发布时间:2023-09-24 15:54:32
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的智能制造技术的概念样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
机械自动化是新时期全新生产力的代表性技术之一,主要指企业利用相关的自动化技术,使企业处于不间断生产的营运中。随着科学技术的日益发展,机械自动化技术得到迅速地发展,在各行各业发挥着重要的作用,因此受到社会各界的广泛关注[1]。在机械制造企业中,运用机械自动化技术不仅可以提高企业的工作效率,而且可以提高企业各项工作的精准度,提高机械制造业产品的质量,因此,在机械制造企业中,机械自动化技术得到广泛地应用。近几年来,我国机械制造业的机械自动化技术虽然得到迅速地发展,但与国外发达国家相比,我国机械制造业的机械自动化技术水平还比较低,如何加快机械自动化技术的进展,提升其内在的空间,是机械制造企业的当务之急。
2.机械自动化技术在机械制造业中的应用
2.1柔性的自动化
竞争日益激烈的市场要求各大制造企业的应变能力要强,必须要能根据市场的需求进行及时调整自身产品的种类。市场所产生的每一个变化都有可能是一种新的商机,因此笔者认为现阶段的柔性自动化,敏捷制造是其今后的发展趋势。其的主线就是生产高度柔性化产品。MFS的应用研究结果显示,MFS是一种中批量的多品种的生产模式,其在提高企业生产率、确保交货期、提高信息完整可靠以及产品质量等方面均有较好的经济效益[2]。随着实践的不断深入,以往无人化的全自动化的概念逐渐被更新,在自动化的系统之中,人的作用受到越来越多的关注,机械自动化日益向小型化以及多样化的方向转移,因人的作用日益增强,所以对人的素质以及技能方面的要求也在不断提高,企业在发展机械自动化技术的过程中,同时要重视培养员工的机械自动化知识。
2.2集成化
计算机的集成制造是由若干个紧密联系的分系统来组成,可分为制造自动化的分系统:包括加工中心、计算机数控、自动装配等;工程技术信息的分系统:计算机的辅助设计、计算机工艺的辅助设计、数控程序的编制等;质量信息的分系统:包括计算机辅助质控、三坐标的测量机等;管理信息的分系统:包括物料、经营、财务、人事管理等方面的管理。
伴随着现代科技的飞速发展,商品制造技术不再是简单的对商品进行设计以及制造,它已经从最原始的商品概念设计发展为一系列商品的集成活动,所以在另一个层面上来说制造技术是一个把信息处理与功能体系结合起来的多功能技术,也可以称为智能制造技术,这个是一种融合了自动化技术、人工智能、制造技术的先进技术,他不仅具备了某一部分专家的智能功能,还能对自身的运作状态进行监视,能够及时地对故障进行预测并且在出现故障后马上做出应对措施[3]。相较于传统的制造系统,智能制造技术最先进的一点则是它有着自主组织、适应、学习能力,是以往每一种制造技术所不能具备的。目前,已经取得一定成果的智能技术有:智能机器人、智能式故障诊断以及维护系统、制造单元控制系统、智能式CAD以及智能式CAPP,这些研究在全球范围内都引起了一定的反响。智能制造系统的运用从最原始的市场分析、产品设计制造以及加工过程控制、产品生产计划及其材料处理、企业信息管理、设备维护等技术自动化方面,延伸到其自主组织能力与制造环境的集成化层面。总而言之,智能制造系统能给制造技术带来质的飞跃,并且其前景广阔,因此,在制造过程中有必要将其融入自身机械制造环境中。
2.4虚拟化的应用
虚拟化的技术通常包括当代制造工艺、计算机的图形学、人工智能、信息与多媒体技术等方面,其中主要以计算机的系统建模及仿真技术为根本,而构成的一种综合多门学科知识的系统技术[4]。虚拟制造通过运用计算机仿真与信息技术,以全面仿真实际活动中的制造过程、信息以及人事物等,便于发现问题以及选取相应的预防对策,进而实现产品的一次成功制造,缩短生产周期,降低生产成本,提高市场竞争力的目标。
摘要:物联网技术是智能家居的核心技术支撑,智能家居是物联网技术在智能家庭中的应用体现。当前网络和智能技术高速发展融合的背景下,智能家居作为具有巨大市场潜力的新兴产业,无论是IT终端制造厂商、互联网运营商、服务商和传统家电制造商均把它视为新的增长爆发点。本文通过对物联网技术在智能家居领域的应用来说明物联网的运用对智能家居系统技术进步、功能扩展、服务、达到满足人们对安全、舒适、方便和绿色环保的需求的作用。
关键词 :物联网技术;智能家居;应用
一、物联网概述
物联网的英文描述为“The Internet ofthings”,即“物——物相连的互联网”[1][2]。物联网的基础核心仍旧是互联网,它在传统互联网人与物互通的基础上,实现物与物互通,是互联网发展的应用和业务层面的拓展。其主要特征是全面感知、可靠传递和智能处理。全面感知是指利用RFID、二维码、传感器等随时随地获取和采集物体信息;可靠传递是指通过无线网络和互联网的融合将物体信息准确传递;智能处理是指利用云计算、数据挖掘及智能识别等人工智能技术对海量数据信息进行分析处理,完成对物体的智能化控制。
物联网的概念在1999 年被提出,是在互联网的基础上,利用射频识别技术、无线数据通信技术等构造出的一个实现全球物品信息实时共享的实物互联网。2005 年11 月17 日国际电信联盟《ITU 互联网报告2005:物联网》,重新提出了物联网的概念[3],并对其进行了扩展,不仅局限于RFID技术。2009年1月28日,IBM 首次提出“智慧地球”的概念。随后,美国将物联网列为振兴经济的一个重点。此外,欧洲、韩国、日本等国家也把物联网产业作为振兴国家经济的一个核心产业[4]。2009年8月,温总理提出了“感知中国”的概念,自此物联网被列为国家五大新兴战略性产业之一,在中国受到了极大的关注[5]。
物联网是在网络技术、传感技术及通信技术日趋成熟的条件下出现的,它是一种体现物与物之间新型关系,将所有物品通过射频识别、二维码、无线数据通信等智能感知技术与互联网连接起来,的具有智能化识别、控制与管理功能的网络系统,其中可能涉及多种信息传感设备,比如射频识别装置、二维码扫描装置、红外感应装置、各种传感器等。
物联网从产生之初到现在,已经被应用到众多领域,如智能交通、智能消防、工业检测、老人护理、食品溯源和情报搜集等。毫无疑问,物联网也将对智能家居领域产生深远影响。基于物联网的智能家电必将为人们提供未来生活方式的全新解决方案。将物联网技术应用到家用电器中,可以使家电具有智能感知及信息网络功能,能使家庭中的家电设备之间信息交互、家电设备与产品和用户之间也可以进行信息交互,方便人们的日常家居生活,使生活方式更加合理,生活模式更舒适、健康、环保。
关于物联网的概念,目前没有统一的标准。但是综合来看,物联网是一种实现物-物相连的智能网络,它主要依赖于智能感知技术、无线通信技术、遥感技术、智能数据处理技术[5]等,是在互联网的基础上发展起来的。物联网从产生之初到现在已经被应用在越来越多的领域,如物流、交通、产品安全监测、路灯管理、智能电力[6]、医疗[7]等。智能家电与智能家庭的发展,用户新增的需求,使广大厂商和研究人员发现,智能家居也是物联网发展的一个重要领域。[8]IT终端制造厂商、互联网运营商、服务商和传统家电制造商正在进行此方面的研究,也逐渐推出基于物联网技术的产品。物联网技术使得家电在智能化控制的基础上,实现了商品与设备的关联及设备之间的关联,展现出了一种更加智能化的便捷、健康、环保的家居场景。
二、智能家居系统概述
目前,智能家居系统没有一个统一的定义或者概念,百度百科的解释是:“智能家居(英文:smart home, home automation)是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将与家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统。能提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。”
2012年4月5日中国室内装饰协会智能化委员会《智能家居系统产品分类指导手册》把智能家居系统产品共分为二十个分类包含了:控制主机(集中控制器)、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控、防盗报警、电锁门禁、智能遮阳(电动窗帘)、暖通空调系统、太阳能与节能设备、自动抄表、智能家居软件、家居布线系统、家庭网络、厨卫电视系统、运动与健康监测、花草自动浇灌、宠物照看与动物管制。
