首页 优秀范文 初一数学的概念

初一数学的概念赏析八篇

发布时间:2023-09-28 16:01:56

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的初一数学的概念样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

初一数学的概念

第1篇

关键词:数学概念 引入 形成 理解 应用

要使学生学好数学这一门科学知识,教师要注重和加强数学概念的教学,因为数学概念是数学科学中最基础的也是很重要的知识,是学好数学知识的起点,正确理解和领会概念是学好数学的前提条件,也是发展学生智力、培养学生的思维能力、提高学生素质不可缺少的一环。数学概念是教学工作中一项重要的内容,是基础知识和基本技能的核心,正确理解和掌握数学概念是学好数学的基础,学好数学概念是学好数学最重要的一个环节,抓好数学概念的教学是提高教学质量的根本措施。因此,对于加强数学概念的教学,每个教师都必须高度重视,它是关系到学生能否学好数学的关键。

一、利用生活实例引入概念

数学概念的形成,必须联系学生的生活实际,直观、具体,建立在对事物的感性认识的基础上,所以要引导学生通过观察、分析、比较,找出事物的本质特性。例如,在学习“直线与平面的垂直”这一概念时,可以创设这样的教学情境:植树时如何判断树与地面垂直?问题提出后,学生们十分感兴趣,展开了热烈的讨论,就连平时数学成绩较差的学生也参与进来,甚至生活中的办法也来了。如何定义线面垂直、如何判定线面垂直等这一课时的重点内容也就在轻松和谐的情境之中完成了。

二、注重概念的形成过程

注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1、2、3……表示;一个物体也没有,就用自然数0表示;测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度,记作+3°,零下3度,记作-3°,这里出现了一种新的数——负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。

三、剖析概念的本质

数学中的概念大多数是通过定义描述给出它的确切含义,对于这类概念要抓住其本质属性,让学生归纳概括定义的基本点。对定义基本点的归纳概括过程是对定义的“再加工”过程,即是理解过程。通过归纳排除定义的非本质属性,就能使学生对概念有全面、深刻的理解,从而能正确运用概念。例如互余概念的教学,应启发学生归纳其本质属性:(1)必须具备两个角之和为90°,一个角为90°或三个角之和为90°都不能称为互为余角,互余角只就两个角而言。(2)互余的角只是数量上的关系,与两角所处位置可以无关。

四、巩固对概念的理解

巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征。同时,应注重应用概念的变式练习,恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“π与3.14”等为例,通过这样的训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念进行比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。

五、加强概念的应用训练

概念的获得是由特殊到一般,概念的运用则是从一般到特殊。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化和具体化,而且能使学生对概念的理解更全面、更深刻,同时还能提高学生的实践应用能力。

数学教学离不开解题,在教学过程中引导学生正确灵活地运用数学概念解题,是培养学生解题技能的一个有效途径,如通过基本概念的正用、反用、变用等,培养学生计算、变形等基本技能。因此,教师应该多给学生提供练习的机会,提高学生灵活应用概念的能力。

以上关于数学概念教学的各个环节,是本人在教学实践中总结出来的一点体会,在教学中根据不同概念的特点适当运用,学生对数学概念的掌握就比较牢固,为学生今后进一步学习数学知识打下了扎实的基础。

参考文献

1、孙维刚《孙维刚初中数学》.北京大学出版社,2005.1。

第2篇

关键词:小学数学;概念教学;教学策略

仅仅在小学时期,学生需要掌握的数学概念数量就已经多达数百个,因此从某种程度上来说,小学数学概念是小学数学教学的基础,也是数学知识理论体系的根本。通过小学数学概念的学习,学生能够逐步培养和提升自身的逻辑思考能力,通过对数学概念的深入了解提升对数学知识的理解,不但能够在学习的过程中逐步建立数学知识理论,对于后续的数学知识学习也有一定的帮助,并且能够将客观现实与空间形式更好地结合在一起,更好地将数学知识运用到生活和解题过程中去。而在目前的数学概念教学过程中存在着不少问题,例如,概念教学方式往往偏向僵硬化,教师所开展的概念教学仍然停留在记背的阶段,除此之外,教师在开展概念教学的时候过于零散,没有在教学过程中形成完整的教学体系,不利于学生在学习过程中融会贯通。

