首页 优秀范文 生物医学工程与生物技术

生物医学工程与生物技术赏析八篇

发布时间:2023-09-26 09:25:06

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的生物医学工程与生物技术样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

生物医学工程与生物技术

第1篇

关键词:医学院校 发酵工程 教学改革

21世纪是生命科学的世纪,将生命科学与医学有机融合是生命科学当前发展的趋势和主流。生物技术专业是医学院校为适应我国中长期发展战略及整个生命科学领域发展要求而设立的新兴专业[1]。发酵工程课程是生物技术专业的主干课程,是一门应用型和实践型较强的课程,其教学质量直接影响学生的专业素质。

我校于2002年开设生物技术本科专业,学生于2005年3月进入发酵工程课程的学习,至今已经连续开设7年。我们从开设发酵工程课程之日起,就不断发展并使之完善,追踪学科发展的最新趋势和研究手段,注意结合相关生物化学及微生物学的知识及医学院校学生培养特点,培养学生独立思考和科研创新能力,力争形成符合我校医学背景下具有较强办学特色的发酵工程课程教学体系。为此,我们进行了一系列的课程教学改革,下面结合笔者的教学实践,谈谈发酵工程课程教学改革方面的个人体会。

1 发酵工程课程教学改革的背景和必要性

全国开设生物技术专业的高校有300多所,其中有28所高校属于医学院校。医学院校生物技术专业的教学改革研究主要集中在生物技术专业人才培养、专业建设、实验教学体系和毕业论文上,很少有针对专业课程的教学改革。经查阅,仅有安徽医科大学胡若磊[2]、滨州医学院焦飞[3]分别对医学院校生物技术专业酶工程和分子生物学进行了课程教学体系的相关研究,而对发酵工程课程的教学改革一直无人涉及。

医药生物技术专业在医学院校中开设仅有10年左右的历史,属于一个全新的专业,各医学院校既无可参照的教学计划,又缺乏教学经验,如果完全套用综合性大学生物技术专业的发酵工程课程教学体系,不能够满足医学院校生物技术专业培养目标的要求。对医学院校生物技术专业发酵工程课程进行教学改革,顺应了时展潮流,对明确发酵工程课程教学目标、提高课程教学质量有一定借鉴意义。

2 教学改革的内容

2.1优化课程体系

课程体系是人才培养的基础,是教学改革的核心和关键。课题组参照相关院校生物技术专业教学大纲,结合我校实际情况编写新的教学大纲,结合专业特点,补充新内容,删减过时、重叠内容,避免一本书教到底的传统教法。课程体系编排上坚持生物学和工程学两个基础并重,一方面通过微生物、生化、分子生物学的知识深入理解发酵过程生物学现象,另一方面应用高等数学微积分的基本原理理解发酵过程动力学和放大优化的基本思想,最终掌握发酵工业生产过程动力学和过程放大中的量化与优化基本方法。

2.2 教学内容的重组与优化

发酵工程涉及生物工业的许多领域,如抗生素工业、有机酸工业、酶制剂工业、氨基酸工业,还有新能源的开发及生态环境治理等。在这些生物工业领域中,各种具体的生产工艺,从原材料到菌种、生物反应器、产物的分离与提纯等都有着很大的差异,但其基本生产模式相同、理论基础相同。要调整该课程体系,我们对课程内容进行了分类和归纳,并选择有代表性的内容进行讲解。结合我校生物技术专业的医学背景及专业特色,适当增加医药相关内容的讲授学时,如重点讲解抗生素、氨基酸、核酸类药物的生产工艺过程。

3 教学方法和教学手段的改革

3.1 教学方式的多样化

坚持以“学生为主体、教师为主导”的教育理念,采用以培养学生学习能力、动手能力、创新能力为主的教学方式。我们在授课过程中采取以学生为主体的“交互式教学策略”和教师在教学活动中运用多种教学手段、多种教学资源的“多元化教学”代替“教师讲,学生听”的传统教学模式。在授课过程中,我们采取了系统讲授法、讲授和自学结合法、多媒体教学法、教学和科研结合法等多种教学方式。

3.2改革课堂教学模式,提高教学效果

在教学过程中,必须不断探索和改进教学方法,努力提高教学效果。对于学生在学习中难以理解、容易混淆的概念进行重点讲解,注重讲授内容的系统性和衔接性,加深学生对所学知识的理解。另外,为了吸引学生对发酵工程课程的学习兴趣,我们在授课过程中采用实例法讲授。例如,在讲授《发酵机理》一章时,以啤酒、酸奶、抗生素的发酵为实例,通过讲授其制作过程,使学生加深了对发酵机理的认识。通过课堂讨论和分析一些常见现象,积极鼓励和吸引学生参与课堂问题的讨论,增强了学生和教师的互动性,提高了学生学习的兴趣和主动性。

3.3 充分利用网络课程,充实教学手段

发酵工程课程已经成为泰山医学院优秀网络课程,许多教学资料已经上传到课程网站,内容包括课程简介、理论课与实验课的课件、相关网站的链接、习题库,拓展学习等内容并保持动态更新,拓展了学生的学习空间;开设了BBS互动论坛、课程快讯、答疑解惑、习题交流、课程建议等板块增加了互动性、营造了良好的学习氛围。学生可以随时从课程网站下载教学资料,极大地方便了学生对课程的学习,加深了对课程的理解和掌握。

3.4 朋友班导师制和课外科研活动小组

为把学生培养成为宽口径、厚基础,具备实践能力和创新能力的合格人才,我们实行了发酵工程任课教师与授课班级结对共建朋友班活动,担任整个授课班级的导师。除了关注学生的日常生活和学习外,重点加强学生对发酵工程课程的科学研究思维和科研能力的培养,采用课间指导、课后答疑、参与导师科研课题、组成课外科研活动小组等形式,培养学生利用发酵工程所学知识进行科研活动的能力。

3.5实验教学的改革

(1)改变“重理论、轻实践”的传统观念,加大发酵工程课程实践教学学时比例,减少单纯验证性实验比例,增加综合性、设计性实验比重;增加与医药相关实验的比重。以往的发酵工程实验课为12学时。由于课时少。只能开出几个基本的实验,且是孤立的。不利于培养学生对知识综合运用的能力和创新能力。我们于2010年修订了发酵工程实验教学计划。将学时数提高到24学时。减少单纯的验证性实验,增加综合性和自主设计性实验,如增加抗生素发酵菌株的分离、筛选、发酵和效价测定的综合性实验,既巩固了微生物学的理论知识和实践操作,又使学生掌握了发酵工程菌种分离的基本原理和操作方法;又如我们设计了“蛹虫草菌摇瓶发酵培养条件优化”的自主设计性实验,由学生分组查找资料,设计实验方案,以多糖产量为指标,对发酵培养基和培养条件运用单因素和正交设计实验方法进行优化,获得最佳的培养基配方及培养条件,此举大大提高了学生的科研能力和水平。

(2)改变传统实验教学为主的单一教学模式,尽量多给学生留下思考的时间和创新的机会,建立以学生为主体的实验教学模式。为了加强学生的实践能力,组织学生到抗生素、氨基酸等生产企业参观和实习;鼓励学生参与科研和生产实践工作,并且将他们实际操作过程中的经验教训和知识进行总结积累,用于教学与实践。

4改革和完善发酵工程课程考核制度

发酵工程课程成绩考核一般为平时成绩考核(10%)、实验考核成绩(20%)和期末考核成绩(70%)。在此基础上我们增加了考核内容的项目。加大平时成绩占整个课程总成绩的比例,由原来的10%增加到20%,增加学生学科发展动向报告、课程设计等作业分值,如在学期中间,给学生布置“发酵工程在生物技术中的应用”的作业,由学生自己查阅资料、制作PPT课件,自己上讲台讲述,教师根据学生综合表现打分。通过这种方式的考核,既增强了学生查阅资料的能力,又锻炼了学生的语言表达能力,这样的考核模式,能够比较公平、准确地反映一名学生的学习效果。

5取得的成效

经过几年的摸索,我们在发酵工程教学改革方面取得了一定的效果。教师素质显著提高,备课充分,讲课生动,能够熟练运用多媒体和网络等现代教育技术手段,以实际生产的实例讲解工艺技术内容,激发了学生的学习兴趣,有效地调动了学生积极参与学习过程的积极性;授课教师与学生的互动比例与过去相比明显提高,学生课堂听课时精神状态饱满、精力集中,积极性和主动性明显提高。

参考文献

[1]曹新.关于医学院校生物技术建设和人才培养的思考[J].医学教育,2005(2):21-26.

