首页 优秀范文 人工智能课程评价

人工智能课程评价赏析八篇

发布时间:2023-09-22 15:32:47

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的人工智能课程评价样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

人工智能课程评价

第1篇

关键词:大学计算机基础;教学改革;人工智能;智慧课堂

云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2020年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。

1传统教学的缺陷

⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。

2新人工智能环境下对计算机基础课程改革的具体方案

2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。

3结束语

第2篇

关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育

中图分类号:G64文献标识码:A

文章编号:1009-3044(2020)25-0153-03

1引言

智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。

2人工智能时代对人才的需求

站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。

随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。

从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。

3应用型人才培养模式分析

《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。

通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。

3.1职能

智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。

3.2知识结构

智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。

(1)智能感知与模式识别

属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。

(2)智能系统设计与制造

属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。

(3)智能信息处理

属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。

3.3能力结构

智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。

CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。

自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。

3.4行业(产业)导向

从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:

(1)智能感知与模式识别领域

主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。

(2)智能系统设计与制造领域

主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。

(3)智能信息处理领域

主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。

涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。

产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。

4KCBE模式人才培养的主要措施和途径

智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。

(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系

在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。

(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系

按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。

第3篇

【关键词】大规模开放在线课程;人工智能课程;翻转教学法

0 引言

近年社会对计算机专业人才能力的要求越来越高,而学生所学与实际需求存在不少差距,高校计算机专业课程教学因而遭遇诟病。依托信息与网络技术支撑的大规模网络开放课程(massive online open course,MOOC)较好贯彻了以学为中心的理念,其翻转教学模式与灵活有效的交互极大提升了学习兴趣[1]。搭建MOOC平台的计算机技术既是技术基础,也是热门MOOC课程。在此浪潮下传统高校计算机专业的教学首当其冲受到冲击,遇到前所未有的挑战。纵观国际三大MOOC巨头的课程建设均始于计算机类专业课程,同时也是所占比例较大的课程系列,其中人工智能(Artificial Intelligence,AI)课程在Coursera、Udacity[1]两个平台上均是最早开设的课程之一。采用何种教学模式更适应社会对人才的需求呢?这是应对挑战的关键问题。

1 人工智能课程的课堂教学困境

人工智能是研究模拟、延伸和扩展人类智能的理论、方法、技术及应用的前沿交叉学科,涉及面广、研究性强,还不断产生新的理论和方法。课程难度大理论强实践难,也是公认难讲的课程之一,该课程具有如下特点:

1.1 先导课多,知识抽象,涉及面广,更新快

前期知识包括:数据结构、离散数学、程序设计、图像处理等。如果前期知识不扎实,很难理解内容并融会贯通。传统内容包括:知识表示和推理、搜索策略、模糊理论、神经网络、机器学习、专家系统、遗传算法等,涉及大量抽象理论和复杂算法。教材普遍特点是:内容滞后,枯燥深奥的理论和解决现实问题的实践联系不紧密。

1.2 研究性强

该领域很多内容仍是科研热点,并不断涌现出新的研究方向、新内容、新方法、新技术和新应用。

1.3 教学方式单调

技术和管理的局限也制约了教学方式,教学方式基本以教为中心,停留在讲授、问答等简单互动上,教学方法单一。很少能提供学生自学、讨论、合作和实践的一整套互动实践机会,难以真正体现以学为中心的理念。

1.4 学生缺乏兴趣

一方面,课程本身特点使得课程容易陷入枯燥的纸上谈兵的尴尬。另一方面,即将毕业的高年级本科生对未来规划明确,抽象的人工智能课程无论从职业发展还是继续深造对学生并没有立竿见影的效果,进一步拉低兴趣。此外,教材滞后,教学方法单一等也会影响兴趣。

如火如荼发展的MOOC的课程,尤其Udacity的课程设计之初就立足于解决实际问题的导向,做法上的独特之处成功吸引了大批学生。课堂教学中借鉴在MOOC上被证明有效的教学模式和方法,不啻为一种尝试,以期摆脱教学困境,提高学习兴趣,最终提升教学质量。

2 MOOC的教学模式

MOOC的教学模式分为三种:cMOOC、xMOOC 和 tMOOC[2]。早期的cMOOC的教学模式特点是学习者完全做主,但复杂的网络互动产生庞大而混杂的知识网,缺乏识别主次和归纳总结能力学生常因信息过载陷入茫然无措的境地。2011年Udacity 创始人之一在网上开设的“人工智能导论”课程改变了表现风格,把互联网作为教学媒体的呈现潜力发挥到极致,按知识点分割内容成短小视频,其间插入现场对问题的解决,突出了Udacity有别于传统教育机构及其先行者的地方:注重发现并解决问题。这就是xMOOC的教学模式,沿袭并创新了熟悉的学习风格,使得MOOC如鱼得水渐渐发展壮大。随着MOOC逐步成熟,为了适合具有专业基础的职业技能培训,发展培养针对具体任务的探究学习教学模式,即tMOOC模式,这是Udacity网站课程的另一个设计目标。表1显示了MOOC的三种模式的对比。

以Udacity的人工智能导论课程为例,只要高中毕业具有概率论和数理统计基础的学生就可以学习,该课程适合入门,但难度较低,内容较少。清华大学的马少平编写的人工智能教材是很多大学,包括我院人工智能课程的教材,清华大学的人工智能课程经过多年发展已经形成了一个系列教学资源库,包括教材、课程视频、教学课件、作业及答案和实验设计等。根据Udacity网站的人工智能导论课程的展示,表2从几方面对比了Udacity人工智能课程与清华大学马少平版的人工智能课程情况:

从表2可以发现Udacity的人工智能视频采用了按知识块分割成短小视频,在期间和完毕之后都准备了测试,细节上体现了以学为主的理念。纵观类似人工智能的国家精品课程[3],学习资源多为文本类,重用难,对教学重难点没有拓展和转化。这种以内容共享为中心的呈现模式,缺乏与学习者充分交互,难以体现以学为中心的教学理念。

在MOOC的教学设计中,调动学习者极大热情的是翻转课堂,在学习环境中引入了自主协作[4-5],在交流机制中融入了多元互动,给学习者带来积极、主动、高效的学习,翻转课堂和传统课堂的区别如表3所示:

3 MOOC的教学模式对人工智能课堂教学的启示

3.1 教学内容的优化与调整

MOOC的教学通过把理论抽象的知识点分割成小段录制的微课视频,时长不超过15分钟,内容衔接处具有一定交互性,讲解形象化,提供给学生反复观看,这种用技术处理分解知识点和把难点从抽象变成具象的过程降低了理解难度。

课堂教学也可以通过分而治之的方式对教学内容优化调整。人工智能涉及内容与范围多而杂,作为入门课程并不要面面俱到,根据学生层次,可以区分重点掌握和一般介绍的内容,以点带面铺开,因此,根据学生特点,把成熟的基础理论和这些理论的实际应用整合,辅以其他新技术的穿插介绍,主要分三块:

