发布时间:2023-09-25 17:40:00
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的化学高分子材料与工程样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:机械工程材料 高分子材料 教学改革
Reform and practice on teaching of polymer materials in mechanical engineering materials course
Dong Xufeng, Qi Min, Wang Weiqiang
Dalian university of technology, Dalian, 116024, China
Abstract: In most universities, metal material is the route of mechanical engineering materials course. Polymer materials have been a new type of engineering materials in the recent 50 years. Therefore, it is necessary to increase the proportion of polymer materials and make corresponding reform in the teaching of mechanical engineering materials. In this paper, the reform and practice experience on mechanical engineering materials in Dalian university of technology is introduced. Reforms were made in content, aim, process, method and reference books. The practice results indicated good teaching effect was obtained.
Key words: mechanical engineering materials; polymer materials; teaching reform
机械工程材料课程是面向非材料专业学生开设的介绍材料科学与工程基础内容的课程,涉及专业包括机械、化工、船舶、汽车、航空航天等。目前大多数机械工程材料课程的讲授以金属材料为主线,内容涵盖金属材料的化学成分、组织结构、加工工艺与性能之间的关系等[1,2]。教学目的是让非材料专业学生了解常用金属材料的性能、应用范围和加工工艺,初步掌握金属材料的选用原则与方法,同时能够对实际工程中与材料相关的基本问题进行正确分析和处理。
1 高分子材料教学改革原则
20世纪中期以来,大批新型高分子材料的合成拓展了人类使用材料的范围。与金属材料相比,高分子材料具有密度小、比强度高、原料丰富、成型简单、成本低、耐腐蚀等优点。近年来一些性能优异的高分子材料在诸多领域呈现取代传统钢、铁等金属材料的趋势,成为机械工程材料中不可忽视的一部分[3]。因此,在机械工程材料课程的教学过程中,须摒弃完全以金属材料为主体的授课方法,适当增加高分子材料等新型工程材料的比重。因此,我校在2013年对机械工程材料32学时课程的教学计划进行了调整,将高分子材料部分由之前的2学时增加到4学时,并确定了以下改革原则:
1.1 授课内容强调基础性
高分子材料与机械类学生通常接触到的金属材料在结构、性能、制备工艺等方面有很大的区别。向机械类学生讲授高分子材料,主要目的是让他们对高分子材料有最基本的了解。在短短4学时内,不可能也没必要将高分子材料相关的全部内容压缩讲授。这就决定了机械工程材料课程中高分子材料部分必须侧重于基础性知识,对于理论性、专业性太强的知识点必须舍弃。基础性内容应当包括高分子材料的基本概念、分类、结构特点及常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能[4-6]。
1.2 授课目标偏向工程性
高分子材料不仅可作为结构材料使用,也可以作为功能材料使用。对于非材料类专业的学生,特别是机械类专业的学生,更关心材料的力学性能和应用范围。因此,在课程内容的安排上,应以与机械工程有关的机械性能为主,给出常用工程高分子材料的基本力学性能指标及适用领域。
1.3 授课过程重视学生的先修知识
大多数高校的机械工程材料课程以金属材料为主线,在学习高分子材料之前,学生对金属材料已经有基本了解。高分子材料与金属材料之间存在较大差异,例如:高分子材料的聚集态结构以非晶结构为主,而金属材料则以晶体结构为主;许多高分子材料,特别是橡胶类的高分子材料具有金属材料所不具备的优良弹性等。学生先修知识的习惯思维在他们学习高分子材料时可能会引起冲突,因此在授课时必须对金属材料与高分子材料的差异予以考虑。采用与金属材料对比的方法学习高分子材料,有利于帮助学生澄清概念,更好地掌握高分子材料的知识。
1.4 教学方式应具有高效性
高分子材料课程涉及的概念繁多,容易混淆,对于机械类学生而言比较抽象,难以理解。在短短的4学时内,要想让学生尽可能多的掌握高分子材料的相关基本概念,必须摒弃照本宣科或一味讲授的教学方式。通过高效的教学方式,充分调动学生的积极性、主动性,引导学生思考,方能达到理想的教学效果。
1.5 提供扩展知识的参考书
由于高分子材料的性能、结构、制备工艺以及表征与金属材料和陶瓷材料完全不同,而且目前在机械工程材料中高分子材料部分比例很少。为解决这一矛盾,在章节后面列出了比较系统的高分子材料性能、内容、结构、制备工艺以及表征方面的书籍,以供学生参考[7,8]。
2 高分子材料教学改革
根据以上原则,我们在2013年度的授课过程中对高分子材料的讲授进行了调整,具体如下:
(1)授课内容及学时安排:高分子材料的基本概念(高分子、单体、链节,0.5学时),高分子材料的分类方法(按用途分类,按热行为分类,按反应类型分类,按主链结构分类,0.5学时),高分子材料基本结构(简单介绍近程结构、远程结构、聚集态结构的概念,0.5学时)及物理状态(玻璃态、高弹态和粘流态,0.5学时),典型工程塑料的力学性能和应用(1学时),典型合成橡胶的力学性能和应用(1学时)。
(2)重点讲授常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能及典型工程高分子材料的适用领域。
(3)授课过程中通过列表等方式将高分子材料的相关内容与金属材料进行对比,一方面避免概念混淆,另一方面突出高分子材料与金属材料的不同之处。
(4)采用启发式教学模式,通过设问、模拟实验、举例、探究等方法引导学生思考;在多媒体课件中,采用丰富的图片、动画激发学生学习的积极性和主动性。
3 结束语
通过机械工程材料课程中高分子材料的教学方案改革,学生对这种新型工程材料有了基本且更为全面的了解,他们深刻认识到,高分子材料是机械工程材料领域中不可忽视的分支。
参考文献
[1] 文九巴.机械工程材料[M].北京:机械工业出版社,2009.
[2] 于永泗,齐民.机械工程材料[M].大连:大连理工大学出版社,2012.
[3] 张留成.高分子材料基础[M].北京:化学工业出版社,2011.
[4] 高建纲,宋庆平,丁玉洁,吴之传.工科非本专业《高分子化学》课程的教学探讨[J].高分子通报,2009(5):63-66.