第2篇

研究基因的专业有:

1、生物科学专业,是一门前沿的边缘学科,生物科学是一门以实验为基础,研究生命活动规律的科学。一般大学都设在生命科学院内,与生物技术,生物工程是兄弟专业。其专业涉及面相当广,包括植物学,动物学,微生物学,神经学,生理学,组织学,解剖学等等。

2、临床医学专业,是一门实践性很强的应用科学专业,致力于培养具备基础医学、临床医学的基本理论和医疗预防的基本技能,临床医学专业学生主要学习医学方面的基础理论和基本知识,人类疾病的诊断、治疗、预防方面的基本训练,有对人类疾病的病因、发病机制做出分类鉴别的能力。

3、生物医学工程专业,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化生物医学工程专业培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。

(来源:文章屋网 )

第3篇

关键词:纳米技术;生物医学;应用;机遇;挑战

随着科技的进步,纳米技术在生物医药和科学技术等领域的应用较为广泛。尤其是生物医药领域,对于临床医学和基础医学的发展起到了积极的推动作用。虽然在不少科学家和医学研究家们对纳米技术进行了详细的研究,并将其运用于生物医学领域,取得了不错的成效。但是对于纳米技术的研究还不够深入,相较于发达国家而言,我国的纳米医学技术还处于发展的初级阶段。需要对纳米医学技术在今后发展中面临的机遇和挑战进行分析。

一、纳米技术在生物医药领域的应用

(一)纳米生物学

纳米生物学是以纳米作为尺度,其研究内容主要包括:其一,细胞器结构、细胞器功能。比如细胞核和线粒体内部结构和功能分析。其二,交换细胞信息,包括生物体的物质、细胞能量信息等。其三,针对生物反应问题,对其反应机理问题进行研究和分析。比如有关于生物复制和生物调控的机理分析。其四,发展分子工程。包括纳米生物分子机器人和信息处理系统等。将纳米显微术引入生物医药领域,可以为生物学家研究进行研究提供技术支撑。比如ScanningProbeMicro-scopes,简称SPMs,中文简称扫描探针显微镜,这是一种新型的纳米生物技术,标志着显微技术和纳米技术的发展。除此之外,扫描显微镜(STM)的内部结构较小、不复杂,因此操作流程较为简单,生物学家可以借助扫描显微镜展开原子级分辨探究,从而提高生物细胞观测能力和分辨能力。仔细观察原子级的内部结构对于进一步探索和研究生物原子微观知识具有推动作用。在自然条件下,利用扫描显微镜可以对生物的蛋白质、多糖等分子展开直接观察。借助STM弹道电子发射电镜可以对单个原子进行操作,这是一种典型的人工改变单个生物结构和分子结构的行为方式。这种方式可以实现治疗疾病这一超前设想。

(二)生物医学工程

将纳米技术引入生物医药领域,可以帮助传统医生解决复杂的难题。比如纳米机器人和生物传感器。纳米机器人简称分子机器人,是酶和纳米齿轮的结合体,将其引入生物科学领域,能够充当微型医生一角,为医生解决以前的疑难杂症问题。这种纳米机器人不仅可以直接注入血液,还可以成为一种传输身体健康与否的工具。一方面,血液在传输过程中能够判断分子机器人的健康状况,机器人能够获得能量,达到疏通血管血栓的目的。另一方面,医生通过外界信号编制好的程序能够探知和杀死人身体中的癌细胞,从而全面系统地监视身体构造和疾病情况。这种先进医学工程能够为现代医学的发展打下坚实的基础。除此之外,利用纳米技术还可以进行器官的修复工作,比如对修复的器官进行整容手术或者基因配置,从而将错误或者不符合的基因去除,引入正确的染色体装置,进而保障机体的健康运作。

(三)纳米治疗技术

将纳米技术引入生物医药领域是一场全新的革命运动,能够在日后的临床治疗方面起到一定的积极作用。比如德国柏林“沙里特”临床医院,早先就有过利用纳米技术治疗癌症的成功案例。研究人员将氧化钠纳米微粒注入鼠类的肿瘤里,然后将他们放置在磁场中。由于受磁场的影响,患有肿瘤的鼠类的温度会随着纳米微粒升温而增加。实践表明,纳米微粒在可变磁场中的温度能够上升到46℃。这样的高温足够将癌细胞杀死。肿瘤附近的机体组织是健康的,没有受损坏,因此纳米微粒不会烧毁这些健康组织,健康组织的温度也不会受到伤害,这就需要研究人员将目光转移到人体试验中,实现消除人体癌症的目的。

二、纳米技术在生物医学领域中应用的展望

随着社会经济的不断发展以及科学技术的不断进步,纳米技术和生物医学之间的联系不断加强,两者的有机结合不仅能够改善生物医学技术的不足,还可以促进生物医学的进一步发展,为更多的临床实验奠定基础。

(一)生物检测诊断材料的应用

不可否认,将纳米材料与生物诊断技术进行有效融合,能够提高医学检测技术水平。实践证明。两者之间的配合还需要结合生物医学工程和先进医疗器材,医学工程是促进纳米技术与生物医学互相融合的基础,对生物医学工程进行深入研究和分析,能在一定程度上催生新医疗器材的出现。如此一来,机械设备的使用用途和功能将会得到不断扩大,这在很大程度上取决于纳米材料的功能。由此可见,将纳米材料合理运用于生物医疗诊断中,势必会进一步催生一大批更为先进的医疗诊断器材。

(二)纳米技术植入人体器官

利用先进的纳米材料可以制成性能优良的人造器官和人工血液等。将这些器官和血液植入人体,能够帮助人类远离疾病,免遭疾病的伤害。比如将传感器和基因技术进行有机结合,能够将微利器官(比如听觉和视觉上遭到损害的机体)直接植入体内,从而帮助他们恢复视觉和听觉,从而达到正常人的状态。

三、纳米医药技术在发展中面临的机遇和挑战

就机遇而言,我国是首位将纳米晶体合成碳纳米管的国家,这个碳纳米管的长度属于世界最长,其性能良好。在医药学研究方面,我国科学家们利用纳米技术研制出了一批具有抗菌效果的医疗器材和设备,并为现代医疗技术的发展提供了先进的理论和技术支撑。在纳米药物载体的研究方面,我国已有有关于“动物体内”应用的报道。这已标志着我国纳米医疗技术进入了世界领先地位。就挑战而言,与发达国家相比,我国的纳米技术还不够成熟,还需要进一步加强对纳米材料、纳米传感器等方面的研究,以此作为进一步推动我国生物医药科技进步的基础。

四、结语

纳米医药技术对于进一步推动我国临床医学和基础医学的发展具有积极的影响。因此国家相关部门以及科研成员应该以积极主动的态度投入到生物医药纳米技术领域,进一步推动我国生物医药科技的进步。

参考文献:

[1]董大敏.纳米技术与社会发展意义的辩证思考[J].商业经济,2011,23:27-28+32.

[2]中国微米纳米技术学会纳米科学技术分会纳米生物与医药技术专业委员会2010学术年会[J].生物骨科材料与临床研究,2010,05:31.