由此可知,智能家居是一个系统的概念,融合了网络信息技术(有线、无线)、智能家电技术、自动控制技术等技术,将家庭平台上与信息相关的信息设备、智能家电和家庭安保装置,通过综合布线技术连接到一个家庭智能化系统上进行集中的或异地的监视、控制和家庭事务性管理,并保持这些家庭设施与住宅环境的和谐与协调。这些功能都是通过智能家居系统中的家庭网络控制来实现的,通过家庭总线系统提供各种服务功能、并和住宅以外的外部世界相通连。智能家居系统通过网络化的综合管理家中设备,来创造一个优质、高效、舒适、安全、便利、节能、健康、环保的居住生活环境空间。[9]
笔者认为智能家居强调的是整体的环境,包括健康环境、人机互动的环境、安全的环境、经济的环境,以用户体验为核心的整体环境的创造。
健康的环境包含舒适的温度、优质的空气、适宜的水温等;人机互动的环境主要指智能化的体验、便捷的人机互动的界面和高集成度的人工智能应用;安全的环境包括家庭安防监控和网络环境自身的安全;经济的环境主要体现在系统本身的经济合理(如系统价格)及家庭应用的经济合理(如节水、节电、扩展方便)。
三、物联网技术在智能家居领域的应用
物联网技术主要包含三个层面,即感知层面、网络层面和应用层面。物联网常见的感知技术包括RFID 技术、二维码技术、传感器技术、摄像头、gps 等;进行网络传输的技术主要包括3G、Wi-Fi、蓝牙、接入网等;计算技术主要是指进行海量数据处理的技术包括数据挖掘和数据推送。网络层面包含电信运营(移动、有线、卫星通信网络等)、物联网运营(信息中心、管理中心等)、平台、软件、系统设备、系统集成及终端设备。应用层面包含环境监测、智能交通、智能建筑、智能家居、远程医疗、城市管理、公共安全、工业监控、绿色农业、资源管理等。
物联网技术在智能家居的应用包含了家居环境控制、家庭安防、智能家电等多个领域,一个完全的智能家居系统按照前文所述包含了20个子系统。在物联网技术支撑下,用户可以将家用电器之间组成一个物物相连的网络,然后在互联网的基础上,对家庭中的设备、产品进行监控;在家电或者产品发生故障时能够通过网络自动进行短信、电话等智能报警;家用电器能够智能地记录用户的生活习惯和生活方式,利用数据挖掘、情境感知等技术为用户进行合理的信息推送,实现人与家电、环境、产品的自然交互。
物联网技术贯穿智能家居从终端设备的研发、系统集成及运行到用户使用的全过程。从技术角度来看,物联网智能家居技术的核心技术是通讯或控制协议,涉及硬件接口和软件协议两部分,可以简单的划分为无线与有线技术。
有线技术包含了RS485、IEEE802.3(Ethernet)、EIB/KNX、LonWorks、X- 10、PLC-BUS、CresNet,AXLink 等。其中X-10,PLC-BUS 是专门针对智能家居行业制定的通讯技术。X-10电力线载波技术在上世纪70年代产生,在我国2000年前后引入并开始推广,该技术可以在电力线上通讯,免于智能家居系统部署的时候另外布线。该技术对电网运行环境依赖性较高,由于设备成本、技术稳定性及信息安全等问题市场局面一直难于打开。PLC-BUS 提高了一定的通讯稳定性,但是难以保证持续稳定的质量,对电网环境的依赖性仍旧很强,使用成本和信息安全的问题无法根本性解决。尽管电力线载波技术已经有40多年的技术积淀,但是由于成本和技术瓶颈,智能家居产品在有线技术开发方面不断地进行新的尝试,各种技术的优缺点暂时不能满足客户的需求,也许这也是今天多种有线技术并存的原因。
无线技术包含了RFID 智能识别技术、蓝牙(Bluetooth)、WiFi、Zigbee、ZWave、Enocean等。RFID是一种通过无线电波进行数据传输的非接触式的自动识别计技术,它通过无线电信号进行数据读写并识别特定目标,具有无接触、识别速度快、自动化程度高、抗干扰、识别多个物体等优点。RFID 是20 世纪90 年代兴起的,发展至今被认为是自动识别领域中应用最广泛的、识别效果最好、最重要的一项技术。[8] WiFi作为低成本、最易与互联网连接的智能家居技术解决方案被广为应用。ZigBee ZigBee 技术的特点包括:低功耗、成本低、低速率、时延短、高容量、工作可靠、高安全等。ZigBee的设计可用于支持特定应用软件的开发和部署。应用规范和ZigBee 的堆栈相连,让制造商更快、更容易地推出特别针对某些应用的无线产品。可用的应用规范包括家庭自动化、智能能源、通信、医疗、远程控制(RF4CE,或称消费电子射频)、建筑自动化和零售服务。Z-Wave主要针对家庭和小型商用建筑的监控和控制,广泛适用于照明控制、安全和气候控制。其它应用包括烟雾探测器、门锁、安全传感器、家电和远程控制。[10]
物联网智能家居系统从技术和应用的角度来说稳定性、可拓展性(灵活性)、安全性及经济性都是重要衡量指标。目前为止,无论是有线技术还是无线技术都没有一个得到广泛认可的技术标准。有线技术基于专用通讯线缆,某种程度上来说其稳定性较好,但是可拓展性较差(系统扩展、改良需要重新布线)、成本高也是其难以跨越的门槛。与之相比无线技术的高速发展在可拓展性(灵活性)及经济性方面都具有优势。稳定性和安全性方面两者各有千秋,都在不断发展完善。
四、国内智能家居的现状和问题
智能家居在中国经历了近6 年的起步阶段,发展速度缓慢,主要是因为没有投入大量的资金,开发技术短期内也不成熟。[9]目前整个智能家居行业发展主要的成果还是反映在智能化的摄像头、电视、电冰箱、传感器、手机、空调、医疗设备、穿戴设备等一系列终端产品,及一些分散的智能家庭控制子系统的研究上,比如,三表抄送系统、门禁系统、可视对讲系统、灯光控制系统、窗帘控制系统等。以“智能家居”系统作为产品目前仍没有在市场上大规模出现,基本停留在概念阶段。
随着物联网技术的日趋成熟,不断融入智能家居,其内容发展越来越丰富,想象空间越来越大。但由于早期开发技术的不成熟,智能家居发展至今仍没有普及,在技术、需求、经济适用性等方面仍有诸多的问题有待解决。
1.技术层面
如上文所述,由于稳定性、经济性、安全性、可拓展性等原因,当前无论有线技术还是无线技术都没有一个得到广泛认可的技术标准,处于百家争鸣的阶段。由于没有开放的协议、统一的接口和数据库,使得技术协调和系统整合比较困难。各设备之间、子系统之间难以实现互联、互通和互操作,使得各个子系统之间形成“信息孤岛”,且兼容性和可拓展性较差,难以实现真正智能化,也给系统集成商、服务运营商和客户使用带来困扰。
笔者认为,当前网络和智能技术高速发展融合背景下,智能家居作为具有巨大市场潜力的新兴产业,互联网相关企业无论IT终端制造厂商、互联网运营商,还是服务商和传统家电制造商均把它视为新的增长爆发点。在巨大的市场利益驱动下,各种技术创新、改良都向着好的方向发展。但相关标准的建立、接口的统一,需要一个适应淘汰的过程。它无法由哪个组织或部门单独完成,需要在市场竞合过程中由相关企业、科研院所、相关协会等组织在用户的认可下共同努力实现。
2.需求和经济适用层面
目前,智能家居产品在满足用户需求和经济适用方面存在的主要问题是,产品较为单一(受技术等原因限制)且价格高昂。笔者认为任何产品成功最核心的原因,是建立在满足客户需求的基础之上。对于智能家居而言,客户的需求具有多样性、时效性、经济合理性等特点。如前文所述,智能家居强调的是整体的环境,包括健康环境、人机互动的环境、安全的环境、经济的环境,以用户体验为核心的整体环境的创造。要满足上述需求,智能家居产品在技术满足的前提下,要能够做到解决方案多样化、系统扩展便利化、用户体验简单化、产品成本最低化。解决方案多样化与系统扩展便利化是指,系统方案灵活多样,既可以提供整体解决方案,也可以分部、分步提供。从客户角度来说,最好能够与不同品牌的系统解决方案兼容。客户经过初步体验后能有更大的选择空间,同时在增加新系统或改良现有系统时不会给客户造成过多不便。用户体验简单化是指产品的控制界面或人机交互界面应想用户所想,尽可能的“傻瓜”与智能,尽最大可能的从用户角度出发。产品成本最低化是指在保证质量和功能完整性的前提下,尽可能降低生产、开发成本,在合理的利润空间下投放市场。否则完美但溢价过高的产品是很难得到用户认同的。
五、结论
本文通过对物联网技术在智能家居领域应用的简要分析认为,智能家居强调的是整体的环境,包括健康环境、人机互动的环境、安全的环境、经济的环境,以用户体验为核心的整体环境的创造。基于物联网技术的智能家居需要从技术层面、满足用户需求和经济适用改善提高着手。技术层面的提高目前主要需要完成标准的建立和接口的统一,在市场竞合的过程中由相关企业、科研院所、相关协会等组织在用户的认可下共同努力实现。需求和经济适用层面,需要企业在以用户体验为核心的基础上不断努力提高。使物联网的运用在智能家居系统技术进步、功能扩展、服务方面,最终达到满足人们对安全、舒适、方便和绿色环保的需求。
参考文献
[1] ATZORI L, IERA A, MORABITO G. The In?ternet of Things: A survey[J]. Computer Net?works,Elsevier B.V., 2010, 54(15): 2787-2805.