[5] 韩顺玉,柳海兰.非高分子专业《高分子化学》课程教学实践与探讨[J].中国科教创新导刊,2010(35):93.
[6] 詹茂盛,何利军.“高分子材料课程信息化师生互动教学方法”研究与实践[J].化工高等教育,2004(3):69-71.
【关键词】高分子;化学;发展;方向
中图分类号: F407 文献标识码: A
一、前言
我国高分子化学一直都是我国发展的重点,这项技术对于很多相关产业非常有帮助,高分子化学是高分子材料的研究基础,已经涉及到了机械行业,建筑行业等多个行业,因此发展高分子化学对于我国高分子材料行业是非常有帮助的。
二、现如今高分子化学的发展情况和应用范围
自从20世纪到现在,随着工业技术的快速发展,天然资源已经露出了疲态,科学家们已经开始使用高分子化学进行材料的合成。有数字表明,在之前的40年中,使用材料的速度正在以每10年五倍增长,人类三大合成材料,其中包括塑料、橡胶、纤维,在使用过程中表现出了令人惊讶的增长速度。新型的材料,特别表现在合成材料,在工业、建筑、农业、电子技术方面都被广泛使用,极大的支撑着人类的日常生活,是使国民经济持续发展的必要动力源泉。
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。
五、高分子化学的发展方向
1、使地球更加绿色化
在现在很多工业发达的城市,天空中都会飘着非常浓郁的黑烟,对人们的日常生活有非常严重的污染。绿色,在现在被认为是没有污染、再生性或者可以循环使用。在没有污染方面,我们需要做的就是减少工业废弃物的排放、相对的减少污染源。现在的情况表明,化学行业中具有污染和治理两个方面的性质,可以对绿色使用材料进行研究,也可以继续对环境造成恶化。例如:在研制的过程中使用的催化剂、溶解剂、中间物品等,在生产过程中产生的废气、废渣、废弃液体等都是对环境造成影响的主要元凶,若长期的进行排放,会对环境造成严重的影响,甚至会导致不可逆转的事情发生。
2、减少的自然资源的使用依赖
目前研究的高分子合成材料对石油具有很强的依赖性,众所周知,石油是经过地球非常漫长孕育才出现的,另外,石油也是现如今人类社会非常重要的能源,石油资源现在正在快速的减少,而且不能快速的进行补充,所以人们现在非常急切的找到可以代替石油使用的资源,这已经成为现在高分子化学研究中非常重要的课题。在对物质中原子和分子的比率进行调节,对物质的微观特性、宏观特性以及表面性质进行加强控制,也许这种物质就会满足一些行业的使用要求,当这种情况出现的时候就可以把这种物质作为材料使用。所以,在对材料进行配置的时候就会减少对不可再生资源的依赖程度,并对使用材料和环境进行相互协调,这是现如今化学研究当中非常重要的领域。现在很多高分子合成材料都非常依赖石油资源。想要解决目前的情况,可以对天然高分子进行利用,这其中也应该包含对无机高分子的不断探索和研究。
现在由石油合成的高分子材料,主要因为原子中以碳为主要元素,其中还含有少量的氮、氧等原子,所以被称为有机高分子。无机高分子是因为主链上的组成原子中不含碳。根据元素的性质进行判断,大约有40~50种元素可以成为长链分子。现在引起科学家高度重视的一种无机高分子,它的主链上都是硅原子,并且含有有机侧链的聚硅烷。
3、使高分子材料不断纳米化
现在很多高分子化学反应中的原子经过重新排列组合之后的反应空间要比原子的大小大出很多,所以,化学反应的研究要在一个受限空间之中进行。若在有限的空间中,像纳米量级的片层当中,小型分子由于和片层分子相互作用而且还在一个比较受限的空间内进行排列,之后产生单体聚合,聚合之后的产物的拓扑结构不会再受限的空间内进行全部的复制,这种情况和自由空间的结果完全不同。我们也许会在受限制空间内进行聚合反应的分子中提炼出高分子纳米化学的定义。化学的研究对象基本都是纳米量级的分子和原子,但是因为没有精细的方式,没有达到可以在纳米尺度上精确控制分子或者原子的程度,所以现如今很难做到对分子的精准设计,使化学的合成让人感觉非常的粗放。高分子化学在纳米程度上精要精确的按照分子设计,在此基础上确定分子链中的原子配比位置以及相互结合的方式,通过纳米技术对分子、原子和分子链进行非常精确的控制,达到对高分子各级结构的位置确定。这样就可以精确的控制新合成材料的功能和特性。
4、面向智能材料的高分子化学研究路线
20世纪的人类社会是以合成材料为标志的,在21世纪人类社会的标志将会是智能材料。高分子化学仍然是进入智能材料时期非常重要的组成部分。材料自身具有的功能可以根据外部条件的变化,有意识的进行调节和修复等一系列措施,这就是智能材料的基本定义。现在科学家已经了解高分子有软物质这一特征,简单说就是可以对外场具有反应。
六、结束语
综上所述,高分子化学已经发展到了非常不错的方向,在很多方面都有非常广阔的运用,目前高分子化学会朝着绿色以及环保方面进行发展,随着高分子化学不断取得突破,未来使用高分子材料的前景会更加的广阔。
参考文献
[1]王立艳.《高分子化学》理论与实践教学的整体优化研究[J].广州化工,2012,40(4):108-109.
[2]张宏刚.新型高分子化学注浆材料在碱沟煤矿的应用[J].中国高新技术企业,2011(34):63-64.
[3]何冰晶,王庆丰,刘维均,等.能量最低原理在高分子化学教学中的应用探索[J].高分子通报,2011(12):141-144.
[4]董建华.从高分子化学与衣食住行到高科技发展[J].化学通报,2012,74(8):675-682.