第4篇

关键词:成都市;生物医药产业;政策建议

一、生物医药产业概述

(一)生物医药产业定义。目前,生物医药产业尚无统一的界定标准,一般意义讲,它是指运用生物技术从事药品、设备生产和提供相关服务企业的集合,主要包括生物制药和生物医学工程两方面内容。生物制药产业主要包括生物技术药、化学制药和中药制药等领域,其中中药制药是我国独具特色的生物制药子产业。生物医学工程产业是指运用生物医学工程技术进行产品开发、设计与生产的产业,主要包括生物医用材料及植入器械、诊断试剂以及高新技术诊疗设备及系统等。

(二)生物医药产业特征。首先,生物医药产业具有“三高一长”的特征。生物医药产业是资本与技术高度密集型产业,具有高投入、高风险、高回报、长周期等特征。生物制药是一个投入相当大的产业,主要用于新产品的研究开发及医药厂房和设备仪器方面。新药的研发周期很长,从化合物筛选、临床前研究、各期临床试验到批准上市往往需要10-15年时间,而且风险很大,成功率仅在百万分之一,开发过程中一旦出错,都可能导致项目失败。但若研发成功也有着惊人的高回报。

其次,生物医药产业具有行业周期较弱的特点。医药产业与生命科学密切相关,很难说存在成熟期,是永远成长和发展的产业。医药产品与服务是人类生存的必需品,有不可替代性和广泛的刚性需求,因此,生物医药产业的发展与经济景气程度的关联度较低,具有超强的抗经济危机能力。在历次的经济衰退期,包括2008年的全球金融危机中,美国纳斯达克医药类股票及标准普尔保健指数均有不错的表现。

再次,生物医药产业高度依赖研发资源服务。与IT等高新技术产业不同,生物医药产业在研发阶段更依赖基础科学研究,研发团队需要在产业化的不同阶段适时引入在技术评估、资本运作、市场营销等多种创新要素,加速成果转化。

二、生物医药产业链条分析

(一)生物技术药。上游:主要包括生物制品原材料和研发服务,有研发服务投入大、风险高、附加值高等特点,原材料生物制品制备领域成本相对较低,血液制品行业由于血浆资源的稀缺性较高,平均毛利率达10-15%;中游:主要包括基因工程药物、单抗药物、疫苗、血液制品等药品的制造,制造环节科技含量与附加值较高,行业平均毛利率30%;下游:医药流通及服务环节,由于进入门槛较低,毛利率在5―8%。

(二)化学药。上游:主要包括化工原料供应和化合物筛选,药用辅料及包材的供应;中游:主要包括化学原料药与药物制剂的制造,化学合成药产业中,大宗原料市场趋于饱和,毛利率低,特色原料药和制剂药增长速度较快,而且附加值高,特色原料药和制剂产品的毛利率通常分别在50%、40%左右,化学合成新药作为新产品,往往具有较高的附加值;下游:包括化学药物流通及服务。

(三)现代中药。上游:主要包括中药材种植(养殖)、新药研发,毛利率较高,达40%;中游:主要包括饮片炮制、配方颗粒加工、中成药制造和植物提取物制造,其中中药饮片加工行业毛利率约为30%,中成药制造毛利率约为35%,配方颗粒毛利率达45%;下游:包括中药材流通及服务。

三、国内生物医药产业发展现状

近年来,在人口老龄化及经济发展的双重因素作用下,我国药品市场高速扩容,2002~2012年,我国医药工业总产值的复合增长速度达到22.3%。目前,我国已成为世界第一大原料药生产和出口国,世界第二大OTC药物市场,世界第三大药品市场。2012年,我国药品市场规模达到9261亿元,医药产业总产值达到 18147.9亿元;预计到2020年,我国药品市场规模将以年均12%的增速继续扩容,到2020年市场规模将达到2.3万亿元。第一,从市场格局来说,我国正形成中药、化学药、生物药三足鼎立的市场格局;第二,从各类药品市场份额来看,西药是药品市场的主体,中成药约贡献20%以上,特别是在小医院、基层医疗和零售;第三,从产业布局来看,生物医药“三高一长”的产业特点要求产业向经济发达地区集聚、向专业智力密集区集聚、向园区集聚。目前我国生物医药产业初步形成了以长三角、环渤海为核心的集群发展态势。“十二五”期间,我国生物医药产业仍将进一步集聚于东部沿海地区科研院所集中和创新能力较强的省份,以及少数中西部的中心城市,区域发展不平衡有进一步强化的趋势。其中,研发要素将进一步向上海、北京集聚;此外,西部地区的四川成都、重庆已经具备良好的产业基础,成渝经济圈在生物医学工程领域创新活跃,是西部地区重要的生物医药成果转化基地。

四、成都市生物医药产业发展现状

成都具有良好的生物医药产业基础,在生物制药、现代中药、生物医药材料等领域实力较为雄厚,拥有科伦、地奥等一批优势企业。现代中药、疫苗、血液制品、大输液产品的技术研发水平处于国内领先地位。近年来,成都生物医药产业增长显著,年主营收入增速保持在20%以上。2012 年,全市共有生物医药企业600多家,其中规模以上209家,实现主营业务收入314亿元,占全市规模以上工业比重4.1%;实现利税65亿元,同比增长18.6%。

从政府区域规划角度看,成都市生物医药产业发展前景是可观的,但是不可否认,当前成都市生物医药产业的发展仍面临着不小的问题与挑战。主要是以下几个方面。第一,企业竞争力不强,尽管成都市高新区内聚集了200余家生物医药企业,但尚无真正核心的龙头企业;第二,产业高端化不足。成都市生物医药企业大多处于化学药仿制生产、中药复方生产等产业链低端位置,在药物研发试制、药品检测与鉴定、知识产权服务等高端环节仍旧较为缺失;第三,产业同质化竞争较为激烈。由于生物医药产业的高技术、高资本投入的产业特征,因而对于地域、能源、交通等因素要求不高。成都市内各个区域均有生物医药企业分布,导致企业同质化竞争明显,更易造成企业间的恶性竞争;第四,产业机构亟待升级。成都市大部分企业研发创新不足,产学研合作也较为缺乏,导致一些研发成果产业化较慢,一些关键性产业化技术长期没有突破,制约了产业向高技术、高附加值的下游深加工产品领域延伸,产品更新换代缓慢。

五、成都市生物医药产业发展对策建议

(一)明确发展思路,加强产业招商引资。要明确思路,将生物医药产业作为成都市重点主导产业进行重点扶持和培育。加强产业研究,充分发成都市在我国西部地区的区位、资源优势,重点支持和发展成都市相关区域具有比较优势或能实现突破性发展的产业领域。同时,要把“招商选资”作为成都市生物医药产业发展的一项长期工作。利用好国际产业链分工和产业外包转移契机,“导入招商”与“存量招商”并举,引进一批产业高端和产业链薄弱、缺失环节的关键企业。

(二)优化产业发展环境,促进产业联动发展。要促进“产城一体”组团化发展,加强产业发展载体支撑。加大现有园区的土地整理、清理及置换工作力度,为产业发展预留后备载体空间,大力促进生物医药制造与“成都国际医学城”医疗服务的融合、互动发展,延伸产业链条,以制造环节为主体,带动总部经济与生产业的快速发展。设立生物与医药产业发展的专项资金,加大对优质企业及项目的扶持力度。同市引导企业加大技术创新和技术引进力度,增强自主开发能力,鼓励企业联合高校、科研机构等围绕重大关键技术及高端产品进行 “产、学、研、用”合作。

(三) 完善政府体制机制,改善政府职能。加强生物医药企业运行监测分析,对重点企业实行“一企一策”、“一事一议”。深化与周边省(市)县的产业合作,主动出击,吸引其他省市的优秀技术资源和优秀生物医药企业向成都市高新区、天府新区等区域进驻。支持企业积极申报新版GMP认证,对通过认证的企业基于资金补贴。

参考文献:

[1] 国家发展与改革委员会《2010年医药行业分析报告》

第5篇

1.国内外BME产业发展现状概述

BME产业是目削全球发展最快、贸易往来最活跃的产业之一。20世纪80年代以来,全球BME产业(医疗器械)销售额增长率一直保持在6%〜10%的水平。BME产品的国际贸易额以每年25%的速度增长,销售利润可达50%以上。因此,美国、日本、德国和法国等发达国家投入了大量的人力和财力发展BME高科技产业,抢占国际市场。全球范围内BME产业的主要产地在美国、欧洲和日本,美国是最大的生产、使用和出口国,其次是日本、德国和法国。

随着电子技术、计算机技术与生物材料科学的发展及BME学科的兴起,我国BME获得了进一步发展的理论基础和技术源泉,从而带动了整个产业的技术进步和新发展,走上了BME科技产业的道路,但与国际先进水平的差距仍然非常明显,主要表现为民族产业不强,高精尖的BME产品依赖进口现象严重,加快了医疗费用的高速膨胀;由于我国BME产品档次低、可靠性不高、缺乏创新能力等原因,难以与国外产品抗衡;BME产业虽然数量众多,但组织规模不大和产品档次低,难于参与国际竞争,但我国人口众多,BME产品和BME专业技术人员需求量又相当大。所以根据中国BME产业现状,改革中国的高等医科院校的BME教育和培养现有的BME技术人员,已经刻不容缓。

2.我国BME技术人才队伍建设基本情况

2.1 BME技术人员人才梯队建设现状

知识结构,我国BME技术人员从专业来说,绝大多数是改行的,而且多数为中专或无学历,主要靠自学或多年从事本职工作积累的实践经验,普遍缺乏计算机、电子类和机械类知识。近年来,部分本专科毕业生开始步入企业、医院工作,这是好的趋势。

年龄结构。各医院或BME产业从事BME技术的人员绝大多数为中老年一代,年轻人员所占比例少。

人数比例。据文献报道,我国县级以上医院有1400多所,共有BME技术人员约5万人左右,从人员数目配置水平上来看,发达国家300张床以上的医院配置工程技术人员5人,500~800张宋以上的医院要配置工程技术人员10~20人,而我国平均每个医院配置工程技术人员不足4人。

职称结构。在被调査的人中,职称晋升工程系列的人员主要是医科院校毕业的学生,中初级及其以下职称人数所占比例较大,职称结构不尽合理。

2.2 BME技术人员人才队伍管理现状

管理思路我国在医疗仪器设备正常运行的质量控制和质量保证方面既无国家具体法律规章制度,又无专门人才。许多医院还是过去的设备科,无医学工程科,工程技术人员编制少、整体素质差。

管理机制由于计划经济传统体制的影响,各医院领导对于投入的所有资产的地位、作用及管理的重要性认识不足,造成管理不善。

继续教育现有人才得不到应有的重视,使得他们在培训、进修、职称评定、经济收入等方面都不如临床科室。

人才流失由于工作环境、工作条件以及经济待遇等普遍较差的原因,使得本已缺乏的BME技术人才还在不断外流,特别是近几年来毕业的有较深厚专业基础的高层次人才更是难以留住。

3.我国医科院校BME本科教育现状及存在问题分析

我国BME作为一门专门学科开始于20世纪70年代末,主要集中在工科院校的信息技术类的BME专业教育,后来,一些医科院校相继开展了BME专业教育,并发展迅速。医科院校则注重医学与工程结合、工程技术在医学中的综合应用,但因为培养目标和课程设置上的原因,目前的医科院校BME专业本科应用型教育发展缓慢,其毕业生比较适合于进入医疗设备科研、生产单位工作或者继续进行深造,却未能有效提供医院大量需要的一线应用型人才,与国外相比仍有相当大的差距,还有许多需要我们进行改革的地方。

3.1 我国BME学科培养目标不能全面实现

主要表现在课程体系上,就是过分侧重工程科学知识,轻视工程实践训练;注重专业知识的传授,轻视综合素质与能力的培养,不重视社会人文、经济、环保等方面知识的作用。在教学方法上,基本上是一种“分析模式”,强调垂直思考、抽象学习、简化分解、追求确定性、个人独自工作等。培养模式单一,一刀切、趋同化现象严重。师资队伍普遍存在着重科研、轻本科教学;重理论研究、轻工程研究,教师本身缺乏生物工程实践经验和能力;学科间的交叉融合很少或者几乎是空白。教育内容侧重精英教育,经济、法律、环保、人文等教育要求偏低,这些对于BME专业本科教育目标的顺利实现是很不利的。

3.2 我国BME学科发展不平衡

在研究方面,引进、消化、跟踪研究多,创新性研究较少;理论方法等应用性基础研究多,取得自主知识产权的应用研究较少。在学科建设和发展方面,主要集中在信息技术型BME学科,对材料技术型BME学科、生物技术型BME学科和医疗器械型BME等学科几乎没有涉足。其根本原因在于医科院校BME学科,虽然理工和医学能够紧密结合,医学大背景深厚,能发现对医学发展有实际意义的研究课题,避免了完全跟踪国外研究,有助于形成有自主知识产权的成果和产品,但是工程力量相对薄弱,科研投入不足,严重地制约了学科发展的平衡性。

3.3 专业设置偏少

目前的BME本科教育的专业设置面比较集中在信息技术型BME专业,只有个别学校在培养目标中增加生物材料和人工器官方面的内容。医科院校以医学作为基底学科,植入某些工程学科知识,并以医学应用为目的建立相关课程体系,而对于生物学中涉及的细胞及分子生物学、神经生物学、发育生物学及生物技术;对于工程技术中诸如电子学、材料学、控制技术也均较少涉及,这些都不利于医科院校BME这一交叉学科的发展。各医科院校的研究生培养(科研方向)

基本以生物医学信号的检测处理、医学成像、医学图像处理、医学仪器研究为主,部分涉及到分子电子学、分子光子学、生物力学、生物医学材料、人工器官、组织工程等方向,只有少数大学比较集中在纳米材料、生物医学材料以及人工器官和生物医学图像处理。研究生培养的专业面相比本科生的专业面宽广。

3.4 医工结合不突出

由于受到认识和理论上的因素、文化心理上的因素、管理体制上的因素以及国家政策上的因素等方面的限制,工程与医学的有机结合在教学上体现的还很不够,综合院校往往具备更深的理工基础而缺乏医学背景,医科院校与临床结合紧密,但工程力量又显得薄弱。虽然近年来,不少医科院校与综合性大学合并,为BME专业工程背景的教育和研究提供了条件,但由于体制和教育模式的限制,学科的交叉和融合并没有得到根本解决。其原因主要有二:一是实践环节的学时数由于体制改革进程的不定性和教育投资的不足而受到消弱。二是有医学工程实践经验的教师不足,企业有经验的工程师难以进入人才培养的环节。

4.BME技术人才队伍建设的建议和思考

4.1 医院加强BME技术人才队伍建设

人才队伍建设。应在建立BME技术人员引进、培养、淘汰机制的基础上,加强建立BME技术人才梯队的文化内涵建设,提髙BME技术人员的医学文化修养,培养敬业精神,重视BME技术人员梯队培养和知识更新,逐步改变现有在职BME技术人员知识结构、年龄结构、人数比例以及职称结构。

人才队伍管理。医疗仪器设备是医院资产的核心,必须加强对医院BME技术人员队伍的领导与管理,发挥BME技术人员的作用,提高维修质量,降低维修成本,改变管理思路,结合单位情况制定科学规范的医疗仪器设备正常运行的质量控制和质量保证制度,组织制订或督促执行医疗仪器设备维修管理制度,组织审查维修机构工作规划并监督实施,审批维修开支等。另一方面,要健全管理机制,逐步改变BME技术人员工作环境、工作条件以及经济待遇等普遍较差的现状,改变“重医轻工”的传统观念。

继续教育。注重改变BME技术人员在培训、进修、职称评定、经济收入等方面都不如临床科室的状况。继续教育的方式可以采取自学为主,同时采取其他灵活多样的继续教育方式,鼓励广大在职人员注重收集各种相关信息,逐步改善在职人员的知识结构和专业技能。如扎实的基本理论知识、熟练使用必要的常用检测仪器及仪表、全面掌握各种基本元器件性能及其测试方法、熟练的原理图阅读和问题分析、自学以及熟练阅读外文资料的能力等。