①人工智能的概念和发展,熟悉人工智能的研究和应用领域;

②人工智能的基本技术,包括知识表示,逻辑推理、搜索策略、模糊理论等;

③涉及现实应用,如:机器学习,模式识别,自然语言理解,智能控制等。

为了反映人工智能领域最新进展,教师还可以收集学生感兴趣的最新成果专题信息,及时更新、调整教学内容,通过与实际更紧密的融合接轨,对课堂上没时间介绍而又较热点的新知识,通过提供方向和资料解决,注重提高兴趣的同时,也展示出课程学科特点、主流技术及发展趋势。

3.2 紧密结合实际

Udacity的开设之初的目的就是学习为了解决现实问题,其人工智能课程设计也不例外,包含有实际遇到问题的解决,这种立竿见影的好处就是极大激发了兴趣。

考虑到高年级学生对解决实际问题技术的兴趣远远大于技术理论等细节,不想花太多时间去理解复杂而难以看到实践效果的理论上,更想通过实际体验解决问题增强成就感。教学内容的设计尤其紧密结合实际运用。

传统人工智能讲授通过实例解答或推证式讲述理论,如知识表示和搜索推理技术,该部分理论强,应用实例少,往往学生感觉枯燥乏味,教师也感觉晦涩抽象,学生对所讲内容基本靠死记方法和步骤,这种僵化的教与学影响了教学效果。

因此,设计教学时尤其注重内容的实用性。除了讲授至今仍沿用和有效的基本原理和方法外,引入近年发展起来的方法和技术,如智能算法等,对这些内容重点在技术的具体实现上,强调与实际的融合贯通。教学过程中加入与课程内容对应又可以用计算机实现的试用内容。如模式识别应用于手写数字识别,通过仿真软件模拟实现算法,获得立竿见影的效果体验,加深对算法的认识,引起学生浓厚的兴趣。同时也对某些很有发展前景的技术兴趣导入,如目前人工智能研究侧重人类理性逻辑功能的模拟,而如果把情感智能考虑进去,才更有人性化的智能决策。这就是经过了将近20年发展的情感计算,随着可穿戴技术渐渐渗透进生活,引起更多关注,这些接地气的内容提升了兴趣。

3.3 实践能力的培养

Udacity 创始人史蒂芬斯博士的说过,“即使是最好的大学,其计算机课程所传授的技能也是浮于理论的”。学习的目的是为了解决实际问题,带着问题学习和思考,有利于主动学习的激发。这些方面,可以参考Udacity人工智能课程的实验内容修正。强调学习是为了解决实际问题服务的目标。

3.4 教学模式及教学方法的变化

3.4.1 实例教学法

人工智能内容的抽象性决定了知识点的难度,Udacity人工智能课程教学中尽量把难懂的知识点结合现实中有趣实例,通过感性体验提高理性理解,让学生容易接受。笔者进行了一些化难为易的尝试:如利用汉诺塔问题讲解状态空间的知识表示,通过野人过河的游戏程序步步领会理论精髓;结合下棋软件体验模拟人脑思考的计算机博弈的极大极小搜索思路,这些实例教学激起了兴趣,扩展了学生思路,拓宽了视野。

3.4.2 翻转教学法

整门课程录制课程小视频还有一定难度,作为尝试,选择少量知识点录制视频进行翻转教学。如抽象的理论部分,借鉴网上已有视频资源融入教学过程,分解知识点破解难点,形象化与短时间的重复讲解,增加学生对抽象内容的理解,期间穿插核查对理解内容的核查,并留出思考时间,强化学习效果。

3.4.3 交互环境的营造,辅助教学过程完善

1)基于联通主义的学习交互[6-7]

在MOOC课程中,提供在线交流论坛,学习者建立课程组,学习组等方式交流,这种教与学、学与学的交互不但是网状进行的,而且是即时的。学生将互动产生的内容作为学习的中心,通过学习者不同认识的交互,建立新的认知结构,拓宽了视野,更有利于问题的有效解决。这种互动交流分成三种形式:

①教师对统一回答提问集中且意义较大的疑难问题;

②学习者分享学习感悟;

③学生间交流带来不同认知的碰撞。

以上三种情况的互动在课堂教学中也可以运用于课堂教学:及时分析整理共同问题,集中回复;课堂教学的互动除了课堂上及时了解学生反馈的互动,还有对解决问题的互动。课下互动可以利用学者网建立课程组,提供了较好的师生交流形式与效果,同时利用学习组在小组中分享互助,小组成员的交流引起认知碰撞,这种实际参与的体验加深了理解,并巩固学到内容,这些资料的逐渐积累还可以复用。

2)基于行为主义的学习反馈[8]

MOOC 遵循了程序教学的一般原则,尤其注重学生反馈,像游戏一样关卡设置让整个过程充满挑战性,一些机器评分实现了及时学习反馈,摆脱了单向提供课程资源的弊端。课堂教学可以借鉴这种借助技术手段互动了解学生学习的情况,促使有意义学习的发生。

4 教学改革的实施

利用以上措施在《人工智能》课程的教学中实践,通过在xMOOC教学模式中部分适当内容引入翻转教学法与利用学者网的课程交互,探索提高兴趣,促进理论与实践的融合,促进有意义学习的发生,提高学生实践能力的途径。通过观察,调查与访谈等方式,了解学生在该教学模式中兴趣与能力改善状况,同时研究教师教学法转变与教学水平变化的关系,根据追踪研究效果,发现这种改善调动了学习兴趣,促进了教学效果。实践中通过建立实验组(班)与对照组(班)、评价教学模式和教学效果等因素,不断总结、修正和完善,期望建立适应当前形势与环境的有效的该课程的教学模式与教学方法。

5 结束语

笔者结合人工智能课程的教学实践,针对本科高年级的教学特点和人工智能课程学科特点,提出在设计人工智能教学时,通过MOOC的教学模式和教学方法完善课堂教学,注重内容的实用性和新颖性,适当穿插新方向的内容,目标是将难学、枯燥、难理解的问题,变得易学、有趣、易理解。从学生反馈来看,这些方法起到了积极的实际效果,有效地提高了学习积极性。

【参考文献】

[1]udacity的人工智能导论课程网[EB/OL].https:///course/cs271.

[2]王萍.大规模在线开放课程的新发展与应用:从cMOOC 到xMOOC[J].现代远程教育研究,2013(03):13-19.

[3]国家精品课程资源网[DB/OL].[2013-04-22].http://.

[4]徐明,龙军.基于 MOOC 理念的网络信息安全系列课程教学改革[J].高等教育研究学报,2013,36(03).

[5]王文礼.MOOC 的发展及其对高等教育的影响[J].江苏高教,2013(2):53-57.

[6]李青,王涛.MOOC:一种基于连通主义的巨型开放课程模式[J].中国远程教育,2012(3):30-36.