[2] MIORANDI D, SICARI S, DE PELLEGRINIF, et al. Internet of things: Vision, applicationsand research challenges[J]. Ad Hoc Networks,Elsevier B.V., 2012, 10(7): 1497-1516.
[3]陈海明, 崔莉, 谢开斌. 物联网体系结构与实现方法的比较研究[J]. 计算机学报, 2013,36(1): 168-198.
[4] 钱志鸿, 王义君. 物联网技术与应用研究[J].电子学报, 2012, 16(5): 1023-1029.
[5] 韩卫国, 雷英敏. 关于物联网技术在企业中的应用[J]. 信息与电脑, 2011, 6: 98-99.
[6] XIAO-DAN Z, SHU-JIE Y U E, WEI-MINW. The review of RFlD applications in globalpostal[C]//2006, 13(4).
[7] LIN J, SEDIGH S, MILLER A. A GeneralFramework for Quantitative Modeling of De?pendability in Cyber-Physical Systems: A Pro?posal for Doctoral Research[C]//2009 33rd An?nual IEEE International Computer Softwareand Applications Conference. Ieee, 2009: 668-671.
[8]祁文娟.基于物联网技术的智能家电管理模型设计与验证.
[9]郭之成.浅谈云计算技术在物联网智能家居系统中的应用.
一、工业4.0的概念及现实意义
近年来,为提升制造业的智能化水平,德国政府推出了“工业4.0”计划,美国制造业产生了“工业互联网”概念,我国也于2015年5月推出了中国版的“工业4.0”规划──《中国制造2025》。除此以外,日本、韩国、法国也不甘落后,分别推出“再兴战略”,“新增动力战略”和“新工业技术法国”方案。工业4.0概念,正在引发全球性的关注。
德国2013年4月报告《保障德国制造业的未来:关于实施工业4.0战略的建议》,报告认为:在制造业领域,技术的突破和发展将工业革命分为四个阶段。前三次工业革命分别是机械化、电气化和自动化、简单智能化,而目前物联网和制造业服务化宣告着第四次工业革命——工业4.0的到来。第四次工业革命是以深度网络化为重要特征的。推动工业4.0的原动力是互联网。工业4.0的实施过程,实际上就是制造业创新发展的过程。在工业4.0时代,虚拟世界将与现实世界相融合,物联网、服务网、数据网将取代传统封闭性的制造系统,智能工厂的定制通过App完成,到那时,我们的消费方式和消费内容将彻底被颠覆。
德国工业4.0,不仅为中国的工业生产提供了一种全新思路,而且与我国正在实施的工业化与信息化深度融合战略,不谋而合。德国工业4.0,与《中国制造2025》的核心点是智能制造。连接,是工业4.0不变的主题词,推进制造业向智能化转型,也是从互联开始的。将信息技术与互联网思维融入到制造业中,通过物联网实现产品制作过程中各个环节的信息互联和大数据的收集与处理,在搭建智能网络的基础上实现横向、纵向和端对端的高度集成,在生产形态上,从大规模生产转向个性化定制,使整个生产的过程更加柔性化、个性化、定制化。
工业4.0的核心是单机智能设备的互联,不同类型和功能的智能单机设备的互联组成智能生产线,不同的智能生产线间的互联组成智能车间,智能车间的互联组成智能工厂,不同地域、行业、企业的智能工厂的互联组成一个制造能力无所不在的智能制造系统,这些单机智能设备、智能生产线、智能车间及智能工厂可以自由地、动态地组合,以满足不断变化的制造需求,这是工业4.0区别于工业3.0的重要特征。
工业4.0是数据。数据是区别于传统工业生产体系的本质特征。在工业4.0时代,制造企业的数据将会呈现爆炸式增长态势。所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业4.0和制造革命的基石。数据又可分为产品数据、运营数据、价值链数据和外部数据。通过对采购、仓储、销售、配送等供应链环节上的数据采集和分析,将带来效率的大幅提升和成本的大幅下降,并将极大地减少库存,改进和优化供应链。利用销售数据、供应商数据的变化,可以动态调整优化生产、库存的节奏和规模。此外,基于实时感知的能源管理系统,能够在生产过程中不断实时优化能源效率。
工业4.0是创新。工业4.0的实施过程实际上就是制造业创新发展的过程,制造技术、产品、模式、业态、组织等方面的创新将会层出不穷。
第一是技术创新。未来工业4.0的技术创新在三条轨道上进行,一是新型传感器、集成电路、人工智能、移动互联、大数据在信息技术创新体系中不断演进,并为新技术在其他行业的不断融合渗透奠定技术基础。二是传统工业在信息化创新环境中,不断优化创新流程、创新手段和创新模式,在现有的技术路线上不断演进。三是传统工业与信息技术的融合发展,它既包括信息物理空间(CPS)、智能工厂整体解决方案等一系列综合集成技术,也包括集成工业软硬件的各种嵌入式系统、虚拟制造、工业应用电子等单项技术突破。
第二是产品创新。信息通信技术不断融入工业装备中,推动着工业产品向数字化、智能化方向发展,使产品结构不断优化升级。一方面,传统的汽车、船舶、家居的智能化创新步伐加快,如汽车正进入“全面感知+可靠通信+智能驾驶”的新时代,万物互联(IOE)时代正在到来。另一方面,制造装备从单机智能化向智能生产线、智能车间到智能工厂演进,提供工厂级的系统化、集成化、成套化的生产装备成为产品创新的重要方向。
第三是模式创新。工业4.0将发展出全新的生产模式、商业模式。在生产模式层面,工业4.0对传统工业提出了新的挑战,要求从过去的“人脑分析判断+机器生产制造”的方式转变为“机器分析判断+机器生产制造”的方式,基于信息物理系统(CPS)的智能工厂和智能制造模式正在引领制造方式的变革。
第四是业态创新。伴随信息等技术升级应用,从现有产业领域中衍生叠加出的新环节新活动,将会发展成为新的业态。进一步来讲,在新市场需求的拉动下,将会形成引发产业体系重大变革的产业。就目前来看,工业云服务、工业大数据应用、物联网应用都有可能成为或者催生出一些新的产业和新的经济增长点。制造与服务融合的趋势,使得全生命周期管理、总集成总承包、互联网金融、电子商务等加速重构产业价值链的新体系。