一、图画式教学概念阐述

教师在开展小学数学概念教学的过程中应当学会通过不同形式来进行数学概念的阐述,通过多样化生动的教学形式帮助学生加深对知识的理解程度,从而达到概念教学的目标。例如,教师可以深入挖掘图画背后的教学内涵,通过引导学生进一步理解图画,鼓励学生自觉进行数学概念的阐述,并且在这个过程中应当尽力引导学生运用数学概念阐述常用的术语。图画概念的阐述在小学数学概念教学中是一个十分常见的类型,教师可以通过同一个类型的概念阐述形式引导学生自主进行观察、归纳和总结,只有学生掌握了一定的概念阐述能力,才能逐步引导他们实现概念与具体知识的结合。例如,在进行圆的概念阐述时,教师在给圆下定义时可以先让学生自主进行圆特征的观察和总结,只有鼓励和引导学生将圆的表象特征逐步转化为数学语言,阐述圆的概念,学生才能够实现数学学习中的自主探索和思考过程。在这一类概念阐述教学中,教师通过让学生自觉地进行概念归纳和阐述,以锻炼学生的语言表达能力,将自己所理解的抽象化知识通过精练语言达成科学化的专业术语,有效地实现抽象与具体之间的联系。除此之外,在这个过程中学生能够逐步认识到数学学科的特点,认识到数学是一门严谨、有规范的学科。

二、定义式教学概念阐述

定义式的概念教学相比于自觉思考探索的定义方法显现出更强的概括性和抽象性,但其阐述的准确程度以及统一度也是最佳的。主要的过程就是教师对某一抽象性数学知识进行科学定义的教学,学生能够第一时间接收到最为准确的数学知识概念,并且能够形成一个基本的广泛认知。教师应当在这个过程中充分地抓住概念定义中的关键词,对关键词进行深入的解释,通过生动的举例以及区别性的介绍让学生充分地认知到关键词的主要意义,在这个过程中最重要的是将专业化的词语进行通俗化处理,充分地突出关键词的区别性特征,让学生领会到数学知识概念的主要基本特征。当然,相比于多样化的自定义概念教学模式,定义式教学概念阐述能够使学生迅速地领会到数学知识概念的主要特征,这对于关键问题的把握也是有利的。定义式教学还是数学知识概念的准确定义,能够最直接地让学生形成概念的记忆。例如,在直线的定义中,数学中的直线是两端都没有端点、可以向两端无限延伸、不可测量长度的。其中的关键词就是两端都没有端点、两端都可以无限延伸以及长度无法测量,相比于线段来说,两者的定义能够呈现明显的区分,线段是两端都有端点、两端都无法无限延伸以及可以测量长度的。在这样的区别教学下,相信学生能够较快地掌握直线的概念。

三、生活式教学概念阐述

生活式教学概念阐述实际上指的就是从生活实例引入数学概念,生活式教学从某种程度上来说能够更加快速地帮助学生深入地了解数学知识概念,数学知识大部分源于生活,回归式的生活教学能够让学生在数学知识学习和生活实际间迅速地建立密切的联系,从而推动学生回归生活,回归数学知识的本质,认识到数学知识实际上与生活息息相关,从而对数学知识以及知识概念产生熟悉感。生活实际与数学概念的结合也能够帮助学生更好地理解数学知识概念,不仅在课堂的引入部分可以运用生活式教学概念阐述的方式,在课末总结的时候也可以让学生开阔视野,在生活中积极寻找与数学知识概念相关的事件,从而将数学课堂与生活实际更好地结合在一起。例如,在学习线段与直线这一部分内容的时候,教师可以让学生根据数学知识的概念寻找生活中哪些物品是直线,哪些物品是线段,从而进行课后的巩固和提升。

总的来说,在小学数学概念教学的过程中,教师应当充分地考虑到学生的年龄阶段特点以及不同类别的数学知识概念,进行多样化的有效教学,通过对数学教材的深入探索更明确地掌握数学知识概念的本质特征,帮助学生进行数学知识概念的学习。

参考文献:

[1]许中丽.小学数学概念的策略研究[J].中小学教师培训,2015(3).