4.2 我国医科院校BME高等教育的发展思考

学科培养目标。当前应突出强调的侧重点应该包括:工程实践能力;表达交流沟通能力与团队合作精神;终生学习能力,职业道德及社会责任;社会人文和经济管理、环境保护等知识。课程体系在继续保持教学与自然科学基础学习的基础上,更强调理论与实践结合、知识与能力结合,在内容上,着重强调加强工程实践训练,加强各种能力的培养,强调综合与集成,自然科学与人文社会科学的结合,工程与经济管理的结合;在教学观念和教学方法上,放手让学生去实践,鼓励创新,充分发挥学生学习的主动性;对于教师队伍,加强选拔和培养,向社会公开招聘,在学历和实践经验方面要求要严格,同时要十分重视每个教师的业务素质培养,为教师创造一些学习机会和培训条件等。

学科发展与专业设置。我国的BME高等教育首先要从社会需求的角度出发,拓展学科建设方向,逐步建立起适合于多学科合作发展的运行模式。其次要充分利用高等院校的科研优势设置课程体系,尽快从单一学科中解放出来,把握学科交叉、融合发展的必然趋势,做到优势互补,在培养人才素质上形成自己的特色,创出自己的名牌,用自己创造的特色和质量去参与竞争。美国BME课程特别是专业课程既能体现学科本身涉及面广的特点,又具有相当的灵活性,又能结合科研优势,突出重点,是很值得我们借鉴的。

医工结合与交叉复合型人才培养。BME是多学科的交叉学科,专业人员需要同时具备医学和工程技术两类知识和经验,靠以往的医生与工程师来组成专业技术人员队伍是无法适应学科发展需要的。所以必须从现在起,特别重视BME教育工怍,加强现有专业点的建设,提高教学质量,改革现有教材,制定科学的人才培养计划。首先,各学科的交叉和融合是我们必须牟牢记住的关键点。以医、工、理为基础,为实现多学科的交叉和融合奠定坚实的基础。其次,构建科学的教育体系结构。根据专业设置和学科研究方向确定知识结构的主干,同时注重拓宽知识范围,使学生既能有相应的BME专业知识又具备在其他领域中发展的基础,从而实现真正意义上的理工生物医学的交叉和融合。

第6篇

[关键词] 骨组织工程;脐带;间充质干细胞

[中图分类号] R329 [文献标识码] A [文章编号] 1674-0742(2014)10(c)-0195-02

骨折及骨科疾病是临床中较为常见的病症,为患者带来了一定身体痛苦与经济负担。目前临床中针对骨折与骨科疾病的治疗,主要采用自体移植、人工植入及异体移植等,但上述方式均存在一定缺陷。MSCs具强大的多向分化功能,能够诱导分化成骨细胞,帮助提升骨折或骨科疾病的治疗效果。在此背景下,对骨组织工程中脐带间充质干细胞的应用进展进行分析具一定现实意义。

1 MSCs的分离与培养

1.1 MSCs的分离

吉林大学生物医学工程学院的杨晨[1]对MSCs的分离进行了研究,首先在手术室收集得到足月分娩的、健康的、新鲜的胎儿脐带,将其放于融入了浓度为0.1%双抗的氯化钠溶液中,在实验室内对脐带进行间充质干细胞分离。其次,将脐带取出,浸泡于酒精内约5 min,后以碘酒进行充分擦拭消毒,置于氯化钠溶液下反复清洗,直至血块完全冲掉。将脐带剪至2 cm/段的大小,以镊子固定住脐带边缘,用剪刀小心剔除脐带外膜,将内含的华氏胶组织分离出来。取胶完成后接着剔除脐带内的血管,再次以氯化钠溶液冲洗,或直接在融入了浓度为0.1%双抗的氯化钠溶液中进行,以保证操作的无菌性。

1.2 MSCs的培养

武汉大学中南医院的胡培[2]等人对MSCs的分离、培养进行了研究,其MSCs分离操作与杨晨基本相同,华氏胶组织成功分离后,将其放入α-MEM培养液(内涵100 U/mL链霉素与青霉素、10%胎牛血清)中,在CO2浓度为5%、箱内温度为37℃的培养箱内进行培养,根据细胞生长情况,以0.25%胰蛋白酶进行传代培养。北京协和医学院的李铎[3]选择将切成管状的脐带继续切片,再将片状脐带组织切割致2~3 mm3,利用吸管逐一将碎状脐带组织植入T75培养瓶中,培养瓶已预先由D/F12培养基(内含有浓度为20%的FBS)包被完成,植入密度为每瓶20~25块碎状脐带组织;再将培养瓶置于温度为37℃,CO2浓度为5%的温箱中,定时向箱内补充培养基(1 mL/d),每隔3 d全量换液。

哈尔滨第五医院手外科分院的聂广辰[4]等人对脐带间充质干细胞生长曲线的绘制进行了研究,在细胞传代培养至第3代时将其分别种植于6孔板的其中4孔中持续培养8 d,按MTT法对细胞的增值情况进行测定,当细胞增值密度饱和,细胞进入平顶期时停测。卓峰等人[5]在细胞增殖特定于曲线绘制的研究中提出,现阶段培养MSCs普遍采用的方法包括酶消化法与培养法,对MSCs细胞进行初代培养,该过程消耗约2 w,当细胞融合率致80%时开始传代培养,在细胞种植2~4 d时增殖趋势最盛,传至第15代时增殖速度开始减慢,至20代时增殖基本结束。早期的细胞增殖的潜伏期在植入后的36 h内,之后开始了成对增长(5~6 d),增殖密度达到饱和后进入到平顶期,综上可知细胞增殖曲线呈“S”型。

2 MSCs的特征

2.1 细胞形态与生长特征

第二军医大学的胡凯猛[6]在显微镜下对MSCs的形态进行观察,按贴块法获取初代细胞后对其进行种植,4~5 d后即可在贴块下方观察到沿瓶底生长的hUMSCs,种植7 d后能够观察到细胞数量不断增多,主要呈小梭形及小三角形,继续培养细胞渐成集落状生长,且生长状态较为均衡,边界清晰,伴有生长晕。酶消化法培养下初代细胞生长速度较培养法快,通常2~3 d后即在瓶底出现细胞,7 d后由小梭形及小三角形变为多角形、纺锤形,且生长迅速,集落生长呈紧靠型。14~15 d后达到约85%的融合。MSCs胞浆较少,小梭形的形态较为显著,细胞核周的颗粒物质较少,消化传代完成后细胞解除集落样生长,且分布均匀。

2.2 细胞免疫学特征

吕鹏飞等人[7]在关于细胞免疫学特征的研究中提出,MSCs的免疫学优势显著,主要表现在其可以脱离免疫抑制作用而冲破MHC屏障,将细胞植入远交动物体内。在UCMSC的免疫学特征分析中,证实其对人外周血单核细胞、鼠脾细胞及纯化T细胞等免疫细胞具有抑制作用,从而减缓其增殖速度。毛希宏[8]的相关研究证明MSCs表面的抗原存在非专一性,主要包括细胞因子与生长因子受体类、粘附分子类、整和素家族成员类与其他分子类等四大类,实验结果表明UCMSCs中,CD29、CD73、CD44、CD13、CD105的阳性率超过90%,而CD134、CD45、CD11b则为阴性,在23代内的传代培养中,各类细胞因子无明显差异,证明UCMSCs在经过多代培养之后免疫学性质较为稳定。