第五是组织创新。在工业4.0时代,很多企业将会利用信息技术手段和现代管理理念,进行业务流程重组和企业组织再造,现有的组织体系将会被改变,符合智能制造要求的组织模式将会出现。基于信息物理系统(CPS)的智能工厂将会加快普及,进一步推动企业业务流程的优化和再造。
企业组织管理创新,也是两化融合管理体系标准的重要内容,两化融合管理体系的九大原则、四大核心要素、四个管理域中都涉及如何围绕企业获取可续的竞争优势,不断优化企业的业务流程和组织架构。
二、温州企业对接工业4.0的现状分析
改革开放之初,温州小商品制造以其强大的生命力抢占全国市场,创造了温州制造业的辉煌。如今温州电气、服饰、鞋业、汽摩配、泵阀五大支柱产业在全国同行业中具有一定的制造实力与规模。
温州制造能否走上工业4.0快车道,重现过去的辉煌,摆在了市政府和各企业的面前。正值市政府重振温州实体经济,打造时尚产业,转型温州制造发展之路时刻,迎来了世界新一轮工业革命,应该说这是一个很好的难得的机遇。据悉,在温州制造向温州智造跃迁的路上,温州民企中也涌现出了一些拥抱工业4.0的急先锋,他们结合企业自身特征,选择适合自己的智能化制造路径,成效初显。
乐清康泰电器是一家集科技型、外向型、规模型于一体的电子企业,经由市科技局、温台生产力促进中心牵线,与台湾管顾钜群联盟和华宇企业管理公司开展合作,进行生产线的诊断与优化,改善电气设备、车间管理,达到精益生产和智能制造管理,获得了“施耐德供货商大奖”。
报喜鸟服饰从2014年开始布局工业4.0智能化生产,通过近一年的规划、实施、试运行,第一条智能化生产线已经改造完成,通过工业4.0智能化生产,克服服装个性化生产品质和生产效率降低的瓶颈,率先实现“个性化缝制不降低品质,单件流不降低效率”这一服装定制的最高生产目标。接下来,报喜鸟将以工业4.0智能化生产为支撑,打破个性定制难以规模生产的瓶颈,做深全品类个性化定制领域。计划到2017年,定制将占公司自有品牌总销售额的50%。
然而,由于温州的制造业大型企业少,以中小型企业为主。工业制造技术在工业2.0-3.0的阶段上。在走向工业4.0的路上,仍有许多制约条件。
1.温州企业工业设备大多数处于中低端技术水平,需要完成自动化改造,达到工业3.0阶段,才向工业4.0智能化冲刺。工业设备技术条件仍待提高,工业技术基础薄弱制约企业发展。
2.工业4.0需要高级管理人才和高级技能人才。除了大型企业有一定高级人才聚集之外,中小企业人才普遍不足。人才招聘困难,聚集困难,流失容易,是中小型企业的通病,不管是高级管理人才,还是高级技能人才,中小型企业普遍短缺,这是掣肘企业发展的重要因素。
3.工业技术设备需要升级换代,技改资金如何融资又是一个难题。中小企业资本金大多带有沾亲带故因素聚集的、家族式的居多。虽然资金的聚集比较容易,安全性有一定的保障,但是聚集带有很大的排外性,一般只限于家族成员入股,不利于扩大化再生产,不利于企业设备升级换代。
4.从目前看,许多中小型企业主及企业高级管理人员对工业4.0的认识只略有知晓,认为目前还用不上。很多企业还不知道工业4.0状况。企业界对第四次工业革命的认识不足仍然存在,舆论宣传不够,行业协会理论水平不足,无力引导企业了解,掌握工业4.0知识。
三、温州发展工业4.0的建议
虽然,制约温州工业4.0发展的主要因素是技术设备先进性不高,高级别人才不足,中小型企业融资的局限性及中小型企业主的认识不足等。针对上述制约因素建议如下:
1.高级人才引进企业实行两条腿走路,即直接引入企业。另一种是引进人才有难度。我们不妨远程聘用,即高级人才可以不在企业办公室上班,却时时在办公的电脑上。人员在国内国外都如在工厂一样,通过互联网就象上班一样解决企业的技术、管理、设计、方案、问题等等,使受聘人员身在家庭心在工厂。为愿意受聘用但又不愿意来温州的人才找到解决办法。
2.政府牵头建立以高校为依托,温州龙头企业参股的科研中心,负责温州企业核心技术的研究开发,既可解决中小企业人才不足,资金紧缺的局面,又能为温州在知识产权研发领域开创成果。
3.普通高校毕业生学非所用严重。高技能高技工人才短缺,亟需培养。温州高校应该多招技能技工专业,对准温州支柱产业,为企业输送人才。
4.出台鼓励企业股份向高管和职工扩张以及允许向职工集资政策,使企业走出家族内部集资的藩篱。引进企业高管、职工的股金,以及债券集资,解决企业融资难问题。
5.成立温州工业4.0指导委员会,实施政府发展计划,制定计划进程,指导分析企业具体方案,解答企业管理技术疑难。
6.根据市十三五规划,制定温州工业4.0中长期发展规划及近期行动纲领,以及温州五大支柱产业的特点,制定优先发展产业和重点扶持的产业,支柱产业紧跟世界先进技术潮流,制定企业工业4.0具体实施方案。
〔关键词〕工业4.0;大数据;云计算;深度融合;CPS
中图分类号:TF089;F426 文献标识码:B 文章编号:1004-4345(2016)03-0023-03
1中国钢铁行业概况
中国钢铁行业近两年来市场低迷,钢价连续下跌。这种情况出现的原因主要归结为:一是中国钢铁产能严重过剩,供需矛盾不断在扩大;二是由钢铁需求行业状况不佳导致钢铁行业的表现低迷。产业集中度过低,竞争力不足,资源极大浪费,加之近年环境污染严重,进一步降低了中国钢铁产能利用能力。自2013年起,钢铁产品市场进入下行通道,去除大环境经济低迷的因素,主要的就是同行业质化竞争的结果。国内钢铁产能过剩,但是依然保持着高端钢进口量的增加,来弥补国内品种结构的不足。由此可见,钢铁制造靠量取胜的时代依然成为过去,质才是未来钢铁发展的关键,即高品质、高附加值的钢铁产品,才是钢铁制造的发展目标。随着新一轮产业变革和技术革命的快速兴起,钢铁制造业转型升级、互联网+的推进加快工业化信息化发展迈入建设智能工厂的历史新阶段,聚焦工业4.0时代的机遇与挑战,两化深度融合是建设制造强国的战略制高点,智能制造[1]是两化深度融合的重要着力点。2016年两会上明确提出今年重点工作之一是聚焦智能制造,争取实现工厂或工序的智能制造示范;钢铁工业要积极推进智能化工厂建设,工业4.0并不仅仅整合制造环节,还要整合设计、服务,即制造业的两端,将整个产业链通过物联网进行信息化。从而可以有效地改造升级传统钢铁产业,整合提升企业管理能力,实现劳动效率的提高、产品和服务水平和效率的提高、采购成本的降低和效率的提高。在工业4.0概念提出后,我国势必将其纳入战略性新兴产业,并相继在各行业采取了一系列政策措施促进其发展。