关键词 高分子材料 现状 可持续发展
中图分类号:TQ317 文献标识码:A
1高分子材料的相关概念
1.1高分子材料的基本概念及来源
高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料。按来源可分为分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等
1.2高分子材料的分类
高分子材料按照特性分为橡胶、纤维、塑料、胶粘剂、涂料和高分子基复合材料等,其中前三种被称为高分子的三大材料。
橡胶是一类线型柔性高分子聚合物。其分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。
2高分子材料科学的发展进程
2.1高分子材料科学的发展历史
高分子学科的建立,至今不到80年。从远古时期开始,人类就已经学会使用天然高分子材料,比如天然的树脂、橡胶、棉花、木材等。
20世纪20年代,才出现高分子科学的概念。到了20世纪30年代,高分子材料工业才步入发展阶段,而到了20世纪50年代配位聚合的出现极大地推动了高分子材料的发展。进入20世纪下半叶,高分子取得了一系列突破性的进展,比如聚烯烃的多元聚合,设计合成嵌段,超支化等聚合物等。
2.2高分子材料科学的发展现状
进入21世纪,单单从一个大方向来描述高分子材料的发展现状是不可取的也是不全面的,所以将简单分为几个领域分别介绍目前的发展现状。
在电气工业领域,高分子材料也有杰出的表现。随着时代的发展,高分子材料在电子、家电和通信领域。我国电气生产大国,全行业对高分子材料需求量较大用量。高分子材料轻质、绝缘、耐腐蚀、表面质量高和易于成型加工的特点正是生产各种家用电器的最佳材料,而家用电器是人们的必须生活用品,所以高分子材料在电气工业的发展是会一直进行下去的。
在机械制造领域更加少不了高分子材料。比如,目前世界不少轿车的塑料用量已经超过 120千克/辆,德国高级轿车用量已经达到300 千克/辆。可见在汽车制造方面,高分子的发展还是比较成熟,系统的。并且可以预见,随着汽车轻量化进程的加速,塑料在汽车中的应用将更加广泛
高分子材料还在航空航天,建筑工程,医疗,包装行业等众多领域发展已经比较成熟,并且正在朝着一个更加规范,更加科学,更加和谐的方向稳定发展
2.3高分子材料科学的发展前景
高分子材料科学代表的是一种前沿技术,其发展趋势也必然要适应社会发展的潮流和最先进工业发展的需求。
2.3.1精细化
随着时代的发展,精细化必然成为材料的主流趋势,未来将纳米技术融入其中也是势在必行的。高分子材料的纳米化可以依赖于高分子的纳米合成,这既包括分子层次上的化学方法,也包括分子以上层次的物理方法。利用外场包括电场、磁场、力场等的作用,采用自组装或自合成等方法,靠分子间的相互作用,构建具有特殊结构形态的分子聚集体。
2.3.2绿色友好化
在强调可持续发展的21世纪,任何事物都在渐渐转型,高分子材料也不例外。实现绿色友好化,需要在材料的合成,生产,运用三方面全方位实现。现在的高分子合成材料对石油的依赖性特别强,寻找可以替代石油的其它资源,则成为21 世纪的高分子化学研究中的一个迫切需要解决的问题。调节原子和分子在物质中的组合配置,控制物质的微观性质、宏观性质和表面性质,就可能使某种物质满足某种使用要求,这种物质就能作为材料来使用。
2.3.3智能化
在这个智能材料的时代,高分子化学同样承担着不可替代的作用。智能材料是材料的作用和功能可随外界条件的变化而有意识的调节、修饰和修复,如若实现,也必然会对人类发展发挥巨大的作用。
3结语
本文通过比较浅层次的语言向大家介绍了高分子这门前沿科学,相信在今后的生活中,随着科技的发展,技术的进步,越来越多的人会认识高分子材料,并投入到这门与人类生活息息相关的科学研究中去。
参考文献
[1] 富彦珍,王雅珍,李青山,马立群,高分子化学实验微型化的研究与实践[J].高等工程教育研究,2004(03).
[2] 杨利庭,赵敏,高俊刚.改进实验教学培养应用性理科高分子人才[J].高等理科教育,2007(02).
[3] 何平笙,杨小震.“分子的性质“软件用于高分子科学教学实验[J].高分子通报,2000(01).
[4] 王亚男,李婷婷,徐聪.浅析目前我国高分子化工材料的发展现状[J].人力资源管理,2012(5).
[关键词]高分子材料;表面改性;医用
生物医用高分子材料(Biomedical polymeric ma-terials)主要用来诊断、治疗与器官再生与合成,是一种新型高分子材料。当前,较为普遍的应用在药物控制释放、组织工程、人工器官合成、牙齿治疗等领域,其高技术含量与科学意义非常显著,并与患者的康复紧密相关,在医疗领域发挥着重要价值。鉴于生物医用高分子材料有较多局限性,在以合成方式进入到人体以后,其细胞表面会受体接触,发出信号用来与异体区分,没有经过表面改性的高分子材料生物相容性非常差。为此,对医用高分子材料表面进行改性成为人们关注的重点。