2.3 细胞的诱导分化特征

hUCMSC的诱导分化能力较强,能够实现多向分化,包括内胚层、中胚层与外胚层。在张亚斌等人[9]的细胞诱导分化体内研究中,证实hUCMSC能够分化成为内皮细胞、心肌细胞、骨骼细胞、多巴胺能神经元细胞、神经细胞等,而在细胞诱导分化体外研究中,还发现hUCMSC可分化为成骨细胞、肝细胞、脂肪细胞、胰岛样细胞、生殖细胞、平滑肌细胞等,在研究hUCMSC分化成为成骨细胞时,发现在诱导过程中hUCMSC的ALP活性提升,且钙结节与钙沉积现象明显,证明其具成骨细胞的诱导潜能。上述研究结果表明,hUCMSC诱导分化功能强大,在临床中的应用价值与应用范围明显优于造血干细胞。

3 讨论

骨组织工程是近年来临床新兴的学科,其中胚胎干细胞作为骨组织工程研究的热点与重点,受到了临床医学界的广泛关注。通过上述研究可知,MSCs分化潜能较高,在软骨、成骨、韧带、肌腱、肌肉、神经、心肌、肝等组织中均具诱导分化潜能,临床应用前景广阔。李素萍等人[10]相关研究发现,在标准的细胞培养环境下,MSCs能够沿培养瓶进行增值,可以表达CD44、CD105及CD90,但不能表达HLA-DR、CD34及CD45,在体外培养时表现出成骨细胞的诱导分化潜能。

在此背景下通过改进现有MSCs诱导分化为成骨或软成骨细胞的培养方式,或在已知干细胞的基础上找寻新型干细胞,以提升胚胎细胞在骨组织工程研究中的合适度,成为目前国内外相关研究的探索目标。在现代生物科技快速发展的时代背景下,学者们一定可以寻找到理想的培养途径或干细胞类型,不断推动骨组织工程的发展前进。

[参考文献]

[1] 杨晨.脐带间充质干细胞的分离鉴定[D].长春:吉林大学,2013:9-11.

[2] 胡培.人脐带间充质干细胞的分离培养与鉴定[J].生物技术通讯,2014,25(1):87-90.

[3] 李铎.人脐带间充质干细胞分离培养方法的研究[D].北京:北京协和医学院,2011:14-22.

[4] 聂广辰.人脐带间充质干细胞生物学特性及向成骨细胞分化的研究[J].中国伤残医学,2014,22(6):48-52.

[5] 卓锋.人脐带间充质干细胞应用研究进展[J].中国矫形外科杂志,2012,20(1):49-51.

[6] 胡凯猛.人脐带间充质干细胞向造血细胞方向分化的研究[D].上海:第二军医大学,2012:21-23.

[7] 吕鹏飞,张光武.脐带间充质干细胞在骨组织工程中的研究进展[J].中华临床医师杂志:电子版,2013,7(10):4433-4435.

[8] 毛希宏.人脐带间充质干细胞的培养鉴定及其向神经元细胞分化的研究[J].昆明医学院学报,2011,32(1):41-47.

[9] 张亚斌,解莉楠.人脐带间充质干细胞研究进展及应用前景[J].生物技术通讯,2013,24(3):437-438.

第7篇

关键词 工程力学 理论研究 发展趋势

中图分类号:U172 文献标识码:A

由于相关行业的发展与国民经济和科学技术的发展同步,使得力学在其中多项技术的发展中起着重要的甚至是关键的作用。力学专业的毕业生既可以从事力学教育与研究工作,又可以从事与力学相关的机械、土木、航空航天、交通、能源、化工等工程专业的设计与研究工作,还可以从事数学、物理、化学、天文、地球或生命等基础学科的教育与研究工作。从这个意义上讲,力学专业培养人才的对口是非常宽的,社会对力学人才的需求也是很多的。

随着力学学科的发展,在本世纪将产生一些新的学科结合点,如生物医学工程、环境与资源、数字化信息等。经典力学与纳米科技一起孕育了微纳米力学将力学知识应用于生物领域产生了生物力学和仿生力学;这些都是近年来力学学科发展的亮点。可以预料,随着社会的发展,力学学科与环境和人居工程等专业的学科交叉也将会进一步加强。

1工程力学研究方向

主要学习力学、数学基本理论和知识,受到必要的工程技能训练,具有应用计算机和现代实验技术手段解决与力学有关的工程问题的基本能力。毕业生应获得以下几方面的知识与能力:

(1)具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;

(2)较系统地掌握本专业领域宽广的技术理论基础知识,主要包括固体力学、流体力学、电工与电子技术、市场经济及企业管理等基础知识;

(3)具有较强的解决与力学有关的工程技术问题的理论分析能力与实验技能;

(4)具有较强的计算机和外语应用能力;

(5)具有较强的自学能力、创新意识和较高的综合素质。

主干学科:力学。主要课程:理论力学、材料力学、弹性力学、流体力学、结构力学、电工与电子技术、计算机基础知识及程序设计。

2工程力学发展趋势与学科交叉

(1)固体力学方面:

经典的连续介质力学的模型和体系可能被突破,它们可能将包括某些对宏观力学行为起敏感作用的细观和微观因素,以及它们的演化,从而使复合材料的强化、韧化和功能化立足于科学的认识之上。固体力学的发展,必将推动科学和工程技术的巨大进步。

(2)流体力学方面:

为了尽可能多地开采地下油气,需要深入研究渗流机理并定量化。它的研究还有助于了解各种新陈代谢的宏观机制。

化工流程的设计,很大程度上归结为流体运动的计算问题。由于流动的复杂性,针对若干典型化工设备进行深入的研究,将为化工设计和生物技术产业化等提供新方法和基础。而复杂流场计算需要各种计算方法和理论,必须发展新的计算机软硬件,这就必须在计算流体力学上投入更大的力量。

(3)一般力学方面:

随着技术的发展,诸如机器人、人造卫星和高速列车等等领域的发展,亟需解决多体系统的运动和控制、大尺度柔性部件和液体的运动稳定性、车辆与轨道作一个高度复杂非线性系统等的建模,求解理论和方法等的研究分析。

一般力学近来已经进入生物体运动的研究,例如研究人和动物行走、奔跑及跳跃中的力学问题。其研究结果可提供生物进化论方向的理性认识,也可为提高某些机构、机械的性能提供指导。

(4)力学与其他学科的交叉:

所为学科的交叉可分三类:学科内部不同分支交叉,例如流体弹性力学;两种不同学科间的交叉,例如物理力学;兼有前两者的特点,例如爆炸力学、物理化学渗流、生物力学等。

交叉学科并非两个学科或分支学科的简单加合,它基于源学科又有区别,它的发展有利于发展新学科并促进源学科的发展。

20世纪力学已经与工程交叉产生了工程力学,与地学结合产生了地球流体力学,与生命科学和医学结合产生了生物力学等等。

3工程力学学习技巧与方法

工程力学主要课题是研究材料的力学性能、结构的安全稳定性问题。所涉及材料的强度、结构的刚度及稳定性、疲劳断裂问题。通过力学分析,确定材料是否安全以及安全系数,为工程设计等做基础。先学好理论力学,学会在二维、三维情况下对物系正确的受力、力矩分析。然后逐渐掌握最基本的四种形式:轴向拉伸与压缩、剪切、扭转、弯曲。掌握好处理四种形式的分析方法,最后学会强度、刚度校核。其中最关键的是要能准确并正确的认知其受力状况。

第8篇

人类对最新的科学技术总是赋予了无限想象。当3D打印概念席卷整个市场时,人们开始将3D打印与生物医疗结合起来,于是3D生物打印(3D-Bioprinting)便应运而生。以信息化为前奏,以打印成型技术为基础的3D生物打印技术,正在被越来越广泛地应用于修复和替代再生损伤组织和器官的治疗过程中。同时作为目前实现再生医学最具应用前景的新技术之一,3D生物打印也在向着从非生命假体向简单生命体和复杂生命结构体的发展。

如今,3D生物打印的发展已经超越了医学或者生物学单一领域,向着由医学、工程、生物和临床以及伦理和法律有机融合在一起综合领域迈进。在未来,3D生物打印必将对人类的未来产生深远的影响,但也面临着很多发展的挑战。但无论如何,3D生物打印正在重塑整个医疗行业,且日益接近我们的现实世界。