2工业4.0的概念
2.1工业4.0的定义
德国提出了工业4.0的概念,德国第一次工业革命是蒸汽动力取代了动力,称之为机械化时代;第二次工业革命是电机发明和电能使用,称之为电气化时代;第三次工业革命使用的是RT及数控技术,称之为数字化时代。第四次工业革命是把信息技术和自动化技术结合实现智能化,称之为智能化时代。工业4.0概念即是以智能制造为理念的第四次工业革命,该战略旨在通过充分利用信息通讯技术和网络空间虚拟系统信息物理系统(Cyber-PhysicalSystem)相结合的手段,将大数据和机器联系起来进而使制造业向智能化转型。
2.2工业4.0转变方向
大数据、云计算、智能制造以及物联网等新技术都会应用到工业4.0当中,但是工业4.0根本的驱动力是解决当前行业中面临的各种问题,最终的目的是为了提高企业的整体效率和竞争力。钢铁企业工业4.0转变的方向:1)由要素驱动向创新驱动转变。2)由低成本竞争优势向质量效益竞争优势转变。3)由资源消耗大、污染物排放多的粗放制造向绿色制造转变。4)由生产型制造向服务型制造转变。
3设计与应用
钢铁企业生产管理与控制、研发与服务、采购与销售,实现智能制造模式的创新,很可能通过工业大数据的云平台来承载,同时考虑到中国钢铁企业生产工作流程,有必要将不同的产品订购合同通过集约化生产来降低生产成本,否则产品的经济性就难以满足用户需求,但集约化生产将影响供货时间。为了解决这个矛盾,需要在质量设计、计划、排程、调度等方面进行纵向的CPS改造,其目的是实现“大规模定制”。工业4.0将逐步驱动行业核心领域开放,通过智能制造、深度融合、大数据、云平台、物联网和安全数据交换,实现多个设备、多个工厂、多个系统的协作,从而实现产业集群。以集群化的优势去提升竞争力[2],将会大大提高行业自动化和智能化水平,促进系统升级。钢铁企业4.0创新模式见图1。
3.1智能制造
智能制造技术是在传感技术、网络通讯技术、自动化技术、智能机器人技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行,实现设计、制造和智能化,是信息技术、智能技术与装备制造技术的深度融合与集成。智能化制造的应用在生产中提高了产品质量与生产效率,并做到了减少制造过程物耗、能耗和排放。智能制造技术是信息化与工业化深度融合的大趋势,例如汽车行业机器人焊接工作、首钢热轧产线的喷号机自动喷号工作,以及现今流行的无人仓库管理模式以及唐钢的天车无人值守系统都验证了智能制造给现代工业带来的优势。特别对于天车的无人值守,在设计上对传统的天车系统进行全面改造,添加计划层、控制层以及辅助系统控制的传感器、执行机构等基础层,通过自动化系统生成调度指令,并根据基础设备的参数自动控制天车运行,达到无人化驾驶的目的。同时,智能制造还能够大幅提升天车运行的准确度和平稳性能,减少故障,延长设备寿命,降低天车运行的安全隐患。
3.2云技术
钢铁企业工业4.0中的云计算将大量用通讯系统连接的计算资源统一管理和调度,构建数据中心,利用大数据技术开展工艺过程数据的挖掘分析,实现对核心数学模型参数的动态、闭环优化,提高柔性制造和定制化生产的能力,向终端按需提供服务;同时基于互联网、企业局域网和GSM移动通信网络实现对信息安全、可靠、稳定的传输,满足大数据共享的要求。企业可以基于此建立自己的销售采购平台,比如宝钢有自己的采购电子商务平台,通过设置采购组织与物料、在线交易、服务中心,不仅可以密切关注产品的交易情况,精细化管理,在效率及服务质量上得到大幅提升,更进一层为决策或营销提供精确服务。对于类似于首钢迁钢与首钢顺义分公司的数据共享与生产管控,云技术同样能够实现数据资产向数据资本的转化。
3.3深度融合
信息化与现代工业化的深度结合,是指信息化带动工业化,工业化促进信息化,一种新型的工业化道路。两化融合的核心就是信息化支撑,追求可持续发展模式。集成化、模块化的软件设计理念是目前信息化系统建设的主流方向。企业生产制造与信息化融合,能够在很大程度上推进现代化企业的建设,提高企业竞争力。钢铁工业处在产能过剩的新常态,钢企生产线常常不能满负荷运转。这时有没有可能将空余的产能用来支持快速订货,或者建立某一平台,使用户能像淘宝网购一样,方便地采购钢材,这些都是赢得未来发展机遇需要深入研究的问题。
3.4物联网
钢铁企业通过物联网技术可以进行智能化识别、定位、跟踪、监控和管理,实现信息共享和互联互通,从而可以有效地改造升级传统钢铁产业,整合提升企业管理能力,推动“两化”深度融合[3]。钢铁行业中,通过完善自动化信息化之间的信息交互、全产线物流跟踪和原料库及产品化的无人化管理,实现产线的智能化物流管理,使产品全过程的在线跟踪,一目了然。基于市场要求,首钢迁钢硅钢卷销售流程监控的物联网模式正在调试阶段,正式上线后,将依靠基础自动化系统或物联网等技术获取海量信息,利用云计算和大数据等技术存储、计算和分析数据,通过互联网、物联网,整合物流现有资源,使得需求方能够快速获得服务匹配,得到便捷物流支持,完成对钢铁企业生产、物流、能源和环境的优化管控,从而实现智能化生产管控。
3.5安全数据交换
为了更好地确保用户数据在传输与存储过程中的信息安全,目前大型企业采取了为数据加密的方式确保数据安全。在设计过程中,储存在云中的任何用户数据对于用户来讲都是安全的,对于需要保密的其他用户,这些数据表现出来的是无序化信息状态,其具体内容根本无法获知。例如首钢迁钢目前的文件加密系统,保证了工艺技术的信息的保密性。
4结束语
在当前中国钢铁企业生产经营面临困境,转型升级面临瓶颈,以及政府大力推进中国信息技术自主创新和全面优化信息产业结构、深入推进钢铁行业“两化”融合这一大战略背景下,利用物联网技术在整合提升企业信息化水平、实现精细化、智能化生产管理的同时,有利于促进钢铁企业降本增效、节能减排、转型升级,走新型工业化道路。在这一过程中,要学会用辩证的观点面对工业革命,吸取工业4.0的思想精髓[4],根据钢铁行业和企业的具体情况制定对策,既避免照抄照搬,也不能全盘否定,放眼未来,脚踏实地地以现状为出发点,充分发挥经验的作用,又不被现状和经验所约束。另外,无论是数字化建设还是CPS开发,都会面临方法和理念的改变,要能意识到变化的发生,主动地适应变化,积极地促进工业4.0的发展。
参考文献
[1]傅建中.智能制造设备的发展现状与趋势[J].机电工程,2014(8):960-962.
[2]李云志.“工业4.0时代”的管理架构研究[J].管理观察,2014(8):95-96.