一、生物医用高分子材料的生物相容性
(一)血液相容性
当高分子材料与血液接触时,将不会引发凝血或者是血小板凝聚的情况,这种情况就被称为血液相容性,溶血情况很少发生。鉴于高分子材料与血液接触建立在材料表面,建立在材料表面合成设计是抗凝血材料的主要工作[1]。
(二)组织相容性
组织相容性就是指生物活体组织与材料接触时,细胞、组织功能依然正常,并没有引发炎症、癌变的情况。而使用合成高分子依然存在一些弊端,可游离的有毒物质将在接触生物组织过程中产生有毒物质,长期在人体中存在将产生异化反应。组织相容性要确保材料无毒、无害、不损伤组织结构,要想解决这一问题可以通过改性材料实现[2]。
二、生物医用高分子材料表面改性
(一)物理方法
1、表面涂层
一旦异体与血液接触,异体表面就会吸附一层蛋白质,很多血小板都粘附在蛋白质上,还有一些会以吸附形式存在于异体表面血纤维蛋白上,通过特定作用对血小板进行粘附与活化,最终导致凝血的出现。而通过生物医用高分子材料能够使表面增加抗凝血涂层,使生物材料表面得以钝化,血液将不会接触材料表面,能够使高分子表面抗凝血型提升。Ishihara等通过研究研究合成了2-甲基丙烯酰氧基乙基磷酰胆碱聚合物,将其涂层到基材表面,能够对材料凝血性能进行抑制,抑制材料凝血性能的提升[3]。Lewis等合成了交联的2-甲基丙烯酰氧基乙基磷酰胆碱聚合物、甲基丙烯酸月桂醇脂、甲基丙烯酸三甲氧基硅丙脂等涂层。这种合成的涂层粘合力非常强,能够将其涂到易脱落的医疗器材元件上,增加器材的牢固性。使用方法较为简单、能够均匀的对生物材料表面进行涂层,吸附力将更强,防止出现脱落。
2、物理共混
将一小部分抗凝血添加剂与基材混合能够得到良好的抗凝血材料。材料中有较多的两性共聚物与抗凝血添加剂,在与基材融合以后,会在基材的表面聚集。将甲基丙烯酸正丁脂、2-甲基丙烯酰氧基磷酰胆碱聚合物将聚砜混合,能够使聚砜的血液相容性增强。聚氧乙烯内部有长链的共聚合物也可以当成是抗凝血的添加剂,与材料混合以后使材料的抗凝血性增强,并能防止出现渗透基材的情况[4]。
(二)化学方法――表面接枝改性
改善血液相容性,提高材料抗凝血性可以通过接枝亲水基团实现,这种方式下能够使基材与表面充分聚合,进而防止出现表面脱落。用来接枝表面的有等离子体法、高能辐射法、臭氧活化法、化学试剂法等,近年来,化学固定法的出现备受人们关注。以上所有方法都是通过接枝侧链增强对血细胞的排斥,进而减少吸附,侧链良好的水溶性、柔顺性将非常有利于血细胞正常形态维持,进而依靠生物膜实现抗凝血的目的。
1、表面接枝聚氧乙烯
良好的血液相容性是生物医用高分子材料的重要特征,实现相容性的条件就是表面要就有长链结构。PEO接枝链表面抗凝血材料的使用得到广泛认可[5]。因为PEO血液相容性强、亲水性与柔顺性均非常好,能够与水形成一个PEO链,并且水合的悬挂链能够使蛋白材料作用降低,进而阻止发生蛋白吸附情况。
2、等离子体表面处理
等离子体表面处理就是将材料放置在非聚合气体当中,利用等离子体的能量粒子、活性物与材料表面发生反应,并在材料表面产生官能团,使材料表面结构改变,实现对材料的改性。比如,CH4、NH3、N2、O2、Ar等气体。使用O2等离子体对聚丙烯中空纤维膜表面进行处理,处理过后的烷氧基等基团明显提升,表面自由也得以释放,材料的溶血性与血小板粘附密度将大大降低。
(三)表面肝素化
肝素是被成为最天然的抗凝血药物,通过对凝血酶原活化进行抑制能够使纤维蛋白网络形成的凝血得以延缓与阻止,抗凝血效果将非常好,进而使通过导管引入的细菌感染得以减少,降低了感染的发生率。将肝素利用在医用生物高分子材料中,能够使抗凝血性得以改善,也可以使用物理吸附法、化学偶合法改善抗凝血型,但肝素的基本形态不变;化学耦合方法将造成结构不稳定,肝素构象将不利于形成,大大降低了抗凝血性能。
(四)表面磷脂化
通常,细胞膜外表面的最主要构成要素是卵磷脂。卵磷脂中的两性磷酸胆碱基团有非常强的抗凝血效果,并且PC基表面呈现出惰性情况较多,将不会吸附血小板;此外,PC端基亲水性非常好,能够减少出现蛋白弱化情况,能够对蛋白进行吸附,维持蛋白基本形态。
结语
一个良好的生物相容性是确保生物医用高分子材料发展的目标之一,优化并提升生物相容性是医用高分子材料应用的重点,为此,加强对高分子材料表面改性研究是非常重要的。
参考文献
[1]罗祥林,黄嘉,何斌等.光化学固定法--医用高分子材料表面改性的一种新方法[J].生物医学工程学杂志,2010,17(3):320-323.
[2]刘鹏,丁建东.等离子体表面改性技术在医用高分子材料领域的应用[J].中国医疗器械信息,2011,11(5):39-42.
[3]胡小洋,陈红,张燕霞等.聚乙二醇及其衍生物改性生物医用材料表面的血液相容性[J].高分子材料科学与工程,2012,23(6):127-131.