第4篇

关键词:智能时代;会计人才;高校

纵观现如今人们的生活,智能产品已经无处不在,正一步步的改变着大众的生活方式,比如一部智能手机就可以处理很多业务。许多行业也进入了智能化工作时。就会计领域而言,以德勤为首的四大会计师事务所相继推出财务机器人来完成基础会计工作,给会计行业带来了巨大的挑战。

一、智能时代对传统会计工作的影响

(一)改变了会计工作方式,提高了工作效率

近几年的时间里,需要会计人员处理的工作因为智能化的发展同样发生了变化,企业通过建立财务账套系统,日常发生的发票开具、费用报销、凭证填制等业务都可以在财务软件上操作,期末账簿和报表可自动生成;货币结算时也可以通过互联网进行转账。简单的会计工作由于这些变化摆脱掉时空的束缚,不仅可以缩短会计人员的工作时间,工作效率也能有很大的提升。

(二)会计人员工作岗位发生变化

财务机器人的应用取代了处理基础财务工作的人员,使会计人员免于重复基本业务。更多的会计人员将转型到有价值的财务分析、财务决策以及其他管理岗位中。这就需要财会人员具备商务数据挖掘、财务数据分析处理、财务决策和企业管理等能力,能对报表和数据进行深刻解读,提取数据背后的信息,并把这些信息变为对企业经营策略的制定有用的信息。

(三)降低了财务风险,财务数据更加精准

智能机器发生错误的概率微乎其微,未进入智能时代前的会计工作中会有大批量的财务数据需要进行人工处理,不但枯燥还及易出错。人工智能在会计领域的应用保证了会计信息的真实和完整,而且还可以快速选取各种决策所需的相关数据和信息,大大降低了以往人工分析数据差错、数据不全面和数据分析结果滞后造成的财务风险。

二、智能时代会计人才培养存在的问题

(一)会计学专业课程设置存在缺陷

1.财务核算类课程比重偏大。目前大多数大学的会计学专业课程都侧重于财务会计,不够重视财务分析与财务管理,会计核算类课程多,且课程之间重复的内容比较多,这种传统的以财务会计为中心的课程体系已经不适应智能时代对会计人才的需要。2.缺少数据分析课程。智能时代下,财务机器人的应用会使会计数据自动生成,无需会计工作者进行手动计算。公司的财务分析、决策和其他管理工作会需要会计人员来进行,但目前会计学专业缺少数据分析类相关课程的设置,几乎没有学生拥有对财务数据的分析能力。3.理论知识的传授多过实践能力的培养。很大一部分大学的会计学专业都强调理论教学,对实践教学重视不够,导致很多高校学生毕业以后不能把所学的知识很好的应用到会计实际工作中。4.跨学科类课程设置不足。学科交叉是智能时展的主流方向,要把复合型会计人才列为当前各高校的培养目标。而目前,与其他专业学科设置课程整合是会计课程体系没有涉及的领域,各高校的会计学专业毕业生不能实现智能时代对会计复合型人才的需要,只掌握了单一的会计知识。

(二)缺少对学生自学能力的培养

会计是为社会生产活动服务的,必将随着社会的发展而不断变化,所以学生只靠在学校获取的知识是远远不够的,但目前高校教师的传授知识的方式只是讲授这一种,学生没有任何思考过程,只是把知识听了一遍,并不能使他们的自主学习能力有所提升,导致学生在工作中不能很好的适应环境、内容和工作方式等的变化。

(三)应用型师资不足

会计是实践较强的学科,若教师缺少实践经验,就不能很好的培养学生的实践能力。目前很多高校没有重视对应用型教师的培养,而是一味的鼓励教师进行学术研究,这对培养企业需要的会计人才极为不利。

(四)缺乏职业素养教育

职业素养是从业者按照职业岗位要求养成的行为习惯和良好作风,它是工作人员在从事其专业相关的活动中所表现出来的综合素质。会计职业素养就需要每个会计工作人员对会计这个职业有着崇高的理想和信念,遵守会计行业的纪律,履行其责任与义务,不断提升自己的职业技能,对这份职业充满兴趣,并保持良好的工作态度。目前高校对会计学专业学生的培养只停留在知识教育层面,忽视了对会计职业素养的教育,教学方法和考核方式缺乏多样性,各高校毕业生还没有实现智能时代对会计职业素养的要求。

三、智能时代会计人才培养改革策略

(一)完善会计学专业课程体系

1.减少财务核算类课程比重,增加数据分析类课程。高校在制定会计学专业人才培养计划时,要减少会计核算类课程所占的比重,增加管理会计、财务分析、风险分析、财务管理以及内部控制等课程比重。同时像财务分析、数据处理、挖掘业务数据这类有助于提升学生数据分析能力的课程需要增加到必修课中,以提升会计人员的数据分析能力。2.增加实践类课程,鼓励学生顶岗实习。高校不能仅限于传统的理论教学,与会计有关的实践课程的比重需要提高,比如用友、金蝶在财务中的应用,大数据与可视化在会计学中的应用,企业风险分析案例等课程,为了增长实战经验使学生的实际操作能力有所进步。还要与会计领域中已经开展智能化工作的企业进行深度合作,让学生到真实的企业会计工作岗位参加实习,积累工作经验,更好地将理论与实践结合,保障学生毕业后能更好地适应智能化的工作模式。目前市场需求的会计人才与高校培养的会计人才不一致,高校可以通过调查企业对会计人才的需求方向来培养符合市场需求的会计人才。同时高校还应该定期聘请合作企业的优秀财务工作者为学生开设智能时代会计知识的讲座,提高学生对智能会计工作的了解。3.开设学科交叉课程,注重复合型会计人才培养。随着移动互联网、大数据、人工智能、云计算等新技术在会计领域的应用,会计人员的综合素质必须适应市场的需要,会计人才不仅要有会计理论知识,还要掌握诸如管理学、经济学、金融学、法学、统计学、数据分析以及计算机程序设计等相关知识;不仅要具备会计业务处理能力,还要具备创新、团队沟通、组织协调、判断决策、持续学习等智能机器难以复制的能力。因此,在高校会计学专业开设学科交叉课程,培养复合型会计人才至关重要。具体做法是,在公共基础课程模块应开设人文素养、计算机编程和数理统计类课程,对学生进行厚基础、宽口径的培养。在专业基础课程模块应开设经济管理、金融、财经法规和会计职业道德类课程,融入思政元素,培养学生一定的协调管理能力和良好的会计职业价值观。在专业核心课程模块应该增设大数据会计分析、大数据财务决策、新技术与经济一体化发展等课程。