[3]颜志国,唐前进.物联网技术在智能交通中的应用[J].警察技术,2010(6):4
近年来计算机软件开发技术快速发展,其在各行各业的应用中越来越广泛,在船舶设计开发中计算机软件开始应用,软件开始具备集成性,使一套计算机软件就可以集成在一个平台上进行管理操控,大大的提高了设计人员的工作和设计工作效率。
【关键词】软件接口 系统集成 船舶软件 船舶设计
在当今的计算机软件技术环境下,集成设计领域的CAD/CAE/CAM/CAPP/PDM等等软件,再衔接智能数据统计和逻辑运算以及其他数字化子系统模块,建立一套基于船舶报价设计、基础设计、细节设计、生产过程设计、运行信息等完成的系统,此系统能够集成各种语言和数据库的软件,通过系统的不同接口实现对接集成,在船舶的设计应用中实现统一全方位的智能设计。
1 船舶概念设计的定义与特点
船舶概念设计一般是指设计工作者根据多年的经验以及各种设计规范进行确定所需功能,再对船型选型、动力装置、武器系统,空间系统、总体布局等,在集合多种不同的方案后,进行设计初级的系统整体性能测试验证,最终确定最佳的设计方案进行设计施工。船舶的设计通常具备一下几个特点。其一,概念设计。在船舶的设计初期,很多的设计信息是不完整的,大多数是设计者根据自身多年的经验进行初期设计,不确定信息较多,在性能上也需要抽象性信息设计。其二,设计结果的多样性,船舶通过概念设计环节,因为不同设计者的原因往往得出不同的结果,在设计中一个小小的信息参数变动也会出现不同的设计结果,每一个子程序的解算方式有很多种,这样就出现了多种不同的方案。其三,创新性。科技不断的创新和船舶行业技术的进步,技术设计创新是时代的需要,也是势在必行的改革创新。其四,多学科互联性。船舶设计在现代科技的引领下,吸取了不同学科的高端技术,例如结构力学,超声波振动,流体力学,外形以及整体性能学等等,设计者会结合不同学科的技术选取全局最佳设计方案。
2 船舶软件接口开发现状
虽然近些年来,国内的计算机软件开发水平得到了一定程度的提高,同时在各个行业的应用也较多,但是然仍存在较多的问题,在我国国内船舶设计软件上,不同的CAD或者CAM系统之间普遍采用的是IGES数据标准格式来进行数据的转换,但是在转换时仍然会出现部分数据信息的丢失,不能够满足设计人员初始的设计理念。
在国内船舶CAD软件接口的开放上,很多的专业技术人员做了较为复杂的研究性工作,其着重对CATIA软件几何接口的数据结构、存放形式和算法进行了探索,通过CATIA提供的信息数据进行几何接口模块对接,从而能够实现CAD和CAM两种软件之间的数据转换,这样使得设计人员能够在开发时达到预期的设计效果。
在船舶设计初期设计过程中,获取的原始数据信息量非常庞大,数据的正确性也需要反复核对,故此这项也是非常复杂和消耗时间的问题,有技术人员使用语言程序编写了 AUTOCAD接口子程序,它可以将有限的原始研究数据进行可视化操作,能够使得分析人员检测数据正确性,在图形平台中一般使用DXF标准数据接口,直接使图形不经任何转换和复杂操作轻松实现图形快速生产,这种方法也被广泛使用到结构复杂的船舶空间设计中。
在船舶工程软件集成接口研究中,MSC系列的NASTRAN软件与CAD应用集成软件已经实现了计算机辅助集成接口方式对接,实现了实时数据交换,在沈阳的造船工厂通过使用集成软件对接方式实现了船模拟定、船体二次开发,管路电气焊接的二次开放等工作,通过集成接口软件更快更精准的进行了数据的提取,使得船厂节约了造船时间和周期。现代造成工业中集成软件中舰船力学计算和流固耦合分析也广泛得到应用。
3 船舶数字化智能设计系统
在目前我国造船行业中,计算机软件技术的接口集成应用得到了广泛的应用,但是仍然存在部分问题,特别是在软件的开放和集成上,就目前国内技术能力来看,很多的船舶计算机软件集成技术停留在一个单一的阶段,虽然有部分软件实现了接口的对接,但是不能全面的对造船工业的各个工序进行全面的集成,计算机软件在船舶技术的应用中处于一个局部的应用范畴内,特别是在设计和建造的信息、产品数据的管理等方面的集成,处于初级阶段,现代的计算机软件集成应用也是处于船舶制造中的某一个应用工序内,而软件的本身复杂性较高,很多技术人员要花很长时间去摸索软件的功能,一个船舶的制造不是一个单位、一个系统、一个专业参与的,每个单位或者系统都负责不同的工序,计算机软件如果不能实现各工序的制造信息数据共享,就会出现二次开发的困境,因此要打造船舶数字化智能设计系统,要在一个计算机软件内实现各单位,各系统,各专业部分的信息共享,对于在制造船舶时的各个节点、阶段上需要的数据能够及时准确的被相关人员掌握,有利于工作的快速推进。
实现智能化的计算机平台技术,就要求计算机软件能够将船舶的设计者提供的母型船数据库,设备数据库,电子规范验证工具等等系列信息,具备智能的优化功能,实现各合作单位不再受制于地里位置、场地的制约,打破传统的制造技术,快速精准的确定每一个节点和阶段需要的数据和设计者的要求。因此,实现计算机软件在船舶制造智能化的应用较为重要。
4 结束语
在国外船舶计算机软件接口开放应用上已经有较为成熟的理论,并且开发出了系列的软件系统,我国船舶数字化智能设计系统KSHIP是现今能够集成CAD、CAM、CAE等等软件的商用软件,结合船舶的设计制造整个流程和自主开发的系统模块,软件接口,形成了自己的一套完成智能化集成平台,随着科技技术的不断发展,能够现实船舶智能化的集成接口平台将不断被更新,只有依靠科学,不断提高精准、快速、集成系统的计算机软件,才能够实现我国船舶智能化的应用,才能够大力带动我国的船舶制造行业奔向更辉煌的明天。
参考文献
[1]李辉,孙德杰,梁兴国.网络安全分析及安全策略[J].中国水运,2007,5(06),122-123.
[2]谢海燕,熊鹰,孙海涛.计算机辅助船舶概念设计关机技术与发展趋势[J].造船技术,2010(01):43-46.
[3]高峰,崔湘龙,郑龙.船舶工程软件集成接口技术研究[A].06MIS/S&A 学术交流会论文集[C].2006,53-58.
作者简介
胡涛(1983-),男,江西省人。大学本科学历。现中国船级社上海规范研究所工程师。研究方向:船舶软件工程。
制造云大数据
众所周知,人类社会正面临着一场新的技术革命和新的产业变革。那么我们认为互联网+人工智能的时代正在到来。怎么解读人工智能?首先,网络是一个泛在的互联网,包括魍车幕チ网和互联网+人工智能,其核心技术是七类技术深度融合,包括新互联网技术、新一代信息技术、新人工智能技术、新能源技术、新材料技术、新生物技术以及新应用领域专业技术。互联网时代特征总结为泛在互联、数据驱动,共享服务,跨界融合,自主智慧和万众创新。
当然,制造业作为国民经济、国计民生和国家安全的重要基石,正面临全球新技术革命和产业变革的挑战,特别是新一代信息通信技术,核心就是要发展智能制造技术产业和应用。对我国来说面临的五大挑战是:第一要从技术跟随到创新以及到超越,第二要从传统制造向数字化、网络化、智能化转变,第三从粗放型制造向质量效益性转变,第四从资源消耗到绿色制造转型,最后要由生产型制造到生产+服务型制造转变。
其核心问题就是要贯彻创新协调绿色开放共享发展理念,要走中国特色的工业化道路,以创新发展为主题,以制造业提高质量增加效益为中心,特别强化两化融合,而且要推进智能制造主攻方向。
云制造的概念首先是基于泛在网络,其次是借助新兴大制造技术、信息通信技术、智能科学技术及制造应用领域四类技术深度融合。数字化、网络化、智能化作为技术手段,构成一个以用户为中心的统一经营的智慧硬软资源和能力的服务云。这实际上就是人、机、物互联服务,或者是现在提出的工业互联网的概念。
用户通过智慧终端和智慧云制造服务平台能随时随地按照需要获取智慧制造的资源和能力,要对整个全系统全生命周期产业链里面的人机物信息技术自主的智慧的感知,互联协同分析认知和决策控制与执行,促进制造全系统及全生命周期活动中的人组织、经营管理、技术设备三要素及信息流、物流、资金流、知识流、服务流集成优化,形成一种基于法在网络、用户为中心、人机物信息融合。
智慧云模式是什么,手段是什么,业态是什么,特征是什么,实施内容是什么,以及目标是什么都值得探讨。
我们把它叫智慧,因为强调三种深度融合:人物与环境信息深度融合,数字化、网络化智能化的深度融合,工业化和信息化的深度融合。同时,很重要的基于大数据的并行、协同、实时、互联、智能的进行创新。根据这样一个理念所构成的系统,我们把它叫做智慧云制造系统或者简单说智慧制造云。概念模型包含几大部分内容,一是制造资源的能力和资源,这里面包括软的、硬的,包括能力和智能互联产品;二是制造云池;三是制造全生命周期的智慧云。其核心支持就是智慧云制造的平台。