专业大观
生活在钢筋水泥森林里的我们,对金属材料一定不陌生。从汽车外壳到小小螺丝钉,从建筑用材到锅碗瓢盆,处处充斥着金属感。可以说,金属材料的发现和应用,日益深入和改变着我们的生活。
金属材料工程是一门实用性很强的专业,通过对金属材料制备工艺及其原理的探索,研究成果可以直接应用于现实生产。该专业开设的主要课程有材料热力学、金属学、材料力学性能、材料分析技术、金属材料学、材料成型加工工艺与设备、计算机在材料工程中的应用等。通过学习这些课程,同学们将被培养成为具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。
金属材料工程发展历史很长,基础非常雄厚,可以说从事这方面研究的人员一开始就站在了巨人的肩膀上,但需要注意的是,借助学科雄厚的基础,初学者虽然很容易入门,但入门后看见的是一片片整整齐齐的田野,仿佛没有值得开垦的地方,要想取得突破性进展必须下一番力气。因此学生在学习时需要注重培养自己的观察和判断能力,不盲目迷信书本和权威,要敢于放开自己的思维不断探索新知。
经过本科阶段的学习,金属材料工程专业的毕业生将被授予工学学士学位,毕业后如果希望从事专业相关工作,可以去相应的研究所(比如北京有色金属研究院)参加工作,或是在宝钢、首钢等国有大中型钢铁集团以及其他相关企业担任中高级工程技术人员,当然也可以选择留校或者出国。当你看见自己辛勤劳动的成果在钢花飞溅中诞生,为国家和人民创造了巨大经济利益的时候,你一定会由衷地感到高兴。也许到时候你会发现自己对别的领域更感兴趣,不要担心,你所学的知识和方法完全可以帮助你适应其他的工作,因为在这里养成的分析问题、解决问题的能力,会令你左右逢源、游刃有余。
报考点津:由于本专业涉及到金属材料的设计、计算机的应用等专业领域,因此,有创新意识,吃苦精神,且在绘图、计算机等方面有专长的同学更适合报考该专业。
高校快照:北京工业大学、西安交通大学、哈尔滨工业大学、盐城工学院、西北工业大学等。
专业大观
高分子材料与工程属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的高新技术专业。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域,成为我国科学研究的一个重点领域。
高分子材料与工程培养的是高新技术方面的人才,该专业的学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识,具体的课程有有机化学、物理化学、高分子化学、高分子物理、聚合物流变学、聚合物成型工艺、聚合物加工原理、高分子材料研究方法。看课程的名称,我们会发现,高分子材料与工程主要涉及化学、物理、材料知识。但是,不要以为你高中的物理、化学学得好就能把高分子材料与工程专业学好,我们高中时学的物理、化学其实都只是基础知识,并没有朝深方向延伸。因此说,高中所学的物理、化学知识只能算是在为学高分子化学、物理打基础。
学习了高分子材料与工程的主要课程后,充其量只能说你学到了知识,还不具备有开发研究高分子材料的能力。为了帮助该专业学生将知识转化为技能,学生在校期间的大部分时间都被用来做实验,同时学校也会适当的安排一些社会实践,同学们可以进行金工实习、生产实习、专业实验、计算机应用与上机实践、课程设计等。此外,同学们自己还可以利用寒暑假的时间到工厂、企事业单位实习。
总而言之,只有经过社会实践并且反复摸索验证课本上的理论知识,同学们才能掌握高分子材料的合成、改性的方法,获得聚合物加工流变学、成型加工工艺和成型模具设计的基本技能,具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。当同学们在学校就具有以上这些能力,那可以说已经很优秀了,毕业时那会是企业争抢的香饽饽。
关于就业,高分子材料与工程专业的学生毕业后,可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。
报考点津:对物理、化学感兴趣的学生较适合本专业。另外,由于该专业要与计算机、英语打交道,因此你要有计算机、英语方面的学习热情。还有,按照相关招考规定,色弱、色盲者不能报考该专业。
高校快照:四川大学、浙江大学、华南理工大学、大连理工大学、华侨大学等。
专业大观
复合材料与工程是实用性很强的专业,它分为复合材料设计与加工和复合材料工程两个专业方向,这样可以术业有专攻,使同学们在成为本专业通才的同时又是某个方向的专才。
既然复合材料与工程专业的学生学的是如何研发复合材料,那么复合材料究竟有何魔力驱使同学们去研究它呢?人们获取知识时常用的方法是去粗取精,从而使知识更上一层楼。复合材料其实和同学们汲取知识的方法是一样的,它是由两种或多种性质不同的材料通过物理和化学复合,组成具有两个或两个以上相态结构的材料。简单的说,就是它具有合成材料共有的优点,性能要高出任何一个合成的部分。其实,在现实生活中,我们会看到很多的复合材料产品,如休闲座椅、工艺花盆、灯饰、广告灯箱、汽车配件、电话亭等。当我们惊讶于复合材料与工程何以如此强悍时,羡慕和期待的眼光便落在了复合材料与工程专业上。
看着五花八门的工艺花盆、灯饰,同学们可能会难掩内心的激动,也想自己动手制作出漂亮的灯饰。有这样的心情,表示同学们已经爱上了复合材料与工程专业了。由于该专业所要解决的是了解复合材料的组成特点、主要应用领域、复合原理和主要制备工艺等问题,因此该专业的同学们需要学习的专业课程有复合原理、复合材料学、复合材料工艺设备、材料学概论、复合材料的实验技术、高分子化学及物理、复合材料工艺学、复合材料聚合物基础等。
罗列出这么多专业课程,你可能会发出感慨,怪不得该专业毕业的学生能够研制出许多性能各异的产品,因为他们所学的知识不仅专,而且全。该专业同学毕业后可以到航空航天、汽车、船舶、建材、化工防腐、电机、电子、石油、通信、国防等行业的科研院所、高校、公司、企业工作。即使是新入职的该专业的毕业生,薪酬也不会很低,一般薪水在3000左右,不过也分地域、单位和各人能力。
报考点津:能吃苦,有创新精神,且对化学、物理感兴趣的最适合报考本专业。尽管没有性别限制,但从往年的男女就业情况来看,男生比女生更受企业的欢迎。
高校快照:武汉理工大学、兰州交通大学、江苏大学、华东理工大学、济南大学等。
专业大观
生物功能材料专业是生命科学和材料科学的前沿叉学科,是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的。
生物功能材料专业的魅力,就在于敢于实践李宁的那句名言——“一切皆有可能”。就在前不久,青岛即发集团成功研制出了“高性能壳聚糖纤维材料”,而它的原料就是不起眼的虾皮、蟹壳。虾皮、蟹壳与用来做纺织面料材料的棉花相比,在纤维等特性上相差十万八千里,但就是这样不可能的事实,科研人员利用甲壳素经化学处理和拉纤工艺制备,制出了可纺性高、抗菌性强、隔热性能好等特点的“高性能壳聚糖纤维材料”。科研人员之所以可以变不能为可能,完全归功于生物功能材料专业。
