首页 优秀范文 新能源及动力工程专业

新能源及动力工程专业赏析八篇

发布时间:2023-09-20 18:10:44

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的新能源及动力工程专业样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

新能源及动力工程专业

第1篇

 

1热能动力工程在锅炉领域的应用情况

 

众所周知,锅炉是一种非常常见的热能设备,在我国的工业生产中十分常见,应用极为广泛,锅炉的原理是借助于炉内燃料的燃烧来产生热能,从而提供持续的动力来满足工业企业的生产需求。目前,国内使用的锅炉中以工业炉最为多见,工业炉又可以分为多种,最广为熟知的是燃料锅炉。工业锅炉最重要的功能就是工业加热,提供热能。工业炉使用数量巨大,应用领域广泛,正因为工业炉具有的无可比拟的优势,据相关调查数据显示,我国超过十种以上的行业都在使用工业炉,但其缺点也是非常明显的,工业炉的能耗非常大,其消耗量几乎占到了总体能源消耗量的四分之一,而工业炉中以燃料炉的消耗为最大,占比约为九成左右。

 

当前,热能与动力工程在锅炉领域的应用中一个重要的问题就是污染的问题,这也是制约锅炉技术发展的一个难点。人们在降低锅炉污染物排放方面投入了大力的精力来对技术和设备进行研发,经过不断的努力,也形成了一定的研究成果。锅炉设备在生产运行中的核心环节是内燃技术和传感技术,在借助于双交叉限幅控制的情况下,现在可以对空燃比例进行连续的控制,从而能保证锅炉中电机运行状态的良好,也为锅炉的运转提供足量的气体,促进锅炉内燃料的充分燃烧,也实现了能源节约与环保。

 

2热能与动力工程技术在能源领域的应用情况

 

能源的短缺与匮乏一直是制约能源利用的一个瓶颈,热能与动力工程的发展,能源利用效率的提高,从一定程度上可以缓解我国能源不足的现状。缓解能源危机一方面要节约能源,另一方面则要加大新能源的开发力度,将新能源与热能动力工程很好的结合起来。

 

众所周知,风机是一种装有多个叶片的通过轴旋转推动气流的机械。叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动。风机在工业中的应用也极为广泛,在电厂、锅炉、工业炉窑、矿井隧道、冷却塔、车辆船舶以及建筑的通风除尘方面都离不开风机。尤其是在电站中,由于电站机组的容量效率、转速以及自动化水平都在不断提高,这也对所用风机的可靠性提出了更为严苛的要求。风机是电站耗电最大的环节,电站的送风机、引风机等设备作为锅炉运行的重要辅机,耗电量极为巨大,如何降低其运行中的电耗是当前电厂工业节能中必须重点关注的问题。此外,锅炉风机在运行中也经常会有烧坏电机、窜轴的现象,也有叶轮飞车、轴承等故障发生,这些都会对电厂运行的生命财产安全造成负面影响。在风机的发展应用中,必须加强对与热能动力工程有关的发电设备以及工业炉窑进行研究和创新,加强在通风和引风等方面的技术研发力度,推动新能源和再生能源的发展。同时,在电站和工业锅炉应用上也要加强热能动力工程的创新力度,结合新能源的发展,改变传统能源的供给模式,努力改善我国能源短缺的现状,为我国工业发展和经济发展提供高效的能源支撑。

 

3热能与动力工程的发展趋势

 

第一,在热能动力和控制工程方面。二者是相辅相成、互相促进、互相发展的。融合中要特别注重综合锅炉和汽轮机的优势,在动力机械设计上可以借助这些理论和专业技术来推动热力发电的发展和污染治理的良好控制。第二,在水利水电方面的应用。水利水电和热能动力工程具有很强的渊源,也是密不可分的。在水利水电工程中,要对水利水电动力工程等相关领域进行深入的研究分析,推动理论和技术的互融性发展,并要注重信息技术在水利水电工程中的应用。第三,在热力发电及和汽车工程方面。应大力发展热力发电机的深层次研究,推动其在现代汽车工业和新能源汽车工业中的深入应用,促进绿色汽车工业的快速发展。

 

热能和动力工程是现代动力工程发展的前提和基础,针对当前我国现阶段热能动力工程的发展和应用现状来看,随着工业产业的不断进步,其热能动力工程也得到了较大程度的提升,但人才队伍的建设还较为乏力,当前,我国高职院校的热能与动力工程专业人才要基于将学生培养成具备一定的实践能力、操作能力的应用型人才的目标,大力推动职业院校应用型人才的建设力度。

第2篇

热能与动力工程所研究的内容主要是指热能与动力之间的合理转化。在实际应用的过程中,可以依赖于多种不同的方式,实现热能动力或热能电能的合理转换,以促进能源的高效率利用,发挥其在提升经济效应水平方面的重要价值。结合实践经验来看,热能与动力工程的应用在解决能源利用问题方面有着非常重要的价值,直接关系到电力企业的经济效益水平。当前实践中,热能与动力工程涉及多个学科,且各个学科相互关系非常复杂与系统,后期应用中还可以支持电能与机械能的相互转换,为社会经济的高速发展奠定了非常良好的基础。从专业构成的角度来说,热能与动力工程的研究内容可以划分为以下几个专业模块:第一是建立在热能转换与利用基础上的热能动力及其控制工程(包括新能源的开发、能源环境利用工程在内);第二是建立在内燃机及其驱动系统基础之上的热力发电机及汽车工程;第三是建立在电能转化为机械功基础上的流体机械与制冷低温工程;第四是建立在机械功转化为电能基础上的火力火电与水利水电动力工程。

2.热能与动力工程对经济环境的影响

1)从经济角度来说,热能与动力工程在我国的经济发展体系中有着非常普遍的应用,涉及多个相关的行业与领域。包括电力、钢铁、金属、石油,以及建筑在内的多个行业领域在自身发展过程中均对热能有着相当大的需求。当前已形成的风力发电技术以及动力发电技术能够通过一定的技术手段,将动力能转化为电力,从而为电力事业的发展提供源源不断的动力支持,为社会大众创造更加良好的生活环境。结合我国的实际情况来看,电能是整个经济发展体系中的基础与支柱,热能与动力工程的应用势必会为电能的发展营造一个更加良好的环境氛围,以促进社会经济的良性发展。当然,在这一过程中,新能源的有效利用是实现社会健康可持续性发展的主要动力,因此必须充分结合社会发展的现状,最大限度地利用并促进新能源的开发,以创造出更加丰富的社会经济价值。2)从环境角度来说,结合我国各个行业领域对能源的利用现状,发电功能的实现主要是通过煤炭或石油等常规能源来实现。然而,传统意义上的生产方式无法控制污染物的排放。在此类常规能源转化为电能的过程中,势必会排出大量的有毒有害物质,所产生的物质不但会造成环境污染,同时也会对大众的健康造成危害。为了促进经济水平的高速发展,很多时候会忽略环境保护的重要性,最终对整个生态环境造成非常不良的影响,当然也给人们的生活带来了很大的不变。而在电力生产中通过对热能与动力工程的应用,能够很好地缓解生产中存在的困境,通过对各类清洁能源的综合应用,减少生产过程中排放的污染物质,减轻环境污染,不但符合社会发展需求,还能够为社会大众提供优良的生活环境,促进社会和谐可持续发展。