第3篇

关键词 现代教育理念;医学院校;数学建模

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2016)22-0111-02

Mathematical Modeling Teaching Reform of Medical Colleges under Guidance of Modern Education Ideas//QI Dequan, ZHANG

Ruodong

Abstract Modern educational ideas, such as inter-subjectivity concept,

quality education concept, and individualization concept and syste-

matize concept, transcend the traditional educational ideas. Under

the guidance of modern education ideas, mathematical modeling tea-

ching of medical colleges should take the following measures: rea-sonably returning the status of teachers and students; strengthening the training of medical students’ practical operation ability; imple-

menting hierarchic and sub-professional teaching mode; streng-thening the coordination and cooperation of the various departments of the college.

Key words modern education ideas; medical colleges; mathematical modeling

1 引言

医学生是未来的医务工作者,一个优秀的医务工作者不仅要掌握渊博的知识、精湛的医术,更要具备创新能力。创新能力能够在临床治疗、新药品开发和公共卫生体系建设等领域发挥重大作用,促进医学的进步。数学建模是运用数学化的语言和方法来表述现实生活中研究对象的内在规律,引导学生将求解到的数学结论返回到实际对象的问题中的过程[1],它是提高医学生创新能力的一个重要途径。但是,在传统教育理念影响下,现有高等医学院校数学建模课程的教学实效性不强。因此,迫切需要转变教学理念,在现代教育理念指导下改革高等医学院校的数学建模课程教学模式。

2 现代教育理念对传统教育理念的超越

理念的转变是教学改革的先导。现代教育理念是对现代西方人本主义教育理念精髓和我国基础教育改革精神的提炼和整合,它是对传统教育理念的超越,为高等医学院校数学建模教学改革指引了方向。比较重要的现代教育理念主要包括主体间性理念、素质教育理念、个性化理念和系统性理念。

主体间性理念 传统教育理念对教育主体的认识经历了由“以教师为中心”到“以学生为中心”转变的轨迹。这两种观点在理论上各存偏颇,都根本否认了教育^程中教师与学生之间的平等关系。现代教育理念则认为由于教育活动是教与学的统一,因此教育主体呈现出“一体两面”的性质。作为教育活动基本要素的教师和学生都是教育主体,双方在教育教学过程中,无时无刻不在进行主体性活动,体现了“主体间性”。

素质教育理念 传统教育理念过于重视知识的讲授与传递,忽视受教育者实践和操作能力的培养,结果导致只关注学生考试分数而忽视学生综合素质培养的弊端。现代教育理念则主张学生全面素质的培养和训练,认为能力与素质是比知识更重要、更稳定、更持久的要素。它特别注重教育过程中知识向能力的转化工作以及学生实践能力的培养,旨在造就全面发展的人才。

个性化理念 传统教育理念过于强调教育形式的统一性。在个体培养目标方面,与总体教育目的整齐划一。在人才培养模式方面,传统教育通过统一的教学计划、统一的课程与教学大纲、统一的课表与同步的教育进程及标准化的教育管理塑造不同的学生[2]。现代教育理念则尊重学生的个性,认为每个学生由于其遗传因素、成长的社会环境、家庭条件和生活经历的不同,必然导致他们在兴趣爱好、动机需要、气质、性格、智能和特长等方面存在不同。因此,现代教育理念主张针对学生不同的个性特点采用不同的教育方法和评估标准,为每一个学生的发展创造条件。

系统性理念 传统教育理念提出“三中心论”,即书本中心、教师中心和课堂中心,主要关注学校的课堂教育这一构成要素。现代教育理念则主张把教育活动看作一个有机的生态系统过程,需要家庭、学校和社会的共同努力。就家庭、学校、社会各自而言,又分别构成一个子系统。