(二)创新教学以及考核评价方式

高校要不断更新教育理念,应以学生的创造性思维为中心,努力提高学生的自主学习能力,加强培养自主解决问题的能力,实施以教以学生为本,教师主导的教学模式。可以利用互联网上的慕课、微课采用线上线下结合、小组讨论、案例分析、实践操作、竞赛等多种教学方法鼓励学生积极参与教学过程,以此增加独立思考的机会,对学生形成良好的终身学习习惯有很大的好处。同时,学习不只是结果考查,要重视对过程的评价,把对学习过程的考评比例提高。可以采用提高平时作业质量、课堂表现在课程学业成绩中的比重,还可以将学生参与小组讨论、操作演示、课后与老师互动等情况的表现纳入考核评价范围。

(三)建设应用型师资队伍

高校会计专业教师在会计人才培养中担任重要角色。智能时代下,会计工作方式发生了巨大的变化,相应的使会计学科体系的内容也出现了改变。作为引导者,高校会计专业教师应自发的地学习与智能时代相关的理论知识和实践知识。与此同时,高校也应该积极为教师提供学习新知识的渠道,可以聘请实务界人工智能专业人员为教师开设大数据、人工智能、信息技术、财务共享等培训讲座,开拓教师的视野,提升教师的理论水平;还可以分批选派教师到行业内优秀的企业进行挂职锻炼,在企业工作中了解人工智能对会计工作的改变,练习操控人工智能进行会计工作,教师要不断地学习实践来适应智能时代,为后续培养适应智能时代的高素质会计人才提供有力保障。

(四)强化职业素养教育

会计学专业是按照企业对会计人员的需求而设立的专业,满足并且符合经济社会以及会计行业的发展要求是各高校培养会计人才的首要目标。智能时代的到来,以往的会计核算能力就已经不是会计人员的核心竞争力了,对会计人员有了更高的职业素养要求。1.培养学生的管理能力。智能时代已经不再需要财务会计,逐渐变为对管理会计的需求,高校也要考虑这一点,提高学生的综合管理能力。作为一名企业的财务管理者,既要拥有一定的会计专业知识,同时还要具备沟通、团队协作、分析研判以及决策等能力。高校可以开展模拟企业管理竞赛或开设模拟企业管理课程,通过搭建标准工作流程让学生感受企业财务部门管理层的日常工作,以及管理人员的工作内容。还要鼓励学生通过参加社团和学生工作组织来锻炼自己的组织管理、团队协作和决策等能力。2.提升学生的创新意识。高校要使学生感受到良好的创新氛围,为学生搭建好创新平台,让学生积极参加“互联网+”大学生创新创业竞赛,指导学生申报大创项目。此外,教师引导学生开展科研项目,在科研中发现创新点,提高教学质量,学生的创新意识也能得到培养,开拓视野,让学生紧跟会计行业发展变化的步伐。3.加强学生的会计职业道德教育。虽然目前高校已经开设会计职业道德的相关课程,但社会上的会计造假案例仍不断出现,因此在高校还应进一步强化会计职业道德教育,从源头入手,在学生时代就要让他们了解职业道德的重要性和违反职业道德的严重的后果,树立正确的会计职业道德观,提高辨别是非的能力、抵抗诱惑的能力,自觉抵制不良社会风气,维护会计的职业尊严,促进良好的会计道德观的形成。

四、结语

智能时代会计人才培养问题已成为我国人才强国战略的重要组成部分。在人类的不断进步下,社会管理领域也会被智能科技产品一步步的占据。因此,智能时代下会计人才培养问题的研究也不是一劳永逸的,培养教育会计人才的内容也要不断进步,使智能技术不断为会计工作带来便捷。

参考文献:

[1]陈小芹.人工智能时代会计人才培养模式[J].商业会计,2019,657(09):127-129.

[2]吴媛媛.人工智能时代会计人才培养新模式探究[J].时代金融,2018,717(35):192.

第5篇

人工智能的教育本体:教育的变与不变

从本质上讲,人工智能技术是信息技术革命的集大成者。自从托夫勒1970年写出《未来的冲击》,信息技术革命越来越快,概念越来越多,没有停止的迹象。仅从近五年来看:大数据、数据科学、生命信息、工业4.0、物联网、新硬件时代、机器人、互联网+、人工智能,表面上概念你方唱罢我登场,但内在逻辑一直没有变:从单项技术走向全面融合,从局部应用走向全面工具化,而人工智能至少在目前看来是集大成者。硬件上物联网的成熟、软件上高可用性和动态数据库的成熟、生物学上神经科技的进展、数学上网络算法的应用、材料科技上纳米和感知材料的进展、信息科技上芯片和云技术的快速进步。从物理世界到混合世界,再到比特世界,人工智能技术刚刚开始,但人们基于过去工业革命的经验,明确感到这是临界点的来临。

STEM 成为后人工智能教育的不动点:应对科技的变化,教育的变革一直都在进行且与科技的发展互为因果。从彼得・蒂尔对教育的质疑,到创客热潮在美国教育中的掀起,事实上,STEM教育是美国对过去概念化的“实用主义”教育和“通识教育”百年争论的落锤之音。起源于杜威和哈钦斯的那场争论,恰恰是工业革命已经明确成型后的两种教育理念的争论。之所以今天的美国已经很少争论到底是实用主义还是通识教育,是因为美国的科技已经进入到一个新的阶段。教育是一个组织行为,一个围绕未来10年不变的知识、20年不变的技能、30年留存的体验的稳定的复杂社会经济形态,因此不那么容易被颠覆。恰恰是科学、技术、工程、数学(STEM)构成了工业时代(数理化)和后工业时代(文科、理工科)中的不动点,在物理学和几何学中,不动点对于系统的稳定和概念的一致性非常重要,而目前的STEM教育,不仅仅是一个概念的东西,而是旧技术时代向新技术时代过渡的“不动点”。在这个不动点体系中,新的侧重开始后,原有的教师和学科体系以及支撑可以平稳切换,不至于导致教学秩序的混乱。

元学科、应用学科和副科发生结构性的变化。由于人工智能的出现,使得复杂计算和系统计算以及简单的人机交互计算工具化全面超越人类,对技术基础这个原有概念的教育的分歧越来越大。人工智能视野下学科概念如果表述成元学科、应用学科与素质学科,那么教育学科的概念的持续性还能以最大公约数继续运行:以数学、物理、化学等元学科为代表的学科,在今后的教育中更加重要并将作为筛选人的条件。而应用科学:(生物、地理、信息、劳动)学科,将着重项目制学习、体验学习,成为培养人的目标;社会科学(历史、哲学、思想品德)将来的重点在于综合应用,批判性思维学习,更加侧重学科的来源和发展;而综合素质类(音乐、体育、美术)将从副科走向前台。@样,围绕STEM的教育,人工智能下的教育体系还是一贯的科学(元学科)、技术(应用学科)、工程(素质学科、社会学科、管理学科)、数学(逻辑、数学学科)。