3.热能与动力工程的创新应用

3.1热能与动力工程在锅炉及热电厂中的应用现状

1)热能与动力工程得益于科学技术的不断进步以及信息技术的应用使得其能够被应用在锅炉中。锅炉是由外壳以及锅炉使用过程中的电器控制系统组成,锅炉在使用过程中主要是燃烧的过程,鉴于燃烧使得锅炉产生极大的热能,在炉底安装控制器就是为了能够随时监控锅炉的运行情况,这也是保护锅炉安全的重要手段之一。在锅炉实际运行过程中,其自身就会形成一个自我保护系统,它会将一定的机械热能转化为其他能量以达到保护自身的目的,但是,意外在所难免,往往或因为这部分转化的能量而烧坏锅炉,因此,必须要对锅炉的运行进行智能化的管理与控制,从而能够有效地使锅炉的运行精密度得到提高。2)热能与动力工程的应用主要表现在两个方面:第一,在节流调节中改变工作状况可能会造成不小的节流损失,但在温度恒定的条件下,截流调节的负载适应性明显高于喷管调节,因此节流调节多适用于容量较小的机组;第二,喷管调节是在满足负荷适应性的基础上,为了能够提高汽轮机的工作效率,达到平衡各种不同汽轮机的调节以及变化。

3.2热能与动力工程在锅炉与热电厂中的技术创新

1)在热能与动力工程研究领域中,如何实现对锅炉在燃烧过程中热能的转化工作是非常重要的问题之一。在本领域技术创新的发展过程中,锅炉的作业方式转变为了智能式,可促进锅炉稳定性以及安全性的提升。同时,考虑到燃烧期间的空气、燃料与锅炉温度之间有非常密切的关系,因此可以通过对预设值的综合比较实现对锅炉性能的合理检测。同时,工作人员也可以通过开展模拟实验的方式,准确地评估锅炉内部的气体流动情况,预先设置模拟数值,评估不同速度下所形成的矢量图,以此为边界层分离关系的研究提供参考依据。2)在热能与动力工程的研究领域中,可以通过合理利用重热现象的方式,根据热电厂的实际运行情况,科学确定重热系数,以达到减少能量损失的目的。与此同时,从调频角度上来说,相较于一次调频模式而言,二次调频的精确性更高。在电网频率保持恒定的条件下,可以通过智能调节的方式对二次调频预先设置对应的方程式,以实现对机组的重分配与组合,满足控制功能的要求。

4.结语

第3篇

【关键词】能源与动力工程 课程体系 教学内容

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)09-0253-02

能源动力是国民经济的支柱产业。进入21世纪,世界经济迅猛发展,化石能源日趋枯竭,能源短缺以及环境问题日益严峻。提高能源利用效率,保护环境,开发新能源和可再生能源,保证能源的可持续供应,对能源科技提出了新的挑战。能源科技发展需要一大批合格的专门人才。高等学校能源与动力工程专业应不断进行课程体系改革和教学内容优化,为能源动力行业培养出满足行业要求的专门人才。根据高等教育教学改革的要求以及行业发展趋势,中国矿业大学能源与动力工程专业在人才培养模式、课程体系设置和教学内容优化等方面进行了一系列改革,积累了一些经验,在此成文,与同行交流。

一、能源与动力工程专业课程体系改革面临的挑战

1.能源动力学科领域的拓展对人才知识结构提出了新要求

2012年,教育部对本科专业的招生门类、专业目录进行了调整,热能与动力工程专业更名为能源与动力工程。从2013年起,全国本科专业将按照2012版教育部新颁布的本科专业目录招生。专业名称的改变,并不仅仅是改变了称谓,而是随着时代的发展,该专业内涵发生了很大的改变。原来的热能与动力工程强调的是热能与动力的转换,而现在能源与动力工程专业涵盖的范围则更宽广了,由过去传统的能量转化与利用领域,发展到今天的能源生产、燃烧污染治理、新能源的开发与利用等多个领域,与化学、环境工程等学科的交叉关系越来越密切。近些年来,新能源与可再生能源的开发利用方兴未艾,形成了庞大的研究队伍和产业,如太阳能、风能、垃圾发电,脱硫脱硝等行业,为毕业生提供了广阔的就业市场,急需高校能提供这方面的人才。现有的专业培养方案中课程设置和教学内容已经不能满足能源动力行业时展的要求,需要做出相应的调整。然而,在目前培养计划中总学分压缩、课程门数减少的情况下,增加新领域课程,必将会对原有的课程设置造成冲击。

2.人才培养的“宽口径”和“零距离”之间存在矛盾

能源与动力工程专业是一个宽口径专业,涵盖了原来的热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏等,这些专业在内涵上存在很大的差异。“宽口径”培养模式避免了过去那种专业面过于狭窄的问题,使人才具有宽广的知识面,增强了就业的适应性,这也直接产生了不利的方面。在目前专业课程门数和学时都有限的情况下,毕业生在哪一方面都不专,不能满足企业对人才知识结构的要求,在工作现场还要经过很长时间的理论学习和实习过程,很难满足用人单位的要求。由于缺乏完善的岗前培训和有效的继续教育制度,我国国有大中型企业一般不乐意接受“宽口径”的毕业生,希望毕业生一毕业能尽快胜任工作岗位,甚至是“零距离”对接[1]。

3.课程体系设置模式不能满足大学生的个性化发展需求

大学生在成长的过程中,形成了不同的人生观、价值观,对自己未来所从事的职业有喜好厌恶,如有的喜欢动力机械,有的喜欢制冷空调,还有的喜欢热力发电;另外,对个人的发展方向也有不同选择,如有的要考研,有的要就业,还有的要创业。高等教育应该支持大学生个性化发展,在培养方案和课程体系设置上应该提供他们可以自主选择的空间,使他们能够按照自己的兴趣爱好去选择发展方向和未来从事的职业。目前课程体系设置模式单一,所有学生四年学习的课程几乎都一模一样,教学内容差别不大,学生几乎都是一个培养模式,不能满足不同类型学生的需求,限制了学生的个性发展,也不利于创新精神的培养。