3D打印技术在医学领域得到广泛应用

三年前,3D打印因为被英国《经济学人》杂志认为是“第三次工业革命的重要标志”而被广泛关注。这场技术革新带来的冲击是巨大的,特别是对于中国这样一个亟需面临制造业升级的国家。由于3D打印涵盖了产品生命周期前端的“快速原型”、全生产周期的“快速制造”、大规模的个性化生产能力等诸多特点,特别是可以与互联网和新材料、新能源相结合,所以3D打印被认为可能会带给中国制造业的重大变革。

也正是在最近的三年里,3D打印中的一系列技术已经在中国开花落地,并开始服务于生产实践。诸如光固化、金属熔敷、陶瓷成形、激光烧结、金属烧结等3D打印装备和材料也越来越多地见诸于媒体报道中,例如我国在打印玩具、手机部件、飞机机翼、武器零部件等,3D打印的应用已经越来越普及。

但是3D打印还有一块重要的领域可能被大家忽视,而这块领域已经在默默地发展了十几年,那就是3D生物打印,即将生物打印技术服务于医学或生物学的教学、科研和治疗事业中。

比如在骨科修复领域,我国科研工作者已经取得了不错的科研和临床应用效果。通过计算机图像和CAD/CAM技术,我国已经利用三维打印技术研制出新型人工髋、肩、膝、踝关节、骨盆和四肢长骨假体,并在很多医院已经成功用于临床,且已经形成了产业化。上海交通大学医学院附属第九人民医院、北医三院、西安的西京医院等很多医院都可以进行个性化医疗植入物的设计、生产和植入。目前在人工关节置换、个体化接骨钣、个体化骨盆修复、肩胛骨、锁骨修复、牙齿修复等临床手术中,3D打印技术得到广泛应用。不过在以上介绍的3D打印过程中,并不涉及到细胞的打印应用,主要是通过3D打印金属粉末冶金技术来制作以钛合金材料为基础的个性化骨科内植入物。

例如华南理工大学通过3D打印技术开发的个性化舌侧正畸托槽,主要是针对在矫正牙形过程中,传统的托槽粘在牙齿的外侧会影响美观等不足而研发。其特点是可置放在牙齿的内侧,且根据每个人的每一颗牙齿的实际情况进行定制。目前,个性化舌侧正畸托槽已获得广东省医疗器械产品注册证,并已在国内外开展了临床应用。

另外,3D打印技术还可以用来制作器官或组织的3D模型,可直接应用于医学教学、临床手术前的术前指导及科研。借助于这些3D模型,器官或组织内部构造的细节可以逼真地显示出来,且可以使复杂的人体组织更为直观明了。在术前指导中,通过3D打印可清晰直观地显示患者的疾病状况,在比如复杂骨折与畸形的分布,这样3D打印所模型可提供比医学影像资料更加详细的解剖学信息,实现了由二维到三维、由平面到立体、虚拟到现实的转变。医生可直接在此模型上进行手术设计及模拟,以确保手术的成功,为临床疾病的诊断及治疗提供了精确化、个性化的新型思路和方法。

不过,这些还不是真正意义上的生物打印。无论是打印骨科的植入物,还是打印人体的模型一,这些还只是通过传统的增材制造技术,通过塑料、树脂和钛合金金属等材料形成无生命的假体或模型。

科学意义上的3D生物打印则是以打印细胞为分水岭,也就是“以3D打印为手段,以加工细胞等活性材料为内容,以重建人体组织和器官为目标”。只有真正的3D生物打印,才是塑医疗行业的重要力量。

3D生物打印是真正的医学革命

目前全球3D生物打印技术尚处于起步阶段,如果以打印细胞为分水岭来看,对于颅骨、牙齿或制造器官或组织的3D模型还只能看做是3D生物打印的“前夜”,原因很简单,虽然这些打印技术也被视为生物医学材料领域的重要一环,但是打印出的产品还是非生命假体,而且大多数打印过程仅仅涉及到一种金属或者塑胶材质,所以其对生命医学发展的支撑十分有限。

真正意义上的3D生物打印是向简单生命体和复杂生命结构体方向发展的。采用的打印材料更是超出了传统3D打印的取材空间,比如活细胞、干细胞、水凝胶、可被人体组织吸收的高分子材料等。

不过,应用活细胞进行生物打印,完全不同于传统的三维打印,甚至可以说完全是另外一个领域。

因为打印的材料既然涉及到活的细胞,就需要精确控制细胞的成活率、细胞生长的支架材料、细胞的氧气、水分、营养等微环境,以及后期如何通过血管化来维持组织的生长和代谢。这样一来,需要同时打印的材料就达到几种乃至十几种,打印过程中的精密控制更加复杂,且更不用说分化程度更高,更加复杂的组织。

也正因为如此,3D生物打印才成为医学领域发力的一个焦点,而这个焦点,在我国集中的体现就是国家对3D生物打印的重视。比如在2014年末,“第四届国际增材制造与生物制造会议(ICAM-BM2014)”在北京召开,来自11个国家和地区的180余名与会代表参加了此次会议。内容涵盖细胞三维打印、组织工程支架三维打印、金属增材制造以及增材制造技术中数据处理、建模仿真和创新应用等。

此外,4月份在上海召开的“2015医用新材料与3D打印论坛”以“交叉前沿新时代”为主题。论坛上来自诸多高效、研究所和医院的3D生物打印研究人员就医用新材料和3D打印相关领域的新方法、新发现,以及进一步发展的重点,特别是成果转化等进行交流和研讨,场面十分火爆。第三届世界3D打印技术产业大会将于2015年6月3至6日在成都举行,大会议题之一将重点围绕生物3D打印的技术路线、商业模式、材料、应用,及如何构建3D生物打印生态链等议题展开深入讨论。

这场潜在的医学革命,可以说目前正在生物学和医学以及信息科学领域酝酿着一场风暴,因为3D生物打印的未来应用将满足人类医学发展过程中最大的一块短板,即器官移植和个性化治疗的需要。

如今,医疗领域的体内植入辅助假体的巨大市场是有目共睹的,但其特点和缺陷都非常明显,及属于非活性体,受到人体的排斥反应强烈。这些大多以机械结构(例如骨板骨钉、人工关节、血管支架等)或机电系统(例如人工眼、人工耳蜗、人工心脏等)或高分子材料系统(人工食管、人工胆管、人工肠、人工膀胱)所构建的人体器官,因其诸多不足也正成为生物材料、生物力学、组织工程学、电子学(包括计算机)特别是微电子学以及临床医学相结合的多学科攻坚的重点。人们多么希望在未来能够植入和应用以细胞及组织所构建的“器官”,来修复人体因伤害或发病所需要的天然器官组织的功能。据卫生部门统计,仅仅在我国,每年等待器官移植的患者就超过150万人,这其中只有1万人能够做上手术,而其余超过99%的患者需要继续等待器官源。而世卫组织统计称,全世界需器官移植手术的病人与所捐献的人体器官的数量比为20比1。显然,这是一个世界性难题。从国家层面来说,更需要去系统破解这些难题,从根本上给生命的拯救创造更多机会。

显然,在未来,在医学伦理的制约下,也只有3D生物打印才能破解以上难题。

3D生物打印有望重塑医疗行业

作为一项前沿制造技术,“3D生物打印” 的发展空间巨大。比如通过生物打印技术制造出与真正组织和器官的外形一致,满足外形结构和力学性能的需求,以及具有满足细胞与组织生长所需要的内部微结构且满足生命体生长的生物循环系统的需要的组织或器官产品,人类的诸多医学难题将被突破,已经提及一百多年的个性化治疗、人体器官的个性化定制难题以及使用模式动物的药物测试方式将被彻底改写,也正因为如此,我们才可以说为何3D生物打印有望重塑医疗行业。