3 现代教育理念指导下的高等医学院校数学建模教学改革致效方略

合理归位教师和学生的地位 现代教育理念中的主体间性理论主张教育活动是教师教和学生学的统一,矫正了传统教育理念中“重教轻学”和“重学轻教”的教学价值观的褊狭。在现代教育理念中的主体间性理念指导下,高等医学院校的数学建模教学应当对教师和学生的地位进行合理归位,以“主体间性的师生观”消解“以教师为中心”和“以学生为中心”的两极对立观。

以现代教育理念中的主体间性理论为指导,高等医学院校的数学建模教学活动应加强数学建模指导教师与医学生之间的双向互动。作为指导教师,不是简单地对学生进行数学知识灌输,而是尊重学生的主体地位,激发学生的主体意识。通过参与式教学、启发式与提问式教学、讨论式教学、辩论式教学等一系列方法相结合,加强师生之间的互动,调动学生学习的积极性。另外,要通过举办学术讲座、建设数学建模课程学校网站等形式,积极拓展和构建课堂外的师生平台。

注重实践操作能力的培养 现代教育理念中的素质教育理念强调知识、能力、素质在人才培养过程中的有机统一,更重视教育过程中知识向能力的转化工作以及内化为学生的自身素质。数学建模的过程,本身就是理论知识运用和实践操作过程相结合的过程。数学建模教育,更应注重培养学生的创新思维和增强学生的综合素质。因此,高等医学院校的数学建模教学,不应仅仅进行理论知识的讲授,更应注重实现理论知识讲授与实践操作能力培养的统一。为强化医学生的实践操作能力,高等医学院校可组织医学生组建数学建模社团,积极鼓励医学生参加各个级别的数学建模竞赛,在各种活动和竞赛中锻炼提高自己的实践操作能力。在数学建模活动和数学建模竞赛过程中,教会医学生如何运用书籍、网络等工具查阅相关资料,如何运用统计方法整理数据,如何运用SPSS、MATLAB等数学软件分析数据,如何撰写论文。通过大学生数学建模竞赛锻炼医学生的毅力和耐力,提高医学生的计算机应用能力、自学能力、对科技新成果的使用能力以及收集、分析、利用信息的能力。

实行分专业、分层次的教学模式 现代教育理念中的个性化理念尊重学生的个性,个性意味着差异性。在现代教育理念的指导下,必须正视医学生存在的差异性。这种差异性不仅体现在医学生个体之间的差异,更体现在医学生与其他专业大学生之间的差异,以及不同医学专业之间的差异。因此,要提高高等医学院校数学建模教学的实效性,可在尊重这种差异性的基础上,提出分层次、分专业的教学模式。比如在数学建模案例库的建设过程中,可根据不同年级和不同医学专业的特点选择或编写案例。在案例教学的过程中,则根据实际情况选用适合不同专业的数学建模教学案例。例如:针对临床医学专业,可选用“艾滋病的疗法评价与疗效预测模型”;针对预防医学专业,可选用“传染病模型”;针对药学专业,可选用“药物动力学模型”;针对生物医学工程R担可选用“DAN序列分类模型”;针对口腔医学专业,可选用“牙弓生长模型”;等等。

切实加强学校各部门的协调和配合 现代教育理念中的系统性理念主张教育是一个系统工程,学校是教育生态系统中的一个重要子系统。因此,要增强医学院校数学建模课程的教学实效性,首先要发挥高等医学院校数学建模课堂教育的主渠道作用,加强数学建模的课程建设、教材建设和指导教师的队伍建设。同时,还应上下齐动,加强医学院校系统内部各个部门和各环节的协调运作,取得党政管理部门、教学辅助部门、学生管理部门的积极配合与支持。

4 结语

现代教育理念中的主体间性理念、素质教育理念、个性化理念和系统性理念为高等医学院校数学建模教学改革指引了方向。在现代教育理念指引下,应当合理归位教师和学生的地位,注重对医学生实践操作能力的培养,实行分专业、分层次的教学模式,切实加强学校各部门协调和配合,从而提高高等医学院校数学建模教学实效性。