4.实践教育环节与课程教学之间存在冲突

为全面落实《国家中长期教育改革和发展规划纲要(2010-2020)》,深入贯彻总书记在清华大学建校100周年上的讲话精神,为了培养具有较强实践能力和创新精神的高素质人才,高校强化了实践教学环节,内容不断丰富,形式不断拓展,在实践育人工作总体规划、深化实践教学方法改革、系统地开展社会实践活动、加强实践育人基地建设等方面取得了很大的成绩。但是实践育人特别是实践教学依然是高校人才培养中的薄弱环节,与培养拔尖创新人才的要求还有差距。在总学分和学时减少的情况下,如果一味地强化实践教学,增加实践教学学分,则不得不压缩理论课程的学分和学时,甚至得减少理论课程门数,这样培养的人才很难做到“厚基础”, 违背了人才培养目标。另一方面,实践教育环节和理论教学环节相脱节,必然影响实践教育环节的效果。此外,在教学内容方面,也应及时更新。国外高水平大学能及时更新教学内容,反映本学科新的研究领域和前沿技术。如美国佐治亚理工学院将MEMS技术引入了换热器课程,将先进的能量转化技术,如燃料电池、生物质能转换、热电转换等引入了热力学课程。和国外相比,我们教学内容就显得陈旧,不利于人才培养。

二、课程体系构建与教学内容优化措施

1.增设新领域核心课程,完善人才知识结构

能源与动力工程专业课程体系改革,要根据能源动力学科新的拓展领域,广泛深入调研,充分了解能源动力专业的发展趋势以及涉及的主要学科领域,掌握新领域的学科内涵和新兴行业对人才培养的需求,以确定未来人才必备的知识结构。在满足总学分和学时限制的条件下,补充完善培养方案中的课程设置,优化教学内容,将新领域的课程与原专业课程整合,制定适应学科领域扩展、满足未来人才市场需要的课程体系,使毕业生具有完善的知识结构,增强毕业生就业竞争力。

2.按专业大类统一基础课程设置,分设专业方向模块

在课程体系设置中,为了解决学生专业知识结构宽泛而不专的问题,还是要分设专业方向[2]。但为了防止回到以前的老路,防止专业面过于狭窄,不同专业方向的通识教育课和专业大类基础课程应统一设置。在此基础上,根据不同的专业方向设置不同的模块化课程,每个专业模块化课程的门数不宜过多,设3-4门,10个学分左右即可,同时设置大量应用性强的专业选修课,强化实践环节,这样就解决了“宽口径”和“零距离”之间的矛盾。

3.建立柔性的课程体系,满足大学生的个性化发展需要

建立柔性的课程体系,使课程体系构建多样化、课程设置分层次,以满足不同类型学生的个性发展需求[3]。通过设置不同的专业方向模块,学生可以按照自己对未来从事行业预期和职业喜好加以选择。培养计划分研究型和应用型。“研究型”培养计划的学时分配适当向基础课、专业基础课倾斜,实践教育环节要注重学生创新能力的培养。“应用型”培养计划的学时分配应适当向传授专门应用技术的专业课倾斜,实践教育环节注重培养学生应用所学专业知识的能力。同时,增加选修课程门数,选修课程也分研究型和应用型,满足毕业生继续深造和就业的不同需要。

4.优化教学内容和方法,理论教学和实践环节相结合

在强化实践环节的同时,一定要保证理论课程有足够的学分和学时。在总学分减少和实践学分增加的前提下,可以适当压缩德育课程学分,保证专业基础理论课程学分。同时,改革应用性很强的专业技术课程的教学内容和方法,这类课程都设置课程设计环节,学生在课程学习的同时开展课程设计,通过工程设计将理论教学和实践环节有机结合起来。另外,及时修订教学大纲,与时俱进,及时将本学科最新的研究领域、前沿技术在教学内容上得到反映。

三、结束语

课程体系改革和教学内容优化是一项长期艰巨的任务,需要在高等教育实践中不断探索、完善。能源与动力工程专业人才培养要解决的问题,有和其它专业共性的方面,也有其特殊性。能源与动力工程专业课程体系改革要满足国家高等教育人才培养目标的总体要求,可以借鉴其它专业成功的改革经验,还要结合专业自身的特点,探索出更多行之有效的措施。

参考文献:

[1]张力,杨晨. 能源动力类专业工程教育改革初探,中国电力教育,2011,(21):152-154

[2]于娟, 吴静怡. 能源动力专业的高等工程教育研究与实践,中国电力教育,2011,(27):158-160

[3]方文彬. 试论大学课程体系个性化,黑龙江高教研究,2010,(5):131-133

第4篇

论文关键词:特色专业;热能与动力工程;能源动力;质量工程

为适应国家经济、科技、社会发展对高素质人才的需求,引导不同类型高校根据自己办学定位和发展目标,发挥自身优势,办出专业特色,“十一五”期间教育部、财政部将择优重点建设一批高等学校特色专业,通过优化专业结构,提高人才培养质量,办出专业水平和特色,为同类型高校相关专业建设和改革起到示范和带动作用。

华北电力大学热能与动力工程专业创办于1958年,原名为电厂热能专业,历经五十多年的建设和发展,现已成为本校师资力量最强、就业形势较好、招生人数较多和学生成才率较高的专业之一,本专业累计毕业生人数已达10616人,在校生人数2647人。尤其最近几年,在两大电网公司和五大发电集团共同组成的校理事会的支持和帮助下,学科实力得到了质的飞跃,毕业生就业形势一直保持在全国各专业的前列。华北电力大学能源与动力工程学院已经成为我国发电领域最重要的人才培养基地,得到了发电行业的充分肯定,在我国发电领域具有重要的影响。

华北电力大学热能与动力工程专业紧密结合国家经济和社会发展需求,以培养“厚基础、重实践、强能力”的热动专业技术人才和管理人才为目标,改革人才培养方案,加强课程体系和教材建设,优化师资队伍,强化实践教学,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色,取得了一系列显著效果。

一、建设思路与改革措施

1.建立并形成热动专业人才培养调研机制

通过校理事会定期开展能源动力、发电(火电、气电、风电和核电等)、环保等相关行业的人才需求形势调研和毕业生就业状况研讨与分析,根据国家的人才需求,制定适应不同专业方向的模块化、层次化人才培养方案。

2.以本科教学水平评估所形成的规范性课堂教学、实践教学和教学管理模式为建设起点,加强精品教材的培育和建设

课程教学体现相关领域的最新发展,普遍采用国内外高水平的新版教材,继续组织编写高质量的适用教材,形成深入开展教学研究的有效机制。

3.加强师资队伍建设,改革教师培养和使用机制

有计划地选派青年教师到企业进行锻炼,到国内外高水平大学或研究机构做访问学者或短期合作研究;鼓励和支持教师参加企业的短期高级技术培训、生产一线观摩、调研和相关会议;聘请一定数量的具有企业生产和管理经验的人员兼职授课,形成学校和企业、学校和国内外大学及研究机构的定期人员交流机制。

4.改革实践教学,推进人才培养与生产实践相结合

为了适应我国能源与电力发展对全新实践型、创新型人才的需求,热能与动力工程实验教学中心整合相关实验室资源,依托电站设备状态监测与控制教育部重点实验室为本科生设立的“能动之光”科技创新项目,建成了包含电厂实践教学模块、动力工程基础实验模块、热能动力工程实验模块、创新实验模块的集知识学习、技能拓展、工程训练、创新能力培养为一体的实验教学示范中心。涵盖专业基础实验、专业实验、综合实验、创新实验,能够满足不同专业、不同层次学生的需要,实现理论与实践、校内与校外的无缝链接,体现“厚基础、重实践、强能力”的人才培养特色。