人工智能技术对学科的影响:越理性,越感性

数学:传统的工业时代的数学,其训练方法是数值计算,其指向是力学计算,这种侧重至今还非常浓厚。随着知识库的普及和共享以及计算工具的进化,越来越少的人将来从事传统的工程计算行业,而正宗的工科专业越来越向着专业化和高端化演化(如学材料的将来的进入门槛很可能是博士)。但是,人工智能今后用到的大量的数学以及人与人打交道用到的计算机数学,统计学基础的数学,这方面中国数学还停留在工业时代。美国学生从高中就开始问卷处理和微积分的学习,大学数学更加有用的是方程组、统计学等。数学是一个典型的年龄相关性学科,一定要从小学,而且转向数值和算法类的学习,从偏向材料计算的高等数学方向,转向偏向矩阵计算的统计数学方向,逻辑学、几何学和统计学成为三个数学学习的支柱。

物理:有一位著名的物理学家回顾过去物理百年,发现一个有趣的现象:“力”这个概念,在物理学上看,已经不是一个原始的变量了,能量和质量才是,为什么我们的老师还在使用这个概念呢?那是因为在机械时代,“力”是最容易理解的组合概念。在工业革命前后的几百年直到今天,物理学教育的重点还是偏向传统力学计算方向,从中小学来说就是牛顿力学。然而随着工业时代的结束,人们更容易见到的力学概念不再是机械和天体,而是转向社交网络、计算机图像、信息变量、生物体和电子学以及更容易接受的能量、时间维度。数学老师们转向统计学的同时,物理老师应该考虑从牛顿力学转向量子力学和热力学甚至时空维度,这些对于孩子未来的人生更是基础,而通过物理学进行基础的科学实证的训练以及科学观测和数据处理,才是物理学最基础的作用和价值体现。不然,人生什么年龄都可以去学物理而不必非要从未成年时代去学。

元科学化学:中美物理学和化学都是选择性的,但比较中美化学教育,却发现有很大的不同。美国高中化学就允许且必须使用带有功能性计算的计算器,而中国大学生都没有这方面的训练。也就是说,随着化学和生物化学要求越来越高、知识点越来越多,设法绕过烦人的记忆而走向逻辑,是美国学习化学的方向,这点也值得我们注意。另外,化学的侧重由从偏向无机化学方向的基础化学,转向偏向生物和有机化学方向甚至与物理相结合的量子规律,是化学学科的重点。例如,很多美国的大学录取要看高中生在化学创新方面的实践,能创新的往往是生物化学。

外语:工具性的外语逐渐失去市场,形式节奏上的美学、逻辑学角度的词源学、社会学角度的语言学、心理学角度的语义学成为外语复兴的落脚点。另外,似乎从来没有人将计算机程序当作外语来教,事实上,随着工具性的外语被人工智能取代,计算机程序语言很可能成为一种外语,而很多软件人才是学外语出身的,也不断印证这个结论。

语文:可以预料的是,随着工具性的人工智能的出现,原先学习语文的工具性的方法(如语法),逐渐将退出语言学习(包括外语),而作为母语的语文之所以在工具化人工智能时代还得到重视,最重要的理由也许是仪式感的表达:回到经典、回到表达、回到应用、回到美学。

除了以上学科教育的重点随着技术经济必然发生变化外,学科学习的醒悟和内在逻辑将更加重要,学科历史、学科逻辑、学科故事将替代题库训练,因为作为计算的精确性除了特殊人才的培养外,将让位于工具和人工智能,而人要考虑体验和持续学习的兴趣和逻辑。学科学习之间还将朝着融合的方向发展,应用学科和元学科的分离意味着应用学科更加朝着整合的方向发展:地理、生物、科技等融合课程,朝着综合应用发展。

人工智能技术对教育技术的改变:从工具到空间

随着人工智能的发展,也许目前花里胡哨的信息技术将隐身后台。课堂上也许看不见信息化了,师生在课堂层面体验将会越来越好,越来越贴近自然:看不见计算机的信息化,距离教育更近而不是技术更近。

学校之所以存在是因为学校为学生模拟了一个高度抽象的比真实世界还真实的教育世界。因此,未来的校园从改变世界的信息模版角度,将更加强调与客观世界的互动、映射和高度抽象。

美国的大学录取是更接近人工智能手段的个性化录取,而学生选拔是更接近大数据角度的GPA(平均成绩点)。从培养角度,学生画像比GPA更加个性化地从个体角度描述学生的个性特征,学生的学习行为、实践行为、创新行为,在全地域、全信息、全自动、全过程的记录下,将更加全面地反映学生的全貌。智能实验室和智能校园的方向,将来是基于个体的专业学习和评价。

与学生相对应的教育行为画像,将侧重于联系社会、联系科技、联系家庭、联系团队,从重复性劳动变为创造性劳动。

而学校的管理行为将演变成支撑技术:支撑数据、支撑品牌、支撑环境。今后的教育将出现越来越专业和自由的教师,越来越职业的校长。

在教育政策上,由于全国性的数据和人工智能的使用,教育测评将更加专业化、教育本体化(而不是被测评机构和排名所左右),教育选拔将更加科学化和长期化,短视模式随着计算方法和智能评估的进展而迅速被迭代掉,衡水模式将逐渐退出历史舞台,未来应该筛选更应该上清华大学的人和更应该培养好每一个想学习的人。即使仅从功利教育目标来看,教师个体经验也逐渐让位于人工智能和大数据,教育重心从教育哲学属性逐渐走入教育科学属性;而被恐惧绑架的教育所强调的教育的筛选功能,逐渐将重心转向教育培养功能,个体成功的培养目标,逐渐转变成为未来视角的社会价值角度;教育回归人与人的本质关系和专业培育孵化的社会职能,功利性和工具性减弱,过程幸福成为教育者追求的目标。教育者由工匠逐渐转型为艺人,教师由于工具化的替代,将会越来越有尊严和个性,而不是越来越像工具。

“人创造”的价值逐渐凸显,教育的价值在于“创造人”

柯洁在被人工智能的计算机打败之后,接连战胜外国围棋高手,刷了一下存在感并表示:“与机器下棋没意思”。同样,在工具制造时代,如果从质量和精度考虑,无疑机器越来越超过人,然而手工的红木家具、手工的艺术品、手工的食品、甚至手工的衣服和汽车,比起无论从什么角度来看的机器人制造的东西,都越来越贵,人也越来越愿意采购。“人创造”的价值凸显,是体验经济产业升级的一个标志,人工智能时代也不能例外。因为,“有意思和不可复制”才是人消费的高级时代。

不同于机器代替人的重复劳动的趋势,教育与学校会替代机械的班级成为人与人关系的场所,在这个场所中,机器越来越像人来代替人的高级状态,而人越来越摆脱工具性、摆脱重复性,更具艺术性和创造性。研究教育的历史会发现一个普遍的现象,就是随着工具性的增强,反而是班级规模的缩小和师生比的扩大,这也印证了:人毕竟要与人打交道,教育是一个个性化的活动。C器代替人意味着更多的时间人会回到家庭陪同孩子,这在美国已经持续发生了50年,几乎多数的女性甚至男性在孩子成长过程回到家庭(如果他们算教师的话,教师比例更大)。在学校里未来的师生比会持续增加,教育更加不再计较投入产出,而将演变成一种创造性的职业。