全世界每天共有18个人因为找不到合适的器官移植而导致死亡。目前由于器官来源严重短缺,我国的器官移植事业也走到了一个关键的十字路口。面对每年150万的巨大缺口。通过3D生物打印的个性化制造能力与病体需求的差异性充分结合,配合传统的CT、ECT技术,可以在人工假体、人工组织器官的制造方面产生巨大的推动效应。

另外在药物测试中,目前测试药物其中一大部分工作是在模式动物,如猪、牛、小白鼠、兔子的身上完成的,如果未来以生物3D打印的模式器官来代替试验,不仅有利于缩短临床药物研发周期,节省上亿美元研发费用,还将避免潜在的人体试验损害。所以3D打印出的器官不仅能够帮助新药更快的实现试验,以替代临床试验,缩短新药上市周期。

而在科研领域,细胞打印的产品包括组织和器官两类,细胞准确定位和培养之后,形成的结构具备生物特性。可以作为很好的医学研究工具。通过3D技术将三维立体图象打印出实物,成为研究者手中直观的模型,从而帮助科研工作者不断地进行设计上的优化、结构上的优化,加速生物工程医疗领域中医疗设备、仪器、甚至是仪表的设计。

所以在未来, 3D生物打印技术将对生物医药行业带来重大的改变,如同互联网信息技术改变现如今人们的生活一样。

据美国食品与药品管理局预测,人体器官和功能组织替代物将在未来10年占据生物医学工程产业的50%。

也正因为如此,目前世界各国都在积极制定以3D生物打印技术为基础的,针对以人体组织与器官制造领域的中长期研究计划。如美国《2020年制造技术的挑战》将生物制造技术列为11个主要发展方向之一;日本机械学会技术路线图将微观生物力学对促进承载支持组织再生确定为10个研究方向之一,其预测“2020年及以后,适合许多大型组织和器官再生的刺激条件得到明确”,藉此体现机械工程对再生医学治疗的贡献;中国机械工程学科发展战略报告(2011―2020)也明确将生物与仿生制造列为未来主要发展方向之一。

“再生医疗是一个飞速发展的科技领域,肩负着改写人类医疗史的重任。”这是美国Organovo公司网站的一句话。我们更无法想象一百年后的医疗世界,最可能的是,3D生物打印也将成为一种普遍的医疗模式。通过3D打印技术制造器官,不但可解除移植器官资源紧缺的难题,也将对药物开发产生深远影响。

未来市场前景极为广阔

利用3D生物打印技术,目前研究人员已经成功打印出了包括人耳,骨骼以及心脏等器官,并且在局部领域取得了临床试验上的成功。虽然目前并未推广开来,但前景却极为广阔。

据3D生物打印领域的专家戴∪衷菏拷樯埽目前医疗行业3D打印技术的应用主要有以下几方面:一是无需留在体内的医疗器械,包括医疗模型、诊疗器械、康复辅具、假肢、助听器、齿科、手术导板等;二是个性化永久植入物,使用钛合金、钴铬钼合金、生物陶瓷和高分子聚合物等材料通过3D打印骨骼、软骨、关节、牙齿等产品,通过手术植入人体;三是3D生物打印,即使用含细胞和生长因子的生物墨水,结合其他材料层层打印出产品,经体外和体内培育,形成有生理功能的组织结构。这项技术成功后,有望解决全球面临的移植组织或器官不足的难题。

在目前,生物3D打印在药物筛选、手术导板、假肢假体等多领域的盈利模式已经形成。3D打印顶尖咨询机构Wohlers的一项报告显示,2019年3D打印市场规模将达到60亿美元,其中在医疗方面的应用市场份额占15.1%,位居第三位。LuxResearch的分析师预测,3D打印技术在医疗行业将迅速采用,预测2025年该市场达到19亿美元,折合人民币超百亿。业界认为,3D打印在医疗行业甚至整个生命学领域都有广泛的应用前景。

面对巨大的市场,目前国外已有不少公司推出了高级生物打印设备,以适应目前日益强大的科研需求。如最为强大的瑞士RegenHU公司推出的BIOFACTORY系列打印机,最大可以扩展到8只打印头,支持五种打印方式,可让打印的组织赋予更多功能,可以构建更为复杂的组织,最小挤出量为20pl,精度更高。2015年Nature杂志专门刊发RegenHU BIOFACTORY的应用文章,介绍其在构建体外血液-空气组织屏障方面的应用

德国的ENVISIONTEC公司推出的3D-Bioplotter,采用熔融挤出沉积工艺,可以成形多种生物材料。但尚不能进行细胞的直接堆积成形。美国的MicroFab公司针对生物医学和组织工程应用,推出jetLab系统,可以作为生物材料成形的开发平台,进行组织工程支架的三维打印成形研究。

但是在中国,目前仅有两家公司在制造并提供3D生物打印机。其中一家是杭州捷诺飞生物技术有限公司,另外一家是青岛尤尼科技有限公司。目前青岛尤尼在国家863前沿生物技术重大专项的支持下,已经研制出用于临床人体组织缺损修复,可打印多种生物支架材料及细胞的高精度3D打印系统的生物打印机,目前正在进行产业化过程中。

此外,3D生物打印市场的动作频频,也显示出研究单位对该领域的重视。

2015年4月,国家食品药品监督管理总局授予注册证的广州迈普再生医学科技有限公司研发的第一代人工硬脑膜产品――“睿膜”成功上市,这是中国第一个在植入器械领域成功实现产业化的生物3D打印产品。

四川英诺生物拟投资建立 3D 生物打印产业化基地,目前英诺生物已与四川大学华西医院就项目研发合作事宜签署了《战略合作框架协议》。

湖南首家 3D 生物打印临床应用研究所在湘雅医学院成立,据悉该研究所致力于突破增材制造(即3D打印)在临床医疗应用中的核心与关键技术,推动3D打印技术在临床医疗、医学教育、医用生物材料开发等领域的应用。

发展面临多重挑战

3D生物打印是一个数字化、智能化、全自动化制造系统的综合工程,3D生物打印要想取得成功也绝非易事。

根据公开的资料显示,目前3D生物打印机能够非常成功的生产出简单的组织结构,但目前打印最厚的组织也仅仅达到20多层细胞。如以厚度为标准衡量,其仅为几百微米,相当于人类少许的头发。另外,一些团队使用高级的3D生物打印机生产出来的一些更大组织,但其自身力度很差,甚至连自身的磨损都不能承受。此外,怎样使这些被生产出的组织得到存活是科学界关注的话题,比如组织中构建血管和神经通路就属于3D生物打印的核心问题。

此外,3D生物打印需要自动控制及加工制造的软件控制系统,以及高精度、高速度、高效率的硬件。目前在产品价格方面,国外3D生物打印机设备和材料的价格也居高不下。据悉,用于制造器官模型的3D生物打印机售价在120万至400万人民币之间,与通过激光烧结的3D打印机设备价格相当,所以目前还主要是一些有条件的医院和机构在承担相关研究,这也成为3D生物打印发展的障碍之一。

即使是已经进入临床应用的骨科产品,也面临着一系列地审批难题。西安交通大学机械工程学院特聘教授李涤尘和北医三院的刘忠军是将3D打印骨科产品进行临床应用的先行者,但是他们均表示,如何迅速拿到产品审批是个问题。由于目前我国3D打印在医学中的应用相对较严谨,目前还没有一个法律法规来规范。导致了3D打印的器官需要国家医疗器械制度和法律的审批,而这个过程非常复杂,而且风险较高。所以即使李涤尘2004年就成立了公司,到现在也没拿到产品许可证。由于3D打印的产品非常个性化,已经超过现有的产品监管运作模式,所以不可能每个打印产品都去检验。这种风险如何化解以及面对满足这种新的消费需求和商业形态,都需要国家有关部门作出非常具体的研究和回应。

所以综合来看,目前即使政策上如鼓励使用并推广这项新技术,同时严控质量加强行业管理和规范,鼓励创新和临床转化。但涉及3D生物打印的规定仍旧需要重新制定,特别是生物医疗产品的生物相容性和知识产权在内的诸多问题也急需解决。