参考文献

[1]许万银.数学建模方法论[M].北京:科学出版社,

第4篇

   朱  萍

(无锡市新城中学,江苏  无锡  214111)

摘  要:初一是初中生学习数学的基础时期,显得尤为重要。本文通过分析初一学生数学学习中存在的问题,从培养初一学生学习数学的兴趣、养成良好地学习习惯和调整适合自己的学习方法等方面,提出了为学习打好初一数学基础的学习策略。

关键词:初一数学;学习策略;数学基础

很多人认为,初中数学关键是初三,因为初三的考点最多,而且初二数学难点多;但初一的数学同样重要,虽说初一数学知识点比较简单,轻松易懂,大部分学生在学习中感觉轻松,压力不大,但是如果不注意把知识点搞懂、弄透,慢慢地将小问题积累起来,随着知识的深入,大问题在后面就难以解决。虽然很多初一学生由于原来小学数学成绩比较好,进入初中以后自己在思想上就放松了,觉得初中数学和小学是一个样的,还是按照小学学习数学的那一套方法在学习。比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段,学习效果很差。究其原因,是由于小学数学相对比较容易,小学数学考95分以上很正常,但是到初一经过一个学期后,一下子掉到70-80分也很快,而到了初二不仅分数下滑,而且影响到学习的动力。

为了更好的解决这样的问题,首先要认清学习初中数学和小学数学的差别。简单概括一下就是几点:

第一,从“自然数与分数”到"实数"。在小学数学中,只涉及了关于自然数和分数的知识,也就是正有理数。而当升入初中后,在代数课程遇到的第一个难题就是"负数"。负数是一个全新的抽象概念,完全要靠学生理解性的知识,而负数的计算、正负号的变化一定会让学生头痛不已,而接下来的就是相反数、绝对值、数轴等一些问题,遇到一些要“拐弯”的难题时更是无从下手。

第二,从"数"到"式"。小学六年中学习的主要是具体的数以及具体的数之间的运算,而到了初一接触到的是用字母来表示数,建立起了代数这个概念。一般人从表面看,"代数",就是用字母来表示一个数,但实际上绝非这样。初一的数学先是讲了"用字母表示数",接着就开始深入到了"方程",再由此讲述了"包含字母的式子"这一概念,然后又开始了学习关于"函数"这一概念以及一系列运算。

第三,从"算术法"到"方程"。小学的应用题大多都可以用算术法来解题,我们讲的"算术法"就是指一个全部由数字和符号构成的式子,因为计算简便,成了小学生主要解题的方法,即使小学里学习了方程,一般情况下,学生们还是喜欢用算术来解决,方程只是偶尔用一下。可进入初中后就不同了:自从初一上学期详细的学习了一元一次方程后,我们会发现,凡是应用题第一反应就是设未知数列方程,而对原先的"算术法"却不再这么运用了,这是因为,用算术法来解应用题很多要用逆向思维,而方程所用的很多是正向思维,这样解题的方便程度当然一看就知道了。

这个问题究其原因,主要是对初一数学的基础性重视不够。主要反应在以下几个问题上:第一,对知识点理解不全面,停留在表面;第二,解题不懂技巧,不会举一反三;第三,解题经常会出现粗心错误,使得整个题目没有一定完整性;第四,解题效率低,速度太慢,考试时间里经常有没有完成的试题;第五,未养成总结归纳的好习惯,不能习惯性的归纳所学的知识点。 这些问题就是一直在学生学习中发现的,如果这些问题不能很好的解决,在接下来的数学学习中,肯定会出现更多的问题,成绩就会滑坡。

所以,关键是要解决两个问题:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。

学习成为贯穿人的一生的事情,一方面不仅要关注学生素质发展的全面完善以及个性的健康和谐发展,另一方面还要关注到学生的学习和发展,更为重要的是要让学生愿学,会学,掌握学习的方法、技能,养成良好地学习习惯,能够积极主动的学习。那么怎样才能打好初一的数学基础呢?