杜威在研究工业化革命后的教育中,提出教育的目标更加集中地体现在教育本身之中,教育即生长(教育的目标就是让教育继续下去)。随着工具化的人工智能代替越来越多的教师的重复性劳动,教师的幸福指数越来越高,更多的和更合适的师生比使得学生得到更加专业的呵护和培养,幸福指数也得到提升。教育让生活更美好将逐渐实现,教育即生活的前提条件是教师不再是指标的工具,学生不再是考核的工具。

第6篇

【关键词】智能技术 电气自动化 控制系统

计算机科学技术的一个重要分支是智能技术,智能技术的实现是依托计算机系统,通过模拟人工智能,促使机器做出智能化反应。目前,智能技术在电气自动化控制系统中已经得到广泛使用,有效解决了传统技术难以解决的难题,电气自动化控制系统的安全性和稳定性有了极大提高。鉴于此,要在未来发展过程中积极推行智能技术,加大在电气自动化系统中的运用力度,加快我国电气行业的发展进程。

1 智能技术运用效益的评价

智能技术功能的有效发挥可以帮助人们完成远程监控,对电气自动化控制系统实现在线监测。将智能技术应用于电气自动化控制系统中,自动化体系建设资金投入大大降低,运营效率也会显著提高,并且可以接受并且完成更多不同的任务,目前,已经得到各行业的实践认可。智能技术在电气自动化系统中的应用水平,受到计算机技术的直接影响,原因在于自动化系统主要依赖智能技术完成生产过程和电气运行的在线监测。工业生产过程中如果生产问题能够被及时发现,并且提交给管理部门,这样可以从根本上帮助企业消除安全隐患,避免不必要的经济损失,进而提升企业经营效益。由此可见,智能技术应用于电气自动化控制系统中可以促进企业健康稳定发展。

2 电气自动化控制系统设计

2.1 架构设计

在电气设计的角度分析,电气自动化控制系统的设计较为复杂,需要涉及多个学科和领域的知识,这就要求程序员在掌握过硬专业技术能力的同时,还要扎实掌握专业的电气知识,设计人员工作过程中要经常与编程人员共同深入实践进行操作实验,熟练掌握操作过程,分析操作要点,预防操作不当,并且针对易引起操作不当的部分予以改进。对于电气编程,编程人员首先要学习计算机理论,掌握专业的计算机语言,才能够编写出科学的智能化控制程序。电气自动化控制系统与控制程序息息相关,自动控制可以大大减少人工控制时间,充分利用智能技术更是可以提高电气设备运行的稳定性。系统流程如图1所示。

2.2 功能设计及应用

电气自动化系统的智能数据采集技术,让人们告别了人工数据控制,数据的采集可以方便利用终端设备和控制平台实现,并且第一时间记录下采集的数据,输入到自动化设备中执行动作,自动化控制效率得到了大大提高。

电气自动化控制系统中智能监控技术和预警技术是核心技术,由于电气设备运行过程中不需要人工巡查,智能技术则成为电气设备运行期间的唯一安全保障。电气自动化设备借助于智能监控技术能够实现自动预警,确保设备始终处于安全稳定运行状态,避免发生重大安全事故。

电气自动化控制系统应用的另外一项重要技术是智能故障录波技术,电气设备运行过程中可以对设备故障录波和记录,并且能够智能捕捉波形,提高了电气自动化控制系统运行科学性,省去了繁琐的人工故障记录,提高了维护效率。

3 总结

综上所述,电气自动化系统中应用智能技术,有效提高自动化设备运行的安全性和稳定性。本文针对当前智能技术进行评价分析,然后以工业电气为研究对象,对电气自动化控制系统架构及功能应用进行分析,试图为之提供行之有效的可行性建议。实践证明,随着科学技术的进一步发展,更多新型的技术将会应用到电气自动化控制系统中,电气自动化控制系统将会向着更好的方向发展。

参考文献

[1]徐典友.浅析人工智能在电气自动化中的运用[J].信息通信,2015(01).

[2]王海杰.论工业生产中电气自动化重要作用及趋势展望[J].科技展望,2015(03).

[3]任铭.电气自动化控制中的人工智能技术研究[J].中国科技投资,2013(11).

[4]潘正昊.气工程及其自动化技术下的电力系统自动化发展分析[J].科技创新与应用,2017(10).

[5]徐建俊.基于“双证融通”的高职人才培养课程新体系的构建――电气自动化技术专业[A].第6届全国高等学校电气工程及其自动化专业教学改革研讨会论文集(上册)[C].2009.

作者简介

马逸然(1996-),山东省济南市人。大学本科学历。山东科技大学。研究方向为电气工程及其自动化。

第7篇

不久前,教育部公布了2018年度普通高等学校本科专业备案和审批结果。全国高校共新增本科专业2072个,我省高校共新增66个本科专业,它们不仅体现出高校专业热门度的起伏,更折射出社会对于人才需求的变化。

纵观今年新增的本科专业,有几大门类吸引目光:新文科、新农科建设风生水起,人文与科技更多的“融合”,意味着传统意义上基础学科和应用学科的界线开始变得模糊。数据科学与大数据技术专业继续成为热门,加上今年新开设相关专业的196所高校,目前,全国已有近500所学校开设此专业;35所高校首次设立人工智能专业,这意味着,高校开始体系化培养人工智能行业后备军。与幼儿养育相关的专业继续增设,这不仅是因为全面二孩政策的实施,更是由于人们越来越重视对下一代的培养。

“新增专业弥补了我省有关专业的布点空白,进一步优化了专业结构。”省教育厅高教处副处长王国银介绍,此次省属高校新增专业主要围绕数字经济“一号工程”、战略性新兴产业、高新技术产业和万亿产业开设,这些专业瞄准国家战略需要和社会经济发展急需,进行创新型、复合型、应用型人才储备。

夯实基础

新文科、新农科未来可期

作为近年来高等教育中最时髦的词汇之一,新工科对于考生和家长来说已经不陌生了,但如果说起新文科、新农科,很多人可能就要打个问号。

去年10月,教育部等部门决定实施“六卓越一拔尖”计划2.0,在基础学科拔尖学生培养计划中,首次增加了心理学、哲学、中国语言文学、历史学等人文学科,“新文科”概念浮出水面。今年4月,教育部、科技部等13个部门正式联合启动“六卓越一拔尖”计划2.0,全面推进新工科、新医科、新农科、新文科建设。