综上,智慧制造云是一种互联网+人工智能时代的模式手段。制造模式是以用户为中心的互联服务协同个性柔性社会化智能制造产品以及服务用户的模式,它的手段就是四类技术深度融合的数字化网络化作为技术手段,构成一个智慧化的人机物环境信息互联系统,体现数字化、物联化、虚拟化、协同化、定制化、柔性化和社会化的产品。
那么智慧制造云、工业云里面的大数据实际上是全系统全生命周期里面的三要素、五个流里不断产生的四个大数据,包含制造全生命周期里面的各种数据,有企业经营管理的数据,有技术产品设备的数据。有结构化、半结构化和非结构化数据,有静态数据、动态数据和实时数据。
智慧制造云大数据的特点,除了四个云以外,和大量、高速、多样、价值以外,还加上了多元符合模态、数据类型异构等。其作用简单来说能精准高效智能地用到全生命周期的活动,促进云制造的智慧化,目标实现产业研制、管理服务效率质量成本能耗,实现产品加服务为主导的随时随地的按需个性化指导。
目前,大数据在感知基础上,有六类大数据关键技术,关键技术在制造云里有新的需求。首先大数据的集成与清洗,就是把不同来源、格式、特点性质的数据及数据源在逻辑上或物理上有机地接入平台并进行新审查和教研,得到干净、一致的数据。第二技术就是大数据存储和管理,采用云存储和分布式存储技术及高吞吐量数据库技术与非结构化数据访问技术,实现运输集中的数据经济、高效、高可靠、容错的管理与服务。第三大数据分析挖掘,从这些海量的随机的数据中要找出有价值的东西,比如说现在分布式计算引擎,数据分析机器学习等,对我们制造云要以应用目标为导向,导出相应算法软件。同时需要建立云制造应用系统定量分析的人工智能分析模型,数据不是直接用的,是通过模型来的。可视化,各种各样数据可视化而且能应用,比如多维数据分析,虚拟现实等,对目前综合处理显示多维数据以及交互需求是非常重要的。其次是大数据的标准和质量,对智慧云多类型标准需求不限,而且交易和交互要作为一个导向。最后就是安全,全生命周期里面要安全,像隐私保护、数据水印以及区块链技术等。
大数据的云化
第三个问题就是大数据云化。直接把大数据迁入模型软件,第二是直接提供DAAS,第三个就是风险,最后一个就是大数据的可视化,基于大数据可视化技术实现智慧制造云里面的风险和显示。
云里面大数据怎么用也值得探讨。第一类是航天产品电缆数据化设计,也就是说把电缆有关的经验数据和综合分析性能数据收集过来,放到电缆数据工程里面,实现了电缆数据化生产的一体化,产生效果后有60%以上研制时间开展产品质量提升。第二类是医药,利用现在制造云里面官方电子病例、医疗等信息系统提取海量临床数据,挖掘药物效用及治疗方法,从而为医药研发提供参考。第三类是航天制造和生产比如博世、力士乐等智能生产。第四类就是维修,比如C919健康管理,需要实时检测大数据中心。根据上面的情况,智慧制造云在大数据当中是很重要的。
最后提点建议。首先当然是大数据已经成为智慧制造云建设和运行的重要资源,如果没有大数据、没有云、没有人工智能,那最后肯定是做不到智慧化制造。而研究实践需要从技术、应用、产业三方面来协调,进行各个层次的技术创新和人才培养。
从技术应用和产业方面,概括性地提几点想法:第一,从技术上要做到重视大数据、信息通信技术、人工智能技术、系统工程技术与制造领域等多种技术的深度融合。要搞大数据,必须要做到这几个技术的深度融合,这是我们的一个观点。第二,离不开云,因此要对面向用户大数据的云服务技术进行研究。第三,要重视基于大数据制造全生命周期里面的新模式、流程、手段的研究。最后,要进行符合共享经济商业模式的技术研究,当然还有安全和相应标准的制定与评估。
从应用角度来看,要“四个突出”。第一要以突出制造特色和行业特点来开展;第二要突出问题导向,问题在哪,竞争力缺点就在哪;第三要突出大数据驱动的智慧云制造管理运行模式、手段和业态的变革;第四要突出三要素与五流的综合集成化、优化和智慧化。
关键词:自动化发展前景;智能化;集成化;虚拟化
现今,自动化已经深深扎根于各个领域。从机械行业发展来看,印刷机械、数控机床、发电设备、工程机械等重头产品前景仍看好。除了这些传统工业领域,该行业将进一步向机光电一体化发展,向光加工、环保这样的新兴领域拓展。本论文主要讲述机械自动化及其应用前景。
1 机械自动化的发展历程
在20世纪初,机械自动化的概念就早早被提出,当时主要只是应用于制冷领域,经过人们更加广泛地使用和推广,渐渐在整个机械制造行业普及开来。20世纪60年代,市场经济以飞快的速度发展,为适应市场的变化和满足市场各方面的需求,可变的自动化的生产加工系统应运而生了,通过计算机技术的应用,实现了机械制造的可变性,因此提高了机械制造的灵活性和可操作性。这种自动化的软件系统基本上不改变制造过程,自动的经验和自动的信息处理与判断分析是通过一定的机械生产设备实现的,不仅如此,还可以通过在管理过程中对这些自动实现进行预期操作。在生产过程中可以实现生产制造的自动化,还极大地方便了生产材料的更换。然而,当时的自动化系统并不能很好地适应现代化企业的生产需求。当前,自动化技术大部分都是在操作过程中的自动化,随着市场竞争越来越激烈,要想在激烈的竞争中站稳脚跟,必须要坚持不懈的努力,持续的创新,抓住机遇,推动自动化技术的发展。
2 机械自动化在机械制造中的应用
2.1 智能化应用
为了跟上经济与科学发展的脚步,机械制造工业对相应的制造技术也提出了要求。在这种技术需求的推动下,机械制造技术得到了相应的改进和提高,并且使机械制造自动化得以应用到实际生产中。机械制造技术在原有基础上不断改进,对于落后的制造加工理念要坚决摒弃,对于旧的技术,要不断开发出新的技术进行更新换代,简而言之,就是取其精华,去其糟粕。同时,对于商品的概念,要有深刻的理解,从而使制造加工方案更加合理,更加完善,制造出精益求精的商品。智能化应用到机械制造中,即将机械制造技术、自动化技术、人工智能技术以及计算机应用技术等多种技术进行结合,通过这些技术的有机融合,渗透,形成一种全新的,综合性的制造技术,从而达到全方位提高机械制造工艺性能的目的。在实际应用中,智能化制造技术不仅可以实现人工智能,还能够对专家或技术人员的思维活动进行模拟。由于智能化技术的特殊性,对于自身行为监控等专家无法完成的工作,利用智能化技术就可以轻松实现。智能化系统具有与专家相同的智慧、逻辑思考能力,可以把专家从繁重的脑力劳动中解脱出来,改变了以前的只能模拟和减轻体力劳动的局面,具有划时代的意义。
2.2 集成化应用
集成化应用在机械制造中是一项全新的技术。集成化技术主要用于实现机械产品制造速度的提升。通过信息化技术的应用,集成化技术实现了机械制造过程的优化,让机械制造过程向着精简化和集成化的方向发展。在机械制造过程中,往往会应用到各个领域的先进技术,如微电子技术、通讯技术等,而这些技术并不是孤立存在的,而是彼此之间相互作用、紧密结合的,于是,新的高新技术也在融合的过程中应运而生,比如目前被广泛应用的计算机辅助技术、柔性制造技术等。想要为了推动这些高新技术的发展与产生,必须充分利用现有的技术和设备,并且进行合理的整合与集成,产生出新的管理应用技术。通过集成化技术的应用,不仅可将生产制造企业内部所有的生产工作、经营管理活动进行整合,使之形成一个完整、统一的整体,还可从原有的机械制造基础上实现柔性生产模式的变革,以人为活动主体,保证企业产品的生产质量,并实现产品生产质量与服务质量的和谐统一。
2.3 虚拟化应用
虚拟制造技术是由多学科相互配合的综合技术系统。包括现代机械制造工艺、计算机图形学、并行工程、人工智能、多媒体技术、信息技术等多种技术。虚拟制造技术以仿真技术和系统建模为基础,利用信息技术、仿真计算机技术对现实机械制造活动过程进行仿真。通过对机械制造过程进行仿真,可以及时发现机械制造中可能出现的问题,制订出相应的解决方案。旧的生产方式下,产品研发和产品试制,必须通过设计和实际的生产试验才能达到试制新产品的目的,开发过程中有很多不确定性,遇到技术难题就要修改设计方案,重新试制新产品,不仅加大了产品的生产周期,还浪费了资源,提高设计成本。而采用虚拟制造技术就可以避免这些现象的发生,仅仅通过计算机来进行模拟和仿真,缩短机械产品开发周期的同时还降低了成本,提高机械产品竞争力。
3 自动化技术在我国的发展趋势
网络虚拟化的制造方式:
网络虚拟制造技术依靠计算机技术、其他交互设备和强大的软硬件功能,通过计算机工作平台,相互协调构建出一个虚拟环境。在这个虚拟的环境中,把人类的知识、人类的技术和人类的感知能力参与其中,从而形成一种全新的人机界面互动形式,对生产活动进行全面的建模和仿真。通过与虚拟世界中的对象进行交互作用,对于产品从设计开发到生产制造的每一个环节进行仿真和模拟。除此之外,还可以对产品性能进行全面模拟试验,对产品的设计和制造合理性、制造周期进行预测。在产品没有生产之前,就对设计的可行性、经济性、合理性进行全面的考核,有效避免不合理的设计和资金投入,从而达到资源的最优化配置。
参考文献:
[1] 陆宁,樊江玲.机械原理[M].清华大学出版社,2012:2.