二、建设成果

热能与动力工程专业是一门跨学科、综合性强、重实践的学科,着重培养基础扎实、知识面宽、能力强、素质高,德、智、体全面发展的,集现代信息技术与热能动力工程知识为一体的高级专门技术人才和管理人才,要求学生通过四年的学习不仅要掌握全面的理论知识,而且必须具备较强的实际操作能力,以适应现代能源、电力行业相关领域对高级人才的需求。华北电力大学热能与动力工程专业以国家能源电力需求为建设导向,从方向凝练、人才培养、教学体系构建、师资建设、教材建设、实验室建设等方面进行全方位探索和实践,取得了丰硕的成果。

1.专业建设别具特色,人才培养模式灵活多样

为适应国家能源电力行业发展的需要,热能与动力工程专业依托一级学科“动力工程及工程热物理”博士点,在热能与动力工程和电厂集控运行方向的基础上,拓展专业方向,开设燃气轮机联合循环、核工程与核技术、制冷与空调工程、新能源等专业方向,覆盖主要发电形式,具有鲜明的电力特色。通过与国家大型企业合作,采用“订单+联合”的培养模式,使专业教育符合社会的发展需求,满足了国家对社会紧缺的复合型拔尖创新人才和应用人才的需要,进一步提高高等教育教学质量,推进人才培养模式改革。

2.加强基础、突出能力、注重创新,构建高质量人才培养体系

按照“夯实基础、突出能力、注重创新、全面发展”的指导思想制定热能与动力工程专业人才培养方案,既加强培养学生厚重的基础,又注重培养学生的创新精神和实践能力。近年来热能与动力工程及相关专业方向毕业生的一次签约率超过98%,毕业生因“作风扎实、动手能力强、有较强的创新精神”深得能源电力行业及其他用人单位的广泛赞誉。

3.优化师资队伍结构、积极打造优秀教学团队

高水平教师队伍是专业建设的有力保障。近年来,热能与动力工程专业按“博士化、工程化、国际化”要求进行师资队伍建设,引进急需人才、培养未来人才、用好现有人才,新引进的教师均为名牌高校的博士或博士后,有数名教师在华北电力科学研究院进行为期半年的工程化训练,有计划、分年度派教师赴美国、法国、英国、丹麦、日本等能源和电力较发达国家的高校或研究机构做访问学者。目前热能与动力工程专业教学团队教师队伍职称结构、年龄结构、学位结构合理,2007年被评为北京市优秀教学团队。

4.以精品课程建设为核心打造课程体系,带动教材建设

根据热能与动力工程专业课程建设计划,以创建精品课程为课程体系建设重点,核心课程全部建成精品课程,同时带动热能与动力工程专业的教材建设,有力推动了热能与动力工程专业的建设水平。到目前为止,已建成1门国家级精品课程、7门省市级精品课程、3门学校精品课程;国家“十一五”规划教材3门及其他教材12门。

5.建设特色实验中心,构建分层次、模块化的实验教学体系

热能与动力工程实验教学中心构建了“专业基础-专业-综合-创新”分层次、模块化的实验教学体系,进一步丰富了华北电力大学“四模块”(基础实验模块、校内实践模块、仿真实验模块、校外实践模块)实践教学体系的内涵。2007年8月热能与动力实验教学中心顺利通过北京市教委组织的专家组评审,荣获北京市高等学校实验教学示范中心称号。

三、鲜明特色

华北电力大学热能与动力工程特色专业时刻以国家能源电力需求为建设导向,以其包容并蓄、均衡有道的精神,不断派生出一批新专业和学科方向,并将继续不断强化内涵、扩展外延,满足国家对能源电力不断发展的新需求,具有鲜明的专业特色。

1.突出专业特色和行业特色

华北电力大学热能与动力工程专业以为国家能源与电力工业培养热动专业技术人才和管理人才为主要目标,专业建设紧密结合国家经济和社会发展需求,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色。

2.支撑学校的大电力学科体系

近年来,热能与动力工程专业针对国家能源结构调整和节能减排工作所形成的新的人才需求,调整和优化了专业方向的设置,从热能与动力工程专业孵化出来的风能与动力工程、核科学与核技术等专业成为华北电力大学大电力学科体系的重要组成部分,进一步提升学校服务于我国能源电力发展的能力和水平。

3.理论与实践教学体系完备,特色鲜明

从复合型人才培养角度出发,建立了以能力培养为主线,分层次、多模块相互衔接的理论与实验教学体系,课程设置实现了系列化、层次化、模块化、厚基础、宽口径,增加学生学习的选择性、自主性,体现“重实践、强能力”的人才培养特色。

4.探索创新人才培养的新模式

积极进行人才培养模式、课程体系、教学内容和教学方法的改革,通过设立“创新人才培养实验班”,采用校企联合“订单式”人才培养模式,为全校本科创新人才培养起到推动和示范作用。

热能与动力工程专业创新人才培养实验班从2007年开始试办,选派优秀博士生导师做班主任,因材施教,2007级实验班学生在大一第二学期末一次性全部顺利通过国家四级英语考试。实践证明创新人才培养实验班是成功的。

第5篇

关键词:热能与动力工程 锅炉 应用与创新

中图分类号:TK22 文献标识码:A 文章编号:1674-098X(2015)10(c)-0079-02

目前,我国锅炉种类比较多,且在锅炉的生产制造和能源分配上也存在着相当多的问题[1]。因此我们目前的任务是深入探讨并研究热能与动力工程,制定锅炉设计的合理方案,从而使锅炉的利用率得到更好提高,进一步促进锅炉业的发展,这样才能实现未来热能与动力工程技术在锅炉专业中的创新[2]。下面该文从热能与动力工程在锅炉中的应用角度展开论述,同时深入分析并探讨了其在科技创新方面的有关问题及今后的发展趋势。

1 简介热能与动力工程在锅炉中的应用

1.1 热能与动力工程在工程中的概述

简单来说,热能与动力工程我们从字面上就可以看出主要研究的是热能与动力两者之间的能量关系,即热能有时转化为动能,动能有时再转化为热能,但在一些情况下,也可通过蒸汽等技术将热能转化为电能,进而促进电力行业发展。作为一门综合性学科,热能与动力工程涵盖了热力发动机、流体工程及流体机械等内容,另外,与热能工程相关的因素也相对较多,主要包括热能工程、热力发动机、流体工程及流体机械、动力机械与热能工程、能源工程、制冷与低温技术、冷冻冷藏工程、水利电力工程及工程物理等方面,而能够综合体现热能与动力工程相关研究内容的是锅炉业,在锅炉制造设计的方案中,很多方面均与热能和动力工程的研究内容相关,而且还具有一定程度的系统综合性[3]。虽然热能与动力工程是锅炉中的重点研究对象,但对其他多种相关领域的研究也不能忽视,如工程物理、能源工程、机械工程等,而在所有的研究内容中,热能与机械能之间的能源转化占有相当大的比重。纵观我国热能与动力学的发展过程及其未来发展方向,可以得出其具有多面性的特点,而主要发展方向是电厂热能工程。