一、培养学习初一数学的兴趣 

兴趣是最好的老师。兴趣可以使一个人的学习进入良性循环,越学越有兴趣,越学成绩越好。毕竟小学数学和初一数学有很大的差别,所以教师在初一教学活动的开始就注重引起学生的兴趣,教师的能力大小不在于只“讲授知识”,而在于激发学生的学习动机,唤起学生的求知欲望,让他们怀着浓厚地兴趣参与教学活动中来,经过自己的思考和动手操作来掌握知识。因此在教学过程中可以通过介绍我国在数学领域的卓越成就,介绍数学在生活、生产和其他学科中的广泛应用激发学生学好数学的动机。通过设计情境提出问题、引导学生去探索、去发现,让学生从中体会成功的喜悦和发现的快乐运用适当的数学方法和手段引起他们的求知欲和好奇心,从而培养他们浓厚的学习兴趣。

二、调整学习初一数学的方法

好的学习方法,事半功倍,初一数学学习的方法与小学数学的学习方法有很大的差别。光做题目还不行,总结最重要,平时养成良好的习惯,把做错的题,你自己认为经典的题,和教师上课一直在讲的范例,一定要用笔记本记下来,有空拿出来反复看。这个过程很重要,只有这样才能做到举一反三,在这个意义上来说,一类题目只要做过二三次,同类题目就可以掌握了。

    力争一题多解,开拓思维,只有平时掌握多种方法,考试的时候才知道,采用哪种方法最快最好,教师在平时也应该开设数学学法指导课,并列入数学教学计划。我教初一的时候,就每两周一课时给学生上数学学法的指导课。结合正反例子讲,结合数学学科的具体知识和学法特点讲,结合学生的思想实际讲,边讲边示范边训练。

三、养成学习初一数学的习惯

首先养成自己看书的习惯,这是自学能力的基本功,也是耐心的考验。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%—25%的知识是来自学校,而75%—80%的知识是靠他们离校后通过工作、自学和科研来获得的。其次,养成笔记习惯,“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。听和记必须双管齐下,才能有效。第三,养成质疑的习惯 。我国古代大教育家孔子一贯主张学习要知其然,更要知其所以然。就是对事物不但要问“是什么”,更要问“为什么”。 这是基础的,你要把老师上课讲的弄懂,课后,先回顾一下, 再去做作业,要变通老师说的,灵活机动。从简单的题目开始做。先做课本每小结后的习题练习,再做其它学习资料的作业。不懂的一定要多问,问周围同学老师都可以。

四、培养学习初一数学注重实战的经验

考试本身就是一门学问。有些同学平时成绩很好,上课老师提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题 中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

总之,初一是初中数学知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,真正培养学生认真负责的学习态度和习惯,为日后进一步进行数学学习打好良好的基础。

参考文献:

[1]韩立福.新课程有效课堂教学行动策略[M].首都师范大学出版社,2006.

第5篇

关键词 初一数学问题解决策略

我们这里先列举一下在初一数学学习中经常出现的几个问题:

1、对知识点的理解停留在一知半解的层次上;

2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;

3、解题时,小错误太多,始终不能完整的解决问题;

4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;

5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点。

以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

那怎样才能打好初一的数学基础呢?

一、细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

二、总结相似的类型题目

这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

我们的建议是:“总结归纳”是将题目越做越少的最好办法。

三、收集自己的典型错误和不会的题目

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

四、就不懂的问题,积极提问、讨论

发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。

讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

我们的建议是:“勤学”是基础,“好问”是关键。

五、注重实战(考试)经验的培养

第6篇

关键词:初一 数学 学法

初一数学是在小学数学基础上进行内容拓宽、知识深化,从形象思维到抽象思维的转变,许多学生适应不了这种转变,必将影响学习成绩。因此要求教师熟练地领会教学大纲、驾驭教材,认真地钻研教材教法,进一步研究学生思维活动,选择适合学生认知过程的教法。如果忽视了学生的“学”,教师的“教”就毫无价质。教师教学的水平高低,很大程度上取决于学生的学习态度和学习方法。特别是初一年级学生,在小学阶段学习科目少、知识内容浅,教师教法单一,学生的学习方法简单。进入初一后,科目增加,对单科学习学时变少,且学生对认知结构发生根本变化不适应。甚至部分学生还未脱离小学阶段的填鸭式学习模式,没有主动学习的能力,导致部分学生因不会学习或学不得法而成绩逐渐下降,结果失去了学习的信心和兴趣,产生厌学的情绪。因此重视对初一学生数学学习方法的指导是非常必要的。下面就怎样对初一学生学习数学方法的指导进一步进行研究,和诸位同行一起再探讨。