新文科“新”在何处?打破旧壁垒,跨界寻方法,归纳真规律,新文科意味着对传统基础学科的一次重新整合。

“相对于传统文科,新文科有两个特色。”南开大学传播学系主任陈鹏说。其一,新文科是问题导向的,新文科面对的是社会发展变化中的新现象、新问题、新变化,有些现象和问题是人类历从未遇到过的,如大数据、区块链、5G、人工智能等,需要突破传统文科的框架,采用新方法、新视野去探索新理论、新规律。其二,新文科为了寻求对社会和人类自身的研究,需要通过“跨界”方式进行革新,这种“跨界”不仅仅发生在文科的各学科之间,甚至出现在文科和理科、工科、医科等学科之间,需要多学科之间的交叉和深度融合。

当前,清华大学、中国人民大学等高校开设的人文科学实验班,西安交通大学、华东师范大学等高校开展的学院式教学模式,都被视为我国新文科建设的重要经验。一位资深文科研究专家表示,当前,文科与其他学科有一些结合,比如考古学和技术结合,就形成了科技考古;信息技术和艺术结合,就形成了艺术设计的网络化等,但还远远无法满足现在社会的需求。新文科就是一种有效路径。

2018年4月,浙江大学召开文科大会,提出面向2035年发展目标和“文科十条”,进一步推进文科发展强主流、上一流。省内其他高校也纷纷积极为新文科创建搭建平台。浙江工商大学整合资源打造文科综合实验教学中心,打造跨学科综合性实验教学平台;浙江农林大学推出新文科求真实验班,帮助学生打牢知识储备金字塔的稳固塔基,再渐次进入专业学习,形成坚实塔身和更高耸的塔尖……

在浙江大学传播研究所教授、博士生导师邵培仁看来,建设新文科,其实也是对传统文科的反思。他指出,新文科有利于构建立足中国文化土壤、具有中国特色,具备整体性、包容性、互动性、共享性特质的面向全球、面向全人类的大文科。

不难看出,未来新文科相关专业或将成为热门。不仅如此,使用文文互鉴、文理交叉、文工融合的思维方法解决问题,还将为高校人才培养和评价体系带来新变革。

除了新文科,新技术的出现也让一些专业被赋予了新的内涵,比如新农科。

当前,随着生态文明建设的持续推进,生态学、环境科学等专业毕业生越来越受欢迎。今年,杭州师范大学就新增了生态学专业。该专业相关老师介绍,随着国家对生态学专业人才的需求增多,生态学专业人才培养规模逐渐加大,未来掌握生态学及植物学、动物学、微生物学、地理学等基础知识、分析方法和应用技能的人才会很抢手。

“浙江是‘两山’理论诞生地,‘农’字头的专业发展空间很大。”浙江农林大学主要负责人表示,“新农科”建设是乡村振兴实践、高等教育改革、人才需求变化和社会经济进步的必然选择,原先注重高度专业化、技术化的教育教学方式和人才培养模式已无法适应新时代农林高等教育的新需求,亟需探索实现农科学生全面发展的“新农科”建设之路。

顺应趋势

大数据、人工智能纷纷开班

顺应当下人工智能行业的热潮,今年新增的热门本科专业,均与大数据、人工智能、机器人等信息技术关键词相关。

梳理发现,数据科学与大数据技术专业在短短三四年间,从无到有,并一跃成为热门专业。2015年度的审批结果中,北京大学、对外经济贸易大学、中南大学3所高校成为首批获批设立该专业的高校;2016年度又有32所高校设立该专业;到了2017年度,获批设立这一专业的高校数量达到250所;加上2018年度新增的196所,目前,共有481所高校开设这个专业。

今年,我省有湖州师范学院、宁波工程学院、宁波财经学院、浙江大学城市学院等9所高校新增备案数据科学与大数据技术专业。一位专业课老师表示,社会在不断发展进步,现在的一些“新专业”也许尚无足够的办学经验,但可能恰恰是未来社会发展的需求所在。

在新增专业中,人工智能专业的热度也在逐年递增。继去年杭州电子科技大学、浙江理工大学成为我省首批开设智能科学与技术专业的高校后,今年,我省又有一批高校在人工智能人才培养上“摩拳擦掌”,积极增设相关“硬核”专业,改进人才培养思路。

浙江大学今年新增机器人工程和人工智能两个专业,还将在竺可桢学院新设图灵班。入选图灵班的学生可以在计算机科学与技术、人工智能、信息安全三个专业中确认专业。从入学开始,每位学生可从学院的优选导师库中选择一名学业导师,还将有国外顶尖大学的教学大师和科研领军人物到浙大给图灵班学生单独授课。

除了浙大以外,省内其他高校也在结合各自特色专业,构建人工智能专业的课程体系。比如,浙理工把专业发展方向和学校的优势结合起来,重点在智能穿戴等领域取得突破,还专门成立纺织工业人工智能研究院;浙工大结合了安防产业、智慧交通、“城市大脑”等浙江省的优势领域,与企业合作,开拓专业方向。

“打造新专业特色成了各高校的当务之急和立足之道。”杭州电子科技大学人工智能学院副院长吕强说,针对人工智能人才培养带来的新挑战,杭电人工智能学院提出了多方协同育人的理念,并将其作为教学改革项目进行探索,“人工智能对数理基础要求较高,我们在数学课程中增加了矩阵论、离散数学等原来研究生学习阶段才会有的课程内容,努力帮学生打好基础,在暑假,我们还计划举办夏令营,邀请企业名师进校园培训,共同开发专业课程等。”吕强说。

值得关注的是,人工智能已经从独立的专业教育,扩展到更广的层面。今年,浙江财经大学向非计算机类专业学生推出了人工智能“微专业”,其中包括了Python程序设计、高级数据库、机器人编程与实践等课程。“人工智能在信息金融、金融科技等领域有非常多的应用场景。财经类专业学生的数理基础比较好,这些知识将为他们的未来打下更好的基础。”浙财大教务处副处长石向荣说,可以预见的是,未来社会需要大量具有具体专业背景,同时又掌握人工智能相关知识的复合型人才。

紧盯儿童

医教类专业持续扩招

当下,伴随着“全面二孩”政策施行,各大医院产科分娩量走高,目前助产人才无论从数量上还是质量上都难以满足社会需求,临床急需本科层次助产人才。助产学专业于2016年首次开设,当时仅有4所高校获批开办此专业,2017年有20多所高校新增此专业。

近两年,我省先后有浙江中医药大学、温州医科大学、杭州医学院等3所高校新增了助产学专业。温州医科大学的助产学专业设在护理学院,目标是培养掌握护理学和助产学的基础理论和护理技能,具有基本的临床护理和临床助产能力,在各类医疗卫生保健机构中能够从事临床助产、围产期护理,以及母婴保健工作的高级助产人才。今年,台州学院、温州医科大学仁济学院也开设了助产学专业。

一位从事医学教育多年的教授表示,当前社会大众对医疗的需求,不仅体现在量上,更体现在质上。虽然现在医疗行业整体水平保持着上升态势,但人们对优质医疗的需求增长更快,所以仍然感觉医疗资源紧缺。

