是工程设计面临的迫切任务,作为工程抗震设计的依据,高层建筑抗震分析处于非常重要的地位。

1 高层建筑结构抗震分析和设计的主要内容

我国现行抗震设计规范(GB50011-2010)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用,用弹性方法计算内力和位移,并用极限状态方法设计构件。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行大震作用下的变形验算。这种先用多遇地震作用进行结构设计,再校核罕遇地震作用下结构弹塑性变形的方法,即二阶段设计方法。同时规范还规定了结构在罕遇地震作用下结构弹塑性变形的结构弹塑性分析方法。

结构弹塑性分析可分为弹塑性动力分析(时程分析)和弹塑性静力分析两大类。

2 高层建筑结构抗震设计中的一些问题

2.1 高度问题

按我国现行高层建筑混凝土结构技术规程(JGJ3-2010)规定,在一定设防烈度和结构形式下,钢筋混凝土高层建筑有一个适宜的高度。这个高度是目前我国建筑科研水平、经济发展水平、施工技术水平下,比较稳妥的。实际情况下,有很多混凝土高层建筑的高度超过了这个限值,对于超限建筑物,应当采取科学严谨的态度:一要有专家论证,二要有模型振动台实验。在地震力作用下,超限建筑物的破坏形态会发生很大的变化。因为随着建筑物高度的增加,许多对其有影响的因素将发生质变。

2.2 抗震变形验算中的位移问题

高层建筑结构抗震变形验算中,任一楼层的位移(含顶点位移)是相对结构固定端(基底)的相对侧向位移;层间位移是上、下层侧向位移之差;层间位移角是层间位移与层高之比值。抗震计算中对结构侧向位移有顶点位移和层间位移角双重要求。实践表明,如果层间位移角得到有效控制,结构的侧移安全性和适用性均可得到满足。同时,规范对150m以上的高层建筑提出了舒适度要求,即增加了结构顶点风震加速度的限制条件。楼层位移、层间位移角的要求时从宏观上保证结构具有必要的侧向刚度,结构构件基本处于弹性工作状态,非结构构件不破坏。

目前,层间位移没有考虑由于结构整体转动而产生的所谓无害位移的影响。但实际上,对高度较高的高层建筑,结构整体弯曲引起的侧移影响是不可忽视的。规范对楼层层间位移角控制条件,采用了层间最大位移计算,考虑了扭转的影响。抗震设计中,核算楼层层间位移角限制条件时,可不考虑质量偶然偏心的影响,主要考虑到,新规范采用楼层最大层间位移控制层间位移角已经比原规程JGJ3-91严格,而侧向位移的控制是相对宏观的要求,同时也考虑到与《抗震规范 》等国家标准保持一致。

2.3 轴压比与短柱问题

在钢筋混凝土高层建筑结构中,往往为了控制轴压比而使柱截面很大,而柱的纵向钢筋却为构造钢筋。即使采用高强混凝土,柱截面尺寸也不能明显减小。限制柱的轴压比是为了使柱处于大偏压状态,防止受拉钢筋未屈服而混凝土被压碎。柱的塑性变形能力小,结构的延性就差。遭遇地震力作用时,耗散和吸收地震能量小,结构容易受到破坏。许多高层建筑中虽然底部几层柱长细比小于4,但不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比M/Vh≦2的柱才是短柱;有专家提出现有抗震规范应采用较高轴压比,但是即使能调整柱轴压比限值,柱断面并不能因为略微提高轴压比限值而显著减小。

2.4 结构体系问题

在地震多发区,采用何种结构体系应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框-筒、筒中筒和框架-支撑),这些也是其他国家高层建筑采用的结构体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%.如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验;混合结构的钢筋混凝土内筒往往要承受80%以上的地震作用剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形抗震要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小测移,不但增大了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。此外,在结构体系和柱距变化时,需要设置结构转换层。

2.5 在某些烈度区采用了较低的抗震措施与构造措施

现在许多专家提出,现行的建筑结构安全度已不能适应国情的需要,主张“建筑结构的安全度水平应该大幅度提高”。

设防标准低的根本原因在于国家财力物力有限,我国建筑结构抗震设计除了设防烈度低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力和一系列保证抗震延性的要求上,与外国相比,也有异同。随着社会财富的增长,有人主张结构在设防烈度下应采用弹性设计,特别是高烈度区要有严格的抗震措施和抗震构造措施来保证结构的安全。

3 高层建筑结构抗震设计的新趋势

3.1 动力时程响应分析的状态空间迭代法

这种方法把现代控制理论中的状态空间理论应用到高层建筑结构动力响应问题,根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次方程的解,进而建立状态空间迭代状态格式。经工程实例验算,具有较高精度。

3.2 材料参数随机性的抗震模糊可靠度分析

该方法从结构整体性出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性,烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。