近年来,随着科技水平的不断发展提高,极大的带动了热能与动力工程的发展进步,使其逐渐趋于自动化,然而我国在物理工程方面的人才相对比较匮乏,无法满足现在的市场需求,因此未来还需特别重视对该类人才的培养,除此之外,还需要进一步提高锅炉热能转换及空调制冷等方面的能源利用率,从而保证热能动力工程的顺利发展,只有解决了能源使用问题,才能够使热能与动力工程在生产中的重要作用得到充分发挥,进而保障我国经济的顺利发展,因此,对热能与动力工程进行深入研究具有相当重要的意义。

1.2 锅炉构造及动力的应用原理分析

锅炉的燃气控制、锅炉的外壳及锅炉的生产配套部分共同构成了锅炉,而燃气锅炉外壳还包括底壳和面壳两方面,每个部分都发挥着不同的作用,其中底壳主要负责锅炉燃烧,也是锅炉燃烧的关键环节,因底壳上有电控盒和热交换器等部件,锅炉通过底壳与其他部分更好的进行连接,从而形成一个完整的结构。而面壳的作用主要是防止灰尘等杂物进入锅炉,更好的保护锅炉,进而使其使用寿命得到延长[4]。除此之外,锅炉的核心部件电气控制也在锅炉的运行中发挥着关键作用,其主要任务是保障锅炉各项工作和锅炉燃烧的正常运转。近年来,随着科技水平的不断进步,使锅炉行业得到较快发展,目前锅炉业均已实现自动化控制,这样就能很好的控制锅炉的热平衡及锅炉的燃烧,从而使锅炉的燃烧效率得到提高,保证热能的利用率,从而有效地减少能源浪费。

1.3 热能与动力工程在锅炉中的应用

能量转换调节在锅炉燃烧控制中是相当必要的,随着时代的不断发展,锅炉的类型也发生了相当大的变化,并且实现了智能填料,不仅节省了劳动力,还使锅炉燃烧得到更好的控制。锅炉在人类工业发展进程中发挥了重要作用,从某种角度讲,工业炉的前身就是锅炉,是工业革命进程中不可或缺的重要力量。锅炉主要是通过燃烧能源产生大量热能,从而实现能源的有效转化,不仅为进一步发展工业文明提供保障,也为提高人类生产力作好基础铺垫。

2 热能与动力工程在锅炉生产中存在的问题分析

在锅炉生产中,锅炉的风机是不可或缺的关键组成部分,其主要承担着将电能向动能转变的作用,在实际生产过程中,保证将气体顺利地输送到锅炉内部。因此,我们不仅要调机的运行状态,还要将热能与动力工程技术正确合理的应用到锅炉的制造改进中,不过,需要特别注意的是锅炉内部叶轮机械的结构相当复杂,外界一些不确定因素很容易影响测量的相关温度变化值,造成了测量中的不可靠性。针对这种情况,目前我国还未研究出有效的解决对策,但是从多种方向将热能与动力工程已开发的相关软件有效测定风机叶片燃烧的速度,并且还可对所测数值进行相关模拟,从而获得较为准确的软件模拟结果,为风机叶片的使用寿命作出准确评估,从而使锅炉燃烧得到更好的控制,降低其生产运行中的使用风险。

3 热能与动力工程在锅炉运行中的科技创新

3.1 锅炉燃烧控制技术的创新

如何有效地调节能量转换是锅炉燃烧控制中的重要部分。早期工业生产中,我国的锅炉填充燃料绝大多数是采取人工添加的方式,从而保障锅炉相关工作的正常稳定运转。不过,随着科学技术的发展,绝大部分企业已从人工填料方式向步进式的自动化转变,而连续控制系统是主要的锅炉燃烧方式,其主要由各种气体的分析装置及燃烧的控制器等部分构成,通过热电偶的有效检测来设定合理数值,再利用计算机准确计算出所测数值偏差,从而保证输出结果的准确性,与此同时,还能够有效且合理的对锅炉燃烧进行控制。

3.2 锅炉风机的仿真类翼型叶片

由于锅炉内部的风机结构复杂、运行精密,因此给实际测量带来一定的困难。目前我国尚未有科学且完整的体系来完善锅炉的叶轮制造及运行发展。如果想要获取准确有效的数值,就应通过实验模拟的方法对机械内部的气体流动进行有效评估,模拟空气以不同方式出入风机时的相关流动分离。最后,再利用计算机对这些数值进行模拟设定,采用模拟实验方法的主要目的是分析在不同速度情况下所得到的矢量图,将多组数据进行比较后,确定出锅炉风机翼型边界层分离及攻角之间的关系,从而进行深一步的研究。

综上所述,随着经济的发展,热能与动力工程在实际生产生活及锅炉发展中均越来越发挥着重要作用,是保证我国经济发展的基础,也是工业水平提高的一个重要标志。因此,不管现在还是未来,对热能与动力学的研究都是不可缺少的,从而使其在锅炉的正常稳定运转及能源生产中更好的发挥作用,为我国经济的可持续发展及能源利用率提供坚实的保障。

参考文献

[1] 武伟佳.浅析热能与动力工程的应用[J].科技创新与应用,2014(25):148.

[2] 田青.热能与动力工程在锅炉领域的应用探究[J].科技创新与应用,2014(19):21.

第6篇

关键词:能源与动力工程;应用型技术人才;多维协同

中图分类号:TM61 文献标志码:A 文章编号:1674-9324(2017)10-0106-02

当前,能源动力类毕业生的最主要的题之一是缺少工程实践经验和工程应用能力不足,本科毕业后入职上岗前通常都要进行较长时间的岗位培训。此外,学生对于一些新的发电技术,如燃气蒸汽联合循环发电技术、烟气的脱硫脱硝、超超临界发电技术等了解甚少,由此给企业造成很多经济和生产上的困扰。随着电力行业的发展以及新技术的不断应用,迫切需要学校培养适应社会发展和企业需要的能源动力类的应用型人才。

针对企业的需求,结合本专业人才的培养规范,我们拟构建能源动力类应用型人才的多维协同培养体系,主要包括以下几个方面:(1)制定应用型人才培养的标准。(2)构建以应用能力为本的理论教学体系。(3)构建以实践能力为核心的校内实践教学体系。(4)构建校企紧密联合的企业实践教学体系。(5)构建工程实践经验丰富的师资队伍体系。

一、应用型人才培养标准的制订

培养应用型人才,首先要确定应用型人才培养标准。这需要将学校专业人才培养的要求与企业的需求相结合,以工程能力培养为核心,借鉴世界先进国家高等工程教育的成功经验,制订出立足发电行业生产一线的应用型人才的培养标准。