不久前,由中国工程院院士郑树森担任院长的浙江树人大学树兰国际医学院揭牌成立。作为树兰国际医学院首个设置的重点专业,临床医学专业面向全国招生100人。学院拥有国际医学专家、博士生导师等组成的高水平师资队伍,以及一批高水平的基础医学与临床医学实验平台。

同样,面对强烈的社会需求,温州医科大学今年增加了普通本科计划数。临床医学(定向培养)从30人增加到60人,面向萧山区等30个县(市、区)招生;麻醉学专业从61人增加到93人,其中省内普招增加16人。

值得一提的是,今年,浙江中医药大学新增食品卫生与营养学专业,这也是我省开办该专业的高校(不含独立学院)。该校招生办相关负责人介绍,食品卫生与营养学作为一门综合性的交叉学科,涉及预防医学、食品科学、营养学等多个学科,在提升健康素养,保障食品安全,促进疾病的营养学防治完善健康保障方面大有作为。

纵观今年我省的新增专业,从抚养、就医,再到教育,与幼儿养育相关的专业成为热门,除了新增儿科学、中医儿科学、助产学等专业外,学前教育、小学教育等师范类专业的报考也很火爆。

今年,杭州师范大学增加小学全科教师、中学紧缺学科教师定向培养招生计划。杭师大教务处副处长、招生办副主任顾海春介绍,今年,学校将继续面向杭州、宁波、温州、绍兴、金华、衢州、丽水、台州、舟山等地区定向招生255名,提前录取,补学费,包就业。同时,复建音乐学院,增加音乐学(师范)、舞蹈学(师范)专业招生计划。

第8篇

【摘 要】高中信息技术学科课程标准规定现行高中教材包含了一个必修和五个选修模块,然而这些选修模块在实际的学科教学中应该如何操作呢?笔者根据《普通高中信息技术课程标准》基本要求以及对当前本省信息技术学科选修课的开设情况的分析,提出一些想法和建议,以期实现选修课程的价值。

关键词 课程标准;信息技术;选修模块

高中信息技术教材内容也在变化,版本不一。有些学校在如何选取选修课开设的内容、如何开展选修课的学习、选修课的评价以及如何教学思考等多方面还存在着很多需要解决的问题和困惑,下面就这些问题谈谈个人对高中信息技术选修课教学的看法及建议。

一、信息技术选修模块基本概要

高中信息技术选修部分强调在必修模块基础上关注技术能力与人文素养的双重建构,是信息素养培养的继续,是支持个性发展的平台。模块内容设计既注重技术深度和广度把握,又关注技术文化与信息文化理念表达。在选修部分的五个模块中《算法与程序设计》是作为计算机应用的技术基础设置的;《多媒体技术应用》《网络技术应用》《数据管理技术》是作为一般信息技术应用设置的;《人工智能初步》是作为智能信息处理技术专题设置的。为增强课程选择的自由度,五个选修模块并行设计,相对独立。

二、信息技术选修模块开设意义

高中信息技术课程设计,采用了“必修+选修”的结构。必修模块为全体学生打下必要基础,选修模块充分尊重学生的个性化的发展倾向,为学生将来的专业化发展提供了平台。这样的结构形式,解决了在实际教学中学生兴趣差异性问题。

三、信息技术选修模块教学困境

问题:选修模块教学存在的普遍问题

新课程改革突出了“以学生为本”的基本理念,高中选修课的设立也正是这一理念的具体体现,它为每一个学生提供了适合其个性化发展的课程资源。选修部分有五个模块,如果任由学生自己选,肯定会出现都有人选的情况,如果仍以传统的班级组织形式来进行授课的话,显然是无法实现的。因此绝大多数学校的做法是由老师为学生选择某一个或者两个模块来上。学生没有发言权、没有选择权,选修课上成了变相的必修课,选修模块在这样的开课模式下就失去了开设意义和价值。

思考:选修模块实现学生自主选修难在哪里?

1.高考的现实冲击着学生的兴趣

从目前的现实情况看,无论高中课程如何改革,高考都是回避不了的话题。现在我省信息技术课程列入高中学业水平测试,为了保证学生顺利通过信息技术学业水平测试,由学校统一选修某一模块,而且多年同一模块。另据ICT教育论坛网站调查统计,大部分学校选修了《网络技术应用》模块,很少部分学校开设了《算法与程序设计》或《多媒体技术应用》,相对来说开设《数据管理技术》模块和《人工智能初步》模块的学校极少。

2.师资力量不足制约着选修课程的开设

与必修模块中的内容相比,选修模块内容专业性更强,教师是课程实施的关键。按照课程改革精神,五个信息技术选修模块在实际教学中要真正全部开设,在客观上就要求一定数量和具有一定专业素质的教师。另外,选修模块中的“人工智能初步”、“数据管理技术”等都有一定难度,对教师的专业水平要求更高。

四、信息技术选修模块教学问题策略

1.认识到位,体现学生兴趣所在

首先,教育行政部门应关心和重视信息技术学科教学,真正体现新课程所倡导的提高学生信息素养、信息能力的目标,能够切实提出相关要求,如规定每所学校至少开设两门选修课,并且逐年都应有所变化等。应鼓励学生根据自己的喜好和需求选修五个模块的任意一个模块。对于将来有理科趋向的学生可将“算法与程序设计”,“网络技术应用”,“数据管理技术”作为首选。对于将来有文科取向的学生则可将“多媒体技术应用”,“网络技术应用”作为首选。对于热爱智能化技术的学生则可选修“人工智能初步”。信息技术教师在上课时,凡涉及选修课程某一模块知识,要对该选修课作适当介绍,激发学生选修该门课的兴趣和积极性。

2.多方投入,提高教师教学水平

选修课程的实施,对信息技术教师是一个巨大的挑战,不仅承担着对学生进行选课的指导责任,而且还要适度把握选修模块的深度,选修模块能否得到有效的实施,师资力量是一个不可忽视的因素。必须从制度上保障教师接受再教育,从教育机构、财政投入等方面创造条件,为教师的专业化成长提供必要的服务。另外,教师还要由外部支持转向内部自律,努力学习新知识,开发教学资源,向研究型教师转变。

3.互助合作,充分利用已有资源

对于条件较好的学校,师资力量比较雄厚,有实力开发一些校本课程或教学资源,这时对地理位置相近、彼此通达性较好的一些学校,可开展校际间选修课程资源的共建和共享,广泛开展交流,教师可以在学校间互相兼任选修模块教学任务。

五、结束语

总之,在信息技术选修课与教学思考中,如何权衡诸多限定性因素的影响与制约,切实体现高中信息技术课程的教学目标和评价目标,是一道十分严峻的课题。信息技术教育的路途漫长而又艰辛,而我们信息技术教育工作者的幸福就在于心中常有希望、脚下勇于探索。

参考文献

[1]教育部普通高中信息技术课程标准[M].北京:人民教育出版社,2004

[2]江苏省普通高中信息技术课程改革实施指导意见(试行).江苏省教研室.2006.12

[3]林奕生.信息技术选修模块实施略谈