科研人员有如此“特异功能”,与天生无关,而在于他们都接受过生物功能材料方面的专业学习。他们必学的主要课程有:生物化学、分子生物学、生物医学工程、高分子化学、高分子物理、生物医学材料学、生物材料制备与加工、生物材料综合实验等专业基础及专业课程。要学好这些专业知识,没有勤奋刻苦的精神,以及科学的学习方法是学不好的,因为这些课程比较深奥难懂,同学们除了在课堂上认真听讲,认真做好笔记,在课后消化以外,还必须给自己“加餐”,以接触更多的相关知识。
因为生物功能材料是涉及面很广的专业,因此一般的学校都会加大选修课的比例,主要开设的课程有:生物医用高分子改性、组织工程学、控制释放理论与应用、生物可降解高分子、环境材料基础等。
学习了主要课程和选修课程之后,同学们可能还会关心,学习了这么多知识,究竟能把自己塑造成一个什么样的人才?从开设的主要课程来看,生物功能材料的目标很明确,就是培养能在生物材料的制备、改性、加工成型及应用等领域从事基础研究、应用研究和技术开发等的综合型高级技术人才。该专业就业面宽,同学们毕业后可在研究院所、设计院、大专院校和企事业单位工作。
关键词:高分子材料;成型加工技术;创新研究
尖端技术的发展代表着国家经济的不断繁荣与发展,如何推进我国高端工业领域和军事工业的不断向前发展,是我国尖端科学工作者共同面临的发展问题。高分子材料的成型加工技术的不断创新与发展,有利于实现国家高端科学领域的不断向前发展。文章本着科学技术发展的观念,探究我国高分子材料成型加工技术的发展历程和发展步伐,提出相关创新思路,以期更好地奉献于我国科学技术发展。
现阶段,我国某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。这些结合物主要材料就是高分子材料。然而,高分子材料能否达到我国这些领域的质量要求,就有赖于高分子材料成型加工技术的不断改进和创新。从该项技术的不断创新发展,更依赖于科研人员的不断研究和创新设计发展,从而更进一步的不断完善,达到我国特殊行业领域的高端要求。
一、高分子材料成型加工技术发展概述
高分子材料形成加工技术进入21世纪以后已经成为国际社会的一门高端热行的竞争行业。合成工业的避震材料的研制发展促使易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。例如新时期汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对高分子材料的要求越来越重要。汽车行业的不断发展和高端技术的不断改进带动了零部件及相关材料工业的发展。为了实现汽车高性能低成本的发展,同时能够提高汽车的载荷量,提高高分子材料质量成为至关重要的发展手段,从而提高高分子材料成型技工技术成为关键。
据相关研究数据显示表明,目前汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现阶段高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
现阶段国内外大多数应用反应加工设备来实现高分子材料的成型加工。然而,这种反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题。另一方面,设备引进和使用投资大、能耗高,噪音污染严重、密封困难。
引用聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。新设备的引进和使用具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点有效解决了当前需解决的一系列问题,从而走进世界尖端技术先进行列,具有该领域技术发展的领先地位。
(二)以动态反应加工设备为基础的新材料制备新技术
信息存储光盘盘基直接合成反应成型技术。运用新技术实现光盘级PC树脂生产、中间储运和光盘盘基成型,从而使三个过程融为一体,与动态连续反应成型技术相结合,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。
热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
三、我国高分子材料成型加工技术的发展前景
近年来,我国高分子材料的成型加工技术得到迅速发展,发展成绩斐然。我国各大新型高分子材料成型设备国家工程研究中心在预期完成国家预定研究任务的同时突破了国际新技术发展。在出色地完成国家攻关项目的同时,并使科技成果与产业化有机地转化,是理论实时地与现实生产发展相结合。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在不断与相关机械生产公司有机组合并进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在更短时间内实现新设备年销售额超亿。在我国与国际科技接轨的同时,WTO给我们发展机遇的同时,也给我们极为严峻的挑战。高分子材料的发展与成型加工技术的不断创新研究,可以促使我国高分子材料市场发展前景看好,前途一片光芒。
四、结语
综上所述,我国现阶段国家额社会主义市场经济发展要求,我国高分子材料成型加工技术必须走具有中国特色的创新发展之路。突破国外技术封锁,自主研发具有竞争实力的核心技术,实现持续发展并赶上国际先进水平,更有望于赶超国际发展技术,持续赶超国际终端水平。不断推进科研成果与实际生产相结合,实现高分子材料成型加工技术的前沿发展模式,充分运用引进来和走出去的发展战略,达到综合提高我国尖端科学技术的国际竞争实力。
参考文献:
[1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999.
[2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435.
关键词:高分子塑料;成型工艺;分析探讨;未来发展
中图分类号:TB32 文献标识码:A
一、高分子塑料的概述
1高分子塑料定义
高分子塑料是指以高分子化合物为主要成分的所有材料。从物理概念来说,高分子化合物的分子量应该在1000以上。目前我们所使用的塑料,它就是一种合成的高分子化合物,一般把它称之为高分子或者巨分子,它是利用单体原料以合成或缩合反应聚合而成的,并由合成树脂及填料、稳定剂、色料等添加剂组合而成的。而根据它的特点来说,它可以自由改变形体样式。
2高分子塑料的特性
单就高分子塑料的特性来说,除了它可以自由改变形体样式以外,它还具有一定的粘弹性,它在外力作用下会发生高弹性变形和粘性流动,其变形与时间有关。还具体低强度和高比强度。一般地高分子塑料强度很低,但是由于它的密度很低,所以比强度较高。
除此之外,还有一定的高耐磨性、高绝缘性、膨胀性、高化学稳定性、导热性低、热稳定性差等诸多特点。