二、构建以应用能力为核心的理论教学体系

根据能源与动力工程专业的特点,面向企业需求,以发电企业及其相关产业的岗位人才要求为主线,以教育部教学指导委员会颁布的能源与动力类专业规范为基础,以行业发展为导向,对教学内容和教学方法进行综合改革,构建以工程应用能力培养为核心的理论课程体系。

1.紧密联系生产,安排课程教学内容。对于基础课程,注重基础知识的学习,强化基础课及专业基础课的教学,同时强调课程与能源行业知识相结合,在教学中引入能源行业相关知识的介绍与计算分析案例。

对于专业课程,从提高学生的专业应用能力出发,采用模块式的课程结构设置教学内容。例如:划分成“电厂热能动力”、“洁净发电技术”及“节能与能源管理”等模块,各类模块课程具有相对独立性,紧紧围绕用人企业对培养对象所要求必备的知识、能力及职业素质进行教学。

2.根据国家能源战略及节能减排发展需求设置课程。课程设置上,不仅有传统的课程,也设置一些符合国家能源战略、节能减排要求的课程,如“可再生能源发电技术”、“分布式供能系统”、“能源管理与审计”等课程。随着新兴电力生产技术和污染物控制技术不断应用于电力生产过程中,“超超临界发电技术”、“燃气蒸汽联合循环发电技术”、“烟气的脱硫脱硝”等先进的电力技术也将被引入课堂教学内容中。

3.教学方法改革。(1)课堂教学方面,不仅讲解理论知识,还采用实例化教学、现场教学等教学形式,根据电力行业对能源与动力工程专业课程的新要求拓展教学内容。在专业主干课程中安排一定学时的企业专家专题讲座,聘请企业高级专家为学生进行行业新动态和工程案例等内容的讲座。另外,在课程中引入工程案例研讨内容,每门主干课程,每个主要知识点都有工程案例。由此,提高学生分析问题和解决问题等多方面的能力。(2)课程内容方面,以能源行业工种职业能力标准为中心来整合相应的知识及技能,实现理论与实践的统一,引导学生积极参加职业资格认证考试。(3)课程设置方面,以工作项目为引领,从岗位需求出发,紧紧围绕完成企业中设备运行及维护所需的职业能力培养,将所要学习的新知识蕴含在一个或几个具体的项目中,让学生通过对任务进行分析讨论,由易到难、循序渐进地完成一系列任务,并通过项目的完成实现对所学知识的掌握和应用。

三、以构建实践能力为核心的校内实践教学体系

我校“能源与动力工程实验教学中心”是上海市市级实验教学示范中心,也是校内重要的实践教学基地,涵盖专业基础实验、专业实验、综合实践、创新实验平台。依托我校的“能源与动力工程实验教学中心”,我们提出了构建“专业基础―专业―综合―创新”分层次、多平台的实验教学体系。通过工程技能、设计能力、专业应用能力以及创新能力等方面的系统训练,全面提升学生的实践应用能力和创新思维能力。

1.开放校内实验课程教学平台,培养学生动手能力。以基础课程实验为主建立开放式热工实验平台,整合工程流体力学、工程热力学以及传热传质等实验室,培养学生的独立操作能力。通过综合性和设计性实验的形式,由学生自行拟定实验方案,充分自主选择实验设备,培养学生的实践能力与分析能力。

2.建立新能源技术及节能新技术实验平台。整合分布式能源系统实验室、太阳能利用系统实验室以及生物质利用实验室,建立新能源技术及节能新技术实验平台。分布式能源系统实验室为《热能与动力工课程设计》、《能源审计》、《节能管理》等课程开展实验,使学生熟悉分布式能源系统的实际生产过程。

3.火力发电仿真系统训练,培养学生工程实践能力。本专业的火电仿真机组系统仿真机与实际机组为1∶1仿真,模拟实际机组的热力系统、热工控制,能够实现整个机组的启、停、正常运行和事故处理。通过火力发电仿真系统训练,可以提高学生对电厂设备与运行的全面了解和认识,培养和训练学生的工程实践能力。

四、构建校企紧密联合的企业实践教学体系

通过与各大发电集团公司联合共同构建应用型人才培养基地,共同参与本科生教学计划的制订与实施,构建校企紧密联合的企业实践教学体系。校企合作领域覆盖电力生产、运行、试验、检修等各个环节,具体包括以下几方面。

1.企I为主参加生产实践教学。学生培养计划实施过程中,理论知识教学主要由校内教师进行,同时聘请企业一线工程师到校内进行相关知识的讲解;实践教学活动主要在企业完成,场地由企业提供,授课主要由企业人员进行。学生在企业学习阶段,进行电力生产技能现场实践。

2.实行双导师制,联合指导毕业设计。毕业设计是本科生学习中的必要环节,对提高学生分析、解决实际问题十分重要。校企双方共同拟定毕业设计题目,学生在企业进行毕业设计;企业与学院共同指导学生,共同进行答辩考核。

五、构建具备工程实践经验教师队伍的培养体系

通过各种方式提高教师的实践动手能力,如制定教师到企业挂职锻炼、教师下电厂实习等相关政策,提高专业教师的实践能力。具体途径有以下几种。

1.提高现有教师的工程实践能力。利用企业产学研基地,轮换派出教师到企业去实践1―3年。教师在企业工作期间,可以通过直接参与企业项目,不断提高自身的职业技能,达到“双师型”教师的要求。

2.直接引进企业经验丰富的工程师。直接引进具有较高学历和丰富实践经验的企业工程师作为学院专职教师,安排其讲授所熟悉的课程,如:聘请具有现场经验丰富的工程师讲师。

3.聘请实践经验丰富的兼职教师。聘请具有丰富实践经验的企业工作人员为学生授课、指导实践教学环节、做专题讲座、指导本科生毕业设计等。将实践中的问题直接带入课堂,培养学生用理论解决实践问题的能力。鼓励学生到企业中去,解决企业中所存在的具体问题,与企业合作完成毕业设计,以提高学生对实际工程问题的分析和处理能力。

参考文献:

[1]战洪仁,张建伟.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,(1):19-21.

[2]张光学,王进卿.时代背景下热能与动力工程专业教学改革与创新[J].中国电力教育,2014,(6):75-76.

[3]常胜运.“汽轮机设备及运行”课程教学改革[J].中国电力教育,2007,(5):103-105.