1 如何进行数学学习方法指导

学生的学习方法指导主要有以下几个环节“预习方法”、“听课方法”、“复习巩固方法”与“作业方法”以及“总结方法”等分层次、分步骤指导。

1.1 预习方法的指导

初一学生不懂得什么叫预习,为什么要预习,以致于教师布置了预习,学生只是多看了一遍或几遍书而已,起不到什么效果。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的结构体系。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。先进行单元预习粗读过程,随后进行单课预习精读过程。预习前教师先布置预习提纲,使学生有的放矢。养成良好的预习习惯,是培养学生的自学能力的关键所在,它能使学生变被动学习为主动学习。

1.2 听课方法的指导

听课习惯直接影响听课效果,所以一定要养成学生良好的听课习惯,注意处理好以下环节:首先指导学生注意听学习要求、听知识引入以及知识形成过程,听重点、难点剖析,听例题解法的思路和数学思想方法的体现,听好课后小结。这就要求教师讲课要重点突出,层次分明,把握最佳讲授时间,使学生听之有效。其次要指导学生认真“思”。思维能力是学生学习的主体,所以要求多思、勤思,随听随思;深思、善思与反思。可以说“听”是“思”的基础关键,“思”是“听”的深化,会听才会思,会思才会学。最后要指导学生去“记”。初一学生一般不记笔记或者是不会合理记笔记,不会记表现在把教师板书的复制,往往是用“记”代替“听”和“思”,记得很全,却耽误了“听”和“思”。因此在指导学生作笔记时应要求学生记笔记服从听讲,适时“记”;记要点、记疑问、记解题思路和方法;记小结、记课后思考题,使学生明确“记”是为“听”和“思”服务的。指导学生只有合理处理好这三者关系,才能真正地走出小学数学的阴影。

1.3 复习巩固及完成作业方法的指导

刚进入初中的初一学生课后以完成作业为目的,巩固、记忆、复习没有形成良好的习惯。因此在作业过程中死搬硬套做好作业完成任务,没有深化理解知识、及时巩固知识,达不到学习的效果。因此在这个环节的学法指导上教师要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后再反思。教师通过示范解题指导学生的作业书写格式要规范、条理要清楚。指导时应教会学生如何将文字语言转化为符号语言,如何将推理思考过程用文字书写表达,正确地由条件画出图形。开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯。

1.4 小结或总结方法的指导

小学生在进行单元小结或学期总结时,主要依赖教师,习惯教师带着复习与总结。初中生按大纲要求自学能力的培养是主要任务,所以教师从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复结的途径。要做到“三看、二列、三做”。“三看”是指:看书、看笔记、看习题,通过看,回忆、熟悉所学内容。“二列”是指:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点。“三做”是指:在此基础上有目的、有重点、有选择地解一些各种层次、不同类型的习题,通过解题中学生反馈的信息,发现问题、解决问题。最后由学生归纳出体现所学知识的各种题型及解题方法。所以说学生学会了总结是学生数学学习的最高目标。只有当学生总结与教师总结有机地结合,教师最后的总结才显得更为突出,它是学生总结的精炼、提高,把学生知识水平推向更高层。

2 初一数学学习方法指导方法

初一数学学习方法的良好建立是学好初中数学的关键,主要有以下指导方法:

2.1 讲授法。初一数学学习法每周设立一课,作为所学课程。在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。设立数学教师专题论坛讲座可每月搞一至两次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。

2.2 交流法。学生进入初中后一段时间后,积累了一些学习方法,这时让学生相互交流,介绍各自的学习方法。成绩突出的学生介绍数学学习方法、体会、经验。这种方法学生容易接受,气氛活跃,方法不需成熟,只求有一得,使交流真正起到相互学习促进的作用。