3高分子塑料的分类
分析了高分子塑料定义、特性外,我们再来看它的分类。目前在我国现阶段我们把它分为七大类。具体如下:高分子胶粘剂、橡胶、塑料、高分子涂料、纤维、功能高分子材料和高分子基复合材料。下面笔者根据工作经验和体会分别对这七大类做一详细的说明介绍,仅供参考。
第一类是高分子胶粘剂。它是以合成天然高分子化合物为根本的一种胶粘材料。而在实际应用中我们又把它分为天然和合成胶粘剂,不完全统计应用较多的是合成胶粘剂。
第二类是橡胶。从物理概念来说,它的分子链间次价力小,分子链柔性好,一般地在外力作用下可产生较大的形变,不稳定,而在除去外力作用下,很快就能迅速恢复原状。
第三类是塑料。塑料在我们的生活生产中听到的比较多。一般来讲它是以合成树脂或化学改性的天然高分子为主要的成分,加入填料、增塑剂和其他添加剂组合而成。我们通常按合成树脂的特性分为热固性塑料和热塑性塑料。
第四类是高分子涂料。这个类型的主要是以聚合物为主,在生产中再添加溶剂和各种添加剂制得。一般把它分为油脂涂料、天然树脂涂料和合成树脂涂料三中,在日常生活中很常见。
第五类是纤维。这个也是在平时听到最多的一种塑料,一般分为天然纤维和化学纤维两种。物理学分析我们得出纤维具有次价力大、形变能力小、模量高等特点,一般为结晶聚合物。
第六类是功能高分子材料。现在我们已经采用的是高分子透明材料、高分子模拟酶、生物降解高分子材料等待。它具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。
最后一种是高分子基复合材料。这种材料综合了原有材料的性能特点,在实际使用中我们根据需要进行材料的任意设计。
4高分子塑料的应用
如果说塑料的应用,我们大家都不陌生,在生活生产中都常见,而提到高分子塑料的应用,大部分人都比较陌生,而实际上,我们在生活中或多或少都听到见到过,只是加以高分子就难以理解了。经过多年的工作体会和实际工作操作,现笔者就高分子塑料的应用做一阐述。具体如下。
从军事尖端大方面来说,高分子塑料的应用已经涉及到军事及尖端技术上,无形中它促使了高分子合成和加工技术的发展,据不完全统计它已经成为一种独立的专门工程技术。
从高分子材料科学研究上来看,它是年轻而新兴的学科。我们的科学家主要集中于结构和组成与材料的性质、探索加工工艺,对各种环境因素对材料性能的影响,其主要目的是为了进一步开发新材料、新工艺等。目前,从一些材料上看高分子材料已经和金属材料等并驾齐驱,在国际上我们把它列为一级学科,这是很高的级别。
二、高分子塑料加工工艺
上文我们分析了高分子塑料的定义,特性,分类及应用,从大的方面我们有了一个感官的认识和了解,下面笔者再结合实际谈谈它的加工工艺。以便在实际中进一步总结应用。首先我们先来了解高分子塑料在加热中出现的物理和化学变化。先来看物理变化。
1高分子塑料的物理变化。一般地,高分子塑料在等温条件下会结晶,我们把它称为静态结晶。但实际在加工过程中,它大多数情况下结晶都不是等温的,笔者认为这些因素都会影响结晶过程。实践中我们得出,熔化温度与在该温度的停留时间会影响聚合物中可能残存的微小有序区域或晶核的数量。
另外,高分子塑料如果在纺丝、薄膜拉伸、挤出等成型加工过程中会受到高应力作用,这个时候它就会有加速结晶作用的倾向;如果在剪切或拉伸应力作用下,熔体中会生成长串的纤维状晶体,随应力或应变速率增大,它的晶体中伸直链含量增多,晶体熔点升高。
经过多年的实践,笔者得出这样一个结论:就是说高分子塑料的分子链结构与结晶过程有很大的关系。具体来说,如果分子量愈高,大分子及链段结晶的重排运动愈困难,高分子的结晶能力一般随分子量的增大而降低,这是成反比的,需要我们加以注意。
2高分子塑料的化学变化是指高分子塑料在高温和应力作用下,受到热和应力的作用它的大分子结构发生的一系列变化。这个变化中会发生轻微的降解物质,这个物质释放出来后会产生大量的有害物质。所以,我们在实际加工的过程中,要严格控制原材料指标,并使用合格的原材料,在配方中我们还要考虑使用抗氧剂、稳定剂等辅材料来增强高分子对降解的抵抗能力,确保生产安全。
3高分子塑料成型加工工艺
在明确了高分子塑料的物理和化学变化后,下面我们进一步阐述它的成型加工工艺。具体如下:
现阶段高分子塑料成型加工一般包括原料的配制和准备、成型及制品后加工等诸多过程。从它的加工工艺定义出发,一般地是通过温度的作用,让高分子塑料受热熔化,经过高分子塑料成型设备加工成具有一定结构形状的产品过程。笔者统计,现阶段有挤出成型工艺、挤出注射技术、压延成型、气体辅助注射技术等。
3.1挤出成型工艺。这个工艺原理采用的是利用螺杆旋转加压,将塑料生产物料用挤出机挤入机头,形成具备口模形态的型坯,完成冷却定型,塑化等基本工艺流程。这个技术对成型工艺发展的研究具有重要的现实意义。但需要加以注意的是,在实际的加工过程中,我们为了确保工艺流程质量,在生产物料制备、模具设计方面我们的工作人员应当严格监督控制,确保质量有所提升。
3.2挤出注射工艺。挤出注射工艺它的突出优点是可以更加灵活地调节复合物的配方,省去了造粒、包装等工序,可以降低设备费用和减少了生产时间。
3.3吹塑成型工艺。在这个工艺中,笔者仅仅拿出其中一个工艺来讨论——多层吹塑成型工艺。这个工艺可以用于要求反渗透性能良好的制备品加工中。在生产中它能够实现原料的不断更换。对于那些大型燃油箱容器的生产时的冷却工艺处理来说,这个时候就急需要减少模腔内压力。我们可以采取将熔料储存在挤出螺杆前端的熔槽中,在高速下挤出型坯,以最大限度减少型坯壁厚的变化,确保消除垂缩和挤出膨胀现象。
3.4注射成型工艺。笔者认为,该工艺是塑料加工生产中最为实用且最为普遍的一种工艺。在生产中可以配合设备自动化控制系统的运用情况下,实现高分子塑料生产工艺的价值。经过笔者的实践分析来看,这种工艺具有应用范畴广、生产效率较高以及工艺操作简单等很多的特性。在目前的生产中应用比较广泛,生产效率也很高。
三、高分子塑料成型加工工艺未来发展
随着目前科技的日益发展和实际的需求情况来看,高分子塑料成型加工工艺已取得了一定的成果。这主要体现在向高性能化方向发展。比如说用化学或物理的方法来控制发光倍率的发泡制品,具有分离机能和透析机能的离子膜。
再有就是向精密化发展。比如说,我们使用的超微指令的激光唱盘、计算机光盘等。最后是向优质化发展。我们可以采用与其他成型加工技术组合的加工方法,比如挤出压缩法等。还有就是以磁带为代表的记忆制品,像录像带,以及高绝缘等。
结语
本文对高分子塑料材料的定义、特性、分类及加工工艺,未来发展分别做了阐述,这让我们不难看出,高分子塑料材料在实际应用中不但取得了一定的成绩,而且还向高度集成化、精度控制自动化等特性方面快步发展。换句话说,高分子塑料材料是通过制造成各种制品来实现其使用价值的,我们从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义。
参考文献
[1]《高分子材料学与工程》征稿简则[J].高分子材料科学与工程,2010(04).