Based on the Electric Power Production Process,to Construct a Multidimensional Training System of the Energy and Power Engineering Application-oriented Undergraduate

HU Dan-mei,HE Ping

(College of Energy and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)

第7篇

[关键词]热能与动力;工程

中图分类号:TK 文献标识码:A 文章编号:1009-914X(2014)15-0010-01

一、现代社会的能源及其分类

我们把能够产生能量的资源称为能源,能源大体可分为:

1、一次能源与二次能源。一次能源是指自然界中存在的天然能源;二次能源是由一次能源直接或间接加工转换而成的人工能源。

2、可再生能源与非再生能源。可重复产生的一次能源称为可再生能源,不能重复产生的自然能源称为非再生能源。

3、常规能源与新能源。常规能源是指技术上已经成熟、已大量生产并广泛利用的能源;新能源是指技术上正在开发、尚未大量生产和广泛利用的能源。

4、清洁能源与非清洁能源。在开发和利用中对环境无污染或污染程度很轻的能源叫做清洁能源,否则称为非清洁能源。

二、现阶段的热能动力装置

燃料在适当的设备中燃烧而产生的热能,然后在热能动力机中将热能转变为机械能。燃烧设备、热能动力机以及他们的辅助设备统称为热能动力装置。热能动力装置主要有两大类:一种是以燃烧产生的燃气直接进入发动机进行能量转换,如内燃机和燃气轮机等;另一种则首先将燃料燃烧产生的热能传递给某种液体使其汽化,然后将蒸汽导入发动机进行热功转换,如蒸汽机和汽轮机等。

三、热能的特点

能量的转换:人类所用能源基本上都是由一次能源经一次或多次转换而来。

1、太阳能的转换:太阳照射使植物内叶绿素发生光合作用,将太阳能转换为生物质能;太阳能的光――热转换;太阳能的光――电转换,太阳能电池。

2、燃料化学能的转换:通过燃烧,将化学能――热能――机械能。如汽轮机:化学能――蒸汽的热能――经汽轮机转换为机械能;内燃机:化学能――燃气的热能――经活塞连杆机构转换为热能。

3、热能的转换:两种能量形式,即机械能――内燃机、汽轮机;电能――热电发电。

四、热能的利用

热能的应用在国民经济中的重要地位(使用领域):

1)电力工业――火力发电或核发电,均应用热能转换。

2)钢铁工业――炼钢、轧钢、高炉炼铁等均用热能;

3)有色金属工业――铝、铜等有色金属的冶炼用热能;

4)化学工业――酸、碱、合成氨的生产过程;

5)石油工业――采油、炼制、输送等用热能;

6)建材工业―建材的生产过程用热能。如水泥、陶瓷等;

7)机械工业――铸造、锻压、焊接等用热能;

8)轻纺工业――造纸、制糖、化纤、印染等用热能;

9)交通运输―汽车、火车、船舶、飞机等动力来之热能;

10)农业及水产养殖业―电力灌溉、温室培植、鱼池加温等

11)生活需要――供暖、空调、烹饪。

五、我们对能源利用的评价

我们都知道非再生能源的有限性,能源利用率又不高;所以能源是人类生存与发展的重要基础。我们对能源的有效利用可以提高能量转换或传递装置及系统的效率。防止高品位能量的降级使用,建立总能系统概念,优化整体用能系统,使一次能源、二次能源及余热均得到充分利用,提高总能系统的能源利用效率。

1、利用能源的评价指标

能源利用的主要评价指标有能源消耗系数r,它是指指单位国民经济产值所平均消耗的能源数量。单位产品能耗C:它是指每单位产品产量所消耗的能量。能源利用效率即能量利用率,主要指被有效利用的能量与所消耗的能量之比。

2、Ex()及Ex效率

Ex是指对能量的评价,要考虑被利用的能量的数量和质量。Ex就是从能量的数量和质量角度,评价处于某一状态的热力系的作功能力的指标。即能的可用性。Ex效率用于评价最大有用功的实际应用的程度。用实际被利用的有效火用和投入的火用之比表示。

六、热能与动力机械的应用与发展对地球环境的影响:

1.热污染:热能利用和动力技术的应用中的能量损失,以热能形式传给环境,使环境温度升高,造成对环境的危害。如海洋或河水发电站,冷却水的热量排放到自然水源中,使水温升高,造成水中含氧量降低,影响水生物的生存;地球升温,冰雪覆盖区缩小,反射率下降,吸收更多太阳能,地球温度进一步升高,造成升温连锁反映。温室效应已非抽象概念,已影响动植物行为。

2.空气污染:指各种车辆、供热设备、发电厂、工业用锅炉等的废气废料向环境排放造成的大气污染。有害污染物主要有:CO2、NOx、SO、HC、CO、碳烟、微粒、铅、金属氧化物等。

1)CO2的温室效应:CO2的特点:吸收光谱恰好在地球辐射的主要波长段内,所以,对地球辐射能吸收力强,但对太阳能辐射透明;CO2的作用:吸收地面辐射能后,重新辐射,一部分返回地面,另一部分传给更上层的CO2;CO2含量越高更多的热量被阻留在低层大气中,使地球温度升高,造成温室效应。

2)NOx对臭氧层很敏感,直接破坏臭氧层的自然平衡;NOx浓度越高,臭氧浓度下降,对紫外线的吸收能力下降。地面紫外线辐射强度增高。皮肤癌率增加;与HC一起在太阳光照射下形成光化学烟雾――由臭氧、NO、甲醛、乙醛等组成;能见度降低,影响交通安全;

3)硫化物:SO2、SO3、H2S等都是有害物;主要来之煤炭燃烧。SO2影响呼吸道;H2S对呼吸道的刺激更严重;SO3使烟气露点提高,易形成酸雨或酸雾。在地热流体中H2S含量较多。

3.噪声危害:对人的心理、生理、听力、工作、睡眠有不利的影响。

4.放射性污染主要对核燃料等的放射性物质,直接对生命有威胁。

七、结束语

从大方面看,热能与动力这一专业不只局限于热能与动力工程它的名字上。对于这些内容的了解最终目的无非是使各种能源更好的被人类所利用。而在实现这个目的的过程中牵扯到更好利用能源的方法、技术,高效、安全问题,经济性问题以及仪表分析、自动化等等。就拿动力工程中的内燃机来讲,内燃机有活塞型内燃机还有转子型内燃机,那会不会还能做出新型的内燃机呢,有创新而且很有挑战性。内燃机是从蒸汽机发展而来的,他们的原理基本上相同。然而同为发动机的电动机却与之有这截然不同的原理,所以发动机就是挺有研究性的。研究新原理型的发动机确实是很难的,但可贵之处就在于它难,但是并不是没有一点希望。类似于这一类的有研究性的方向有挑战还有待我们几代人去深入研究。