第7篇

搞好小初数学教学的衔接,使小学初中的数学教学具有连续性和统一性,是摆在初中教师面前的一个重要任务。因此,作为初中数学教师应当把小学与初中数学内容作为有机整体和系统来进行分析与研究,掌握新旧知识的衔接点,做好为新旧知识的架桥铺路的工作,才能做到有的放矢,提高教学质量。

一、把握小学、初中数学教学内容的衔接点

代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的困难所在。

1.数与式。初一代数初步知识中,引进了代数式的概念,使学生明确“式”也具有数的一些性质,字母表示数的意义,进而研究有理式的运算。这种由数到式的变化实现了从特殊到一般、从具体到抽象的飞跃,是数学学习上的一个重大转折点。在小学里学生已接触过用字母表示数的形式,如简易方程中的未知数,一些定律和公式也用字母表示,初步体会到字母比数更具有一般性,所以教学中应揭示数与式的联系和区别,数可以看成是式的特殊情况,数的运算可以看成是式的运算的特殊情形,此外还应加深对字母的认识,如字母a可以表示正数、负数,还可以表示0,这样才能加深学生的感悟与理解。

2.算术数与有理数。进入初中后,引进了新的数--负数,把数的范围从“算术数”扩充到有理数域,数的运算四则运算的基础上增加了乘方、开方运算,实现了对数的认识的飞跃。学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数——负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。即自然数集添进数0扩大自然数集(非负整数集)添进正分数算术数集(非负有理数集)添进负整数、负分数有理数集……。这样就为数系的再一次扩充作好准备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。

3.算式与方程。小学里的应用题大部分是用算术法去求解,把未知量放在特殊的位置,用已知量求出未知量。进入初中后,用列方程来解应用题,把未知量用字母来表示,和已知量放在平等的位置上,设法找出相等关系,列方程求出未知量。刚进入初中的学生习惯用算术法来求解,这时教师要有意识地选择一些用列方程解比算术法简便的应用题作为范例,让学生在两种方法的比较中逐步体会到列方程解应用题的优越性。要教会学生通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法,使之形成“观察———分析———归纳”的良好习惯,这对于整个数学的学习都是至关重要的。另外,在教学中还要告诉学生,有些问题用算术法解决是不方便的,只有用代数解法。对于某些典型题目在帮助学生用代数方法解出后,同时与算术解法作比较,使学生有个更清晰的认识,从而逐渐摒弃用算术解法做应用题的思维习惯。

4.运算与符号。初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。这一变化,对于初一学生来说是比较难接受的,有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。

5.实验与推理。初一的“空间与图形”内容主要有“走进图形世界”、“平面图形的认识”、“图形的全等”。对于“走进图形世界”的教学,要把握由“感性认识”向“理性认识”的过渡;对于“平面图形的认识”的教学要把握由“形象思维”向“抽象思维”的过渡;对于“图形的全等”的教学,要把握由“实验几何”向“论证几何”的过渡。

二、做好小学、初中数学的衔接工作,帮助学生尽快度过“适应期”

1.学习习惯的养成。要重视学生良好学习习惯的养成教育,如勤学好问习惯、上课专心听讲习惯、质疑的习惯、及时复习的习惯、归纳提升的习惯、总结反思的习惯、独立作业的习惯等。有了良好的学习习惯,学生才能在教师的引导下有效度过衔接阶段。

2.学习方法的指导。如观察与思考、理解与分析、综合与应用是初中教学的难点所在。可以采用问题讨论法、自学指导法、类比推理法、假设法、实验辅助法、预习——听课——复习(练习)——总结归纳的学习方法,将学与问、学与练、学与思、学与用有机结合起来。

第8篇

关键词:初中 小学 衔接

初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。

学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数―――负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。即自然数集添进数0扩大自然数集(非负整数集)添进正分数算术数集(非负有理数集)添进负整数、负分数有理数集……。这样就为数系的再一次扩充作好准备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。

初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。

学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。