[2] 何用辉.自动化生产线安装与调试[M].机械工业出版社,2011:12.
作者简介:益聪(1994―),男,陕西西安人,沈阳理工大学本科在读。
随着社会的进步和生活水平的提高,社会对产品多样化,低制造成本及短制造周期等需求日趋迫切,传统的制造技术已不能满足市场对多品种小批量,更具特色符合顾客个人要求样式和功能的产品的需求。90年代后,由于微电子技术、计算机技术、通信技术、机械与控制设备的发展,制造业自动化进入一个崭新的时代,技术日臻成熟。柔性制造技术已成为各工业化国家机械制造自动化的研制发展重点。
1 基本概念
1 1 柔性柔性可以表述为两个方面。第一方面是系统适应外部环境变化的能力,可用系统满足新产品要求的程度来衡量;第二方面是系统适应内部变化的能力,可用在有干扰(如机器出现故障)情况下,系统的生产率与无干扰情况下的生产率期望值之比来衡量。“柔性”是相对于“刚性”而言的,传统的“刚性”自动化生产线主要实现单一品种的大批量生产。其优点是生产率很高,由于设备是固定的,所以设备利用率也很高,单件产品的成本低。但价格相当昂贵,且只能加工一个或几个相类似的零件,难以应付多品种中小批量的生产。随着批量生产时代正逐渐被适应市场动态变化的生产所替换,一个制造自动化系统的生存能力和竞争能力在很大程度上取决于它是否能在很短的开发周期内,生产出较低成本、较高质量的不同品种产品的能力。柔性已占有相当重要的位置。柔性主要包括
1) 机器柔性 当要求生产一系列不同类型的产品时,机器随产品变化而加工不同零件的难易程度。
2) 工艺柔性 一是工艺流程不变时自身适应产品或原材料变化的能力;二是制造系统内为适应产品或原材料变化而改变相应工艺的难易程度。
3) 产品柔性 一是产品更新或完全转向后,系统能够非常经济和迅速地生产出新产品的能力;二是产品更新后,对老产品有用特性的继承能力和兼容能力。
4) 维护柔性 采用多种方式查询、处理故障,保障生产正常进行的能力。
5) 生产能力柔性 当生产量改变、系统也能经济地运行的能力。对于根据订货而组织生产的制造系统,这一点尤为重要。
6) 扩展柔性 当生产需要的时候,可以很容易地扩展系统结构,增加模块,构成一个更大系统的能力。
7) 运行柔性 利用不同的机器、材料、工艺流程来生产一系列产品的能力和同样的产品,换用不同工序加工的能力。
1 2 柔性制造技术柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为:
1) 柔性制造系统(FMS)
关于柔性制造系统的定义很多,权威性的定义有:
美国国家标准局把FMS定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放在其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。中央计算机控制机床和传输系统,柔性制造系统有时可同时加工几种不同的零件。 国际生产工程研究协会指出“柔性制造系统是一个自动化的生产制造系统,在最少人的干预下,能够生产任何范围的产品族,系统的柔性通常受到系统设计时所考虑的产品族的限制。” 而我国国家军用标准则定义为“柔性制造系统是由数控加工设备、物料运储装置和计算机控制系统组成的自动化制造系统,它包括多个柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整,适用于多品种、中小批量生产。” 简单地说,FMS是由若干数控设备、物料运贮装置和计算机控制系统组成的并能根据制造任务和生产品种变化而迅速进行调整的自动化制造系统。 目前常见的组成通常包括4台或更多台全自动数控机床(加工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。目前反映工厂整体水平的FMS是第一代FMS,日本从1991年开始实施的“智能制造系统”(IMS)国际性开发项目,属于第二代FMS;而真正完善的第二代FMS预计本世纪十年代后才会实现。
2) 柔性制造单元(FMC)
FMC的问世并在生产中使用约比FMS晚6~8年,FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展的一种产物,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。
3) 柔性制造线(FML)
它是处于单一或少品种大批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心、CNC机床;亦可采用专用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(DCS)为代表,其特点是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进入实用化阶段。
4) 柔性制造工厂(FMF) FMF是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化。
2 柔性制造所采用的关键技术
2.1 计算机辅助设计
未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。
2.2 模糊控制技术
模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。
2.3 人工智能、专家系统及智能传感器技术
迄今,柔性制造技术中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强了柔性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造业(尤其智能型)中起着日趋重要的关键性的作用。目前用于柔性制造中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在柔性制造技术中的应用规模将在比目前大4倍。智能制造技术(IMT)旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。故IMT被称为未来21世纪的制造技术。对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能而产生的,它使传感器具有内在的“决策”功能。
2 4 人工神经网络技术
人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分。
3 柔性制造技术的发展趋势
3 1 FMC将成为发展和应用的热门技术
这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。
3 2 发展效率更高的FML
多品种大批量的生产企业如汽车及拖拉机等工厂对FML的需求引起了FMS制造厂的极大关注。采用价格低廉的专用数控机床替代通用的加工中心将是FML的发展趋势。
3 3 朝多功能方向发展
由单纯加工型FMS进一步开发以焊接、装配、检验及钣材加工乃至铸、锻等制造工序兼具的多种功能FMS。
4 结束语
柔性制造技术是实现未来工厂的新颖概念模式和新的发展趋势,是决定制造企业未来发展前途的具有战略意义的举措。届时,智能化机械与人之间将相互融合,柔性地全面协调从接受订货单至生产、销售这一企业生产经营的全部活动。
近年来,柔性制造作为一种现代化工业生产的科学“哲理”和工厂自动化的先进模式已为国际上所公认,可以这样认为:柔性制造技术是在自动化技术、信息技术及制造技术的基础上,将以往企业中相互独立的工程设计、生产制造及经营管理等过程,在计算机及其软件的支撑下,构成一个覆盖整个企业的完整而有机的系统,以实现全局动态最优化,总体高效益、高柔性,并进而赢得竞争全胜的智能制造技术。它作为当今世界制造自动化技术发展的前沿科技,为未来机构制造工厂提供了一幅宏伟的蓝图,将成为21世纪机构制造业的主要生产模式。实现了按端口、MAC地址、应用等来划分虚拟网络,有效地控制了企业内部网络的广播流量和提高了企业内部网络的安全性。
4 结 论