参考文献

第8篇

【关键词】能源新形势 动力工程及工程热物理 研究生 课程教学

【基金项目】长沙理工大学2016年度校级研究生教研教改项目:新形势下动力工程及工程热物理研究生课程优化设置研究(JG2016YB05)。

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2016)04-0158-02

1.引言

能源是人类活动的物质基础,社会的发展离不开优质能源。对于目前的中国而言,实现经济增长与保护环境的平衡将是未来面临的一个严峻挑战。为此, 2014年国务院了《能源发展战略行动计划(2014-2020年)》,明确强调要深化能源体制改革,加快重点领域和关键环节改革步伐。2016年,国家发改委等联合《关于推进“互联网+”智慧能源发展的指导意见》,提出了未来十年中国能源互联网发展的路线图。改革与发展已经成为了能源行业的显著特征。随着产业结构调整与培育新兴战略产业步伐加速,节能减排与新型能源产业的战略地位将愈加突出,能源行业的机制体制改革以及能源互联网的兴起,对能源技术人才提出了更新和更高的要求。中国能源产业近几年发展迅速,社会各界都积极投入到先进能源技术的开发与产业的建设当中,但在这繁荣的表象背后,由于技术、管理、投资等原因,还存在诸多问题。这些问题究其本质仍然是人才的问题,要解决这个问题,就必须从教育入手,大力培养人才[1]。然而,目前我国新型能源技术人才普遍匮乏,高校的科技资源优势还未完全在能源领域释放出来,在人才培养方面急需跟上国家战略发展新常态。

研究生教育是一项系统工程,它包括了课程学习、实践研究和学位论文等诸多环节。其中,课程学习是整个研究生培养中的基础环节,其质量直接决定着研究生教育的质量和水平。因此,良好的课程教学是达到学习目标、提高研究生培养质量的前提。为此,2013年教育部等部门联合发出《关于深化研究生教育改革的意见》,明确要求加强课程建设,重视发挥课程教学在研究生培养中的作用。

动力工程及工程热物理一级学科以能源的开发、生产、转换和利用作为主要的学科应用背景,在整个能源领域起着支撑和促进作用。经过多年的探索和努力,国内研究生教育在动力工程及工程热物理领域取得了较好的成绩。但总体上看,我国研究生教育还未能完全适应经济社会快速发展的多样化需求。随着研究生教育的深入发展,现行的研究生课程体系出现了许多亟待解决的问题。因而,如何根据国家的战略需求及行业的人才需求, 改革和完善现行的研究生课程教学状况, 是一项十分紧迫的任务。

2.现状及存在的问题

2.1对研究生课程教学认识上存在偏差

就目前我国大部分高校研究生教育重点而言,以各省、直辖市相应的优秀研究生学位论文评选为契机(2013年之前还有全国百篇优秀博士论文),各高校每年也进行相应的优秀研究生学位论文评选,此外学校还制定了各种优秀研究生论文奖励办法等相关的质量激励措施,出台了研究生创新计划,研究生国家奖学金的评选也直接与学生的论文及参与的项目直接挂钩,研究生培养过程中“学术论文为重”的培养取向日益明显,这在一定程度上确实能保障研究生的培养质量,无疑具有积极意义[2]。但作为研究生培养过程中的另一个基本环节――课程教学,获得的相对关注较少,这直接导致了高校研究生课程教学工作相对滞后,其课程教学质量还有待进一步提升。

2.2研究生课程结构有待进一步优化

我国特色的研究生教育课程体系一般由学位课程和非学位课程组成。但是动力工程及工程热物理是一门综合性学科,涉及到工程热力学、燃烧学、传热传质、多相流等多方面知识,此外随着科学技术的飞速发展,人们在不同的学科基础上不断开拓新的研究热点,学科交叉的趋势越来越明显。然而课程内容是实现课程教学目标的有效载体,因此在科学知识更新速度的加快和人才培养课程结构的滞后性之间,矛盾日趋明显,课程结构的基础性、先进性和综合性承载着调和这一矛盾的重担[3]。尽管课程优化设置已经成为我国研究生教育改革的一项重要内容,但与国外一流研究生教育机构相比,差距仍很大。因此,如何建立科学的研究生课程体系,满足不断发展的行业和国家需求,是一项重要而紧迫的任务。

2.3 跨学科课程和有关科学研究方法的课程缺乏

在现有的课程教学体系中,一个比较薄弱的环节是只开设了传统的研究生理论课程,而忽视了一些重要的跨学科课程和有关科学研究方法的课程。目前我国研究生课程教学管理实行的是学分制,从课程内容上看,包括政治课、英语课、专业基础课以及本研究方向的专业课程。动力工程及工程热物理下辖若干个二级学科,其学科交叉性强,理论与技术发展迅速,许多问题仅靠某一学科的专业知识是难以解决的,需要多学科知识去协同应对,如若缺乏跨学科课程及科研能力培养方面的课程,那么对于学生在该领域的创新发展极为不利。

3.对策及建议

3.1 提高对研究生课程教学的认识

首先要真正重视课程设置在研究生培养中的作用,改变长期以来重学术论文、轻课程学习的现状。针对此问题,以长沙理工大学为例,2015年学校研究生院出台了《长沙理工大学研究生课程建设实施方案》,把研究生教学工作的重要性提到了一个新的高度,规范了课程设置审查,加强了教学质量评价,研究生院还成立了由教学经验丰富的老教师组成的课程教学督导小组,实时检查研究生课堂教学并反馈意见,教学效果将直接影响教师的个人考评。这些措施都极大地强化了研究生课程教学在培养过程中的作用。

3.2 对课程内容进行国际化和工程化

总体上,我国的能源科学与工程与发达国家相比还是有一定的差距,多年前美国、澳大利亚等国就投入巨额资金大力发展能源学科,大力培养能源人力资源。因此,可以通过与国外高校间研究生联合培养项目,设置国际化课程,增强课程内容的国际前沿性,也可以通过发达的网络技术充分利用国外丰富的网络课程资源,加强国际化课程设置。动力工程及工程热物理学科面向能源科学,具有极强的工程应用性,已经渗透到工业社会的各行业中,因此研究生课程也必须具有较强的工程适用性,可适当引入实践课程,在师资队伍中引入企业导师或者与企业联合培养学生。此外,针对该学科快速发展的特点,可以增加专业选修课的比例,拓宽学生的知识面,增强专业科学素质。

3.3 增设跨学科选修课及科学研究方法的课程

根据研究生研究方向与培养目标,适当增设跨学科选修课更有利于学生科学能力的培养。如对于太阳能研究方向的学生,可以跨学科选修物理学、材料类的课程;对于风力发电技术方向的学生,可以选修部分机械结构强度、结构完整性等方面的课程。研究生只有具备跨学科的知识,才能更好地从另一个角度了解本专业,才能够充分借鉴相近领域的理论和方法,在专业领域内做出新的成绩。学习一定的科学研究方法,对刚开始从事研究工作的研究生十分必要,提高研究效率,也能使得学生在不断发展的科学中始终具有学习与研究的能力,始终保持较强的创新能力。

4.结语

各高校必须根据自身发展特色和国家战略需要,紧跟能源行业发展新形势, 对动力工程及工程热物理研究生课程教学进行新的思考与研究, 深化课程教学理论、完善培养单位课程体系改进、优化机制;增强研究生课程内容的国际前沿性和工程实践性,通过高质量课程学习强化研究生的科学方法训练和学术素养培养,构建符合专业学位特点的课程教学体系。这些对进一步提高学科建设水平具有重要意义。

参考文献:

[1]张珏.新能源产业发展所需专业人才培养探讨[J]. 中国人才, 2010,(8): 29-30