[2]胡杰,袁新华,曹顺生.《高分子材料成型加工》课程教学中的几点思考[J].科技创新导报,2010(04).
[3]陈捷.炸药、高分子材料及部件贮存性能与老化机理研究进展[A].中国工程物理研究院科技年报,2010.
你适合学习材料专业吗?
材料学包罗万象,是国内外各行各业发展都离不开的一门基础而重要的学科。目前据相关专家分析,我国在材料成型设计方面的人才缺口在20万~30万之间,并且呈逐年递增趋势,材料科学与工程专业的毕业生已经成了“抢手货”。目前我国整个材料行业都缺少高精尖人才,人才缺失问题已经成了众多企业发展的桎梏。
材料行业对人才的需求是如此的迫切,那么也可以想象材料学的就业趋势非常好,想要进入材料行业的学生也很多,那什么性格的人适合进入材料学院呢?笔者列出了如下的性格需求度表格,同学们不妨参考一下。
概述:材料学究竟是什么
材料学是一门跨学科的科学,涵盖的范围很广,子学科多。所以想要回答“材料学究竟学什么”这一问题很难。总的来说,材料学就是研究材料结构、性质和性能,以制造出更好的材料或更好地使用材料的学科。
材料学具体分为三个大类:金属材料、无机非金属材料和高分子材料。因此,大部分高校会开设材料科学与工程专业,专业下又分出几个方向,针对性地学习这三大类的知识,并且它还与其他一些工程科学相重叠,因此在各大院校,材料科学与工程都有若干分支。
从这三大类可以看出,材料学是典型的工科专业,课程安排和其他工科专业大同小异。大学一、二年级会安排基础科目的学习,如高等数学、线性代数、概率统计与随机过程、大学英语、C语言、大学物理、机械制图、电子电工学这样与材料生产设备相关的课程:到了大三大四,则会偏重专业课,比如材料物理、物理化学、有机化学、材料力学等,都是必须要学习的。
材料学由于应用广泛。在众多领域都有很大的发展空间。学生毕业后可在航空航天、冶金、机械、汽车、电子、信息、交通、化工和建筑等工业企业以及相关科研单位工作。学校不同,学科方向不同,就业的去向也不一样,比如以研究钢铁为主的材料专业。学生毕业后大部分去的都是加工为主的企业,比如钢铁厂、汽车厂。
总体而言,材料学是比较基础的学科,光是大学四年学不到特别专业的知识。所以很多同学会选择考研深造,这个时候,不妨选择一个前沿的并且热门的方向,比如先进陶瓷、复合材料、纳米材料、生物材料等。
核心专业:高分子材料科学与工程
从本世纪中叶。高分子材料逐渐登上了材料王国中的宝座。据2011年的最新统计,我国高分子材料的体积产量已经超过其他各类材料,塑料的体积产量已经超过钢铁体积产量,合成纤维的生产也超过全部有色金属的总产量,这说明我国已经跨进了高分子材料时代。
高分子材料科学与工程的建立可以说只有二三十年的历史。从“高分子”三个字,就知道这个专业需要用到化学方面的很多知识,在大多数院校中,都开设了无机化学、有机化学、分析化学、物理化学、高分子化学等,而且根据各个学校的侧重点不一样,有机化学、量子化学、结晶化学和热力学、固体物理学、结晶学、统计物理学、聚合物流变学、高分子材料学、塑料成型工艺学、机械制造基础、模具材料及制造等课程也都是需要学习的专业基础课程。为了理解高分子材料中的许多物理现象。系统学习高分子物理学也是十分重要的。如果你只希望念完本科就毕业工作,高分子材料专业是个很不错的专业,因为它的就业市场很大。
新兴专业:生物功能材料
国家将生命科学和新材料科学列为21世纪重点发展的领域,而生物材料学作为一门只有十年历史的新专业、站在生命科学和材料科学前沿的交叉学科,更是优先发展的重点。
生物功能材料专业是培养具有材料科学与工程、生物学和医学等领域的相关知识,掌握生物材料的基础和专业知识,能在生物材料的制备、改性、加工成型及应用等领域从事基础研究、应用研究和技术开发等的综合型高级技术人才。
不过很多人会纳闷,生物材料到底拿来做什么呢?作用到底体现在哪里呢?答案很简单—它们最常出现在牙科和整形外科。假牙、补牙材料、人造骨、人造关节都是生物材料的一种。例如为防止骨折,关节等部位要承担体重的3—6倍的重量,而且一年要承受近200万次重复荷重,因此要求人造的关节材料有优良的对生物适应性、疲劳强度和耐磨性等。
本专业毕业生的就业、继续升学和出国深造的前景广阔。可从事与生物材料、医药等领域相关的管理、产品研究开发、市场销售、贸易等方面的工作。
院校推荐
到目前为止,我国设有材料类专业的高校有400多所,这400多所院校有自己的特色,因此,这些院校在学生的培养上也会有自己的特色。
比如,清华大学材料科学与工程专业注重学生的基础,下设了五个方向:材料物理与化学、金属材料、无机非金属材料、复合材料和电子材料。不过在本科阶段,五个方向的课程都大致相同。
北京科技大学的材料科学与工程专业是该校最强势的学科,偏重钢铁材料研究,软硬件设备足以让冶金专业以外的学生眼红。学校名师荟萃,科研实力强,本科生在校学习期间都可跟老师进实验室做科研。
哈尔滨工业大学的材料学院则始终围绕“高端”两字,紧密围绕国防尖端技术发展需要的新型材料、新型材料的精密和特种加工技术设置课程与内容。
北京化工大学的材料学是国家的重点学科,其高分子材料科学与工程专业是传统强项,碳基复合材料、无机非金属材料和金属材料防护学科在全国具有很高的知名度。