发布时间:2023-10-02 08:56:49
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的电力电子教学样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
1.引言
电力电子作为一项新兴技术,因为其变换和传输电能的功能,在生产生活的各个领域受到越来越多的关注。全球性的能源危机使人们的目光开始转向环保型能源,如太阳能、风能,不同形式的能量之间的转换必须依赖电力电子技术。以上海为核心的长江三角地区经济的快速发展,必然会带动电力电子技术的大力发展与应用,同时电力电子技术的发展也相应推动长三角地区经济的迅速发展。
目前国内外高等教育部门均已认识到加强电力电子技术专业教育的重要性。通观全球的电力电子技术教育现状,“改革”的观念渗透到从课堂教育、仿真、实验到专业论文的方方面面。近十年,当高职完成规模建设的过程后,必然实现走内涵发展的道路,实现人才培养目标。我院人才培养目标定位:立足不断探索创新人才培养模式,培养高素质的技术技能型人才。因此,无论从该课程对国计民生的重要性还是从教学务实的角度讲,对于该课程的建设和教学改革都具有重要的实际意义。
2.教学现状
(1)学生方面。对于高职学生,本门课程一般在大二开设,已有电学的基础知识,但是本门课程涉及的电学知识,被遗忘和不扎实现象特别严重,在讲授过程中因为没有掌握基础知识,所以学习这门课程很吃力,以致厌学。
(2)教学方面。近十年来电力电子技术得到飞速发展,新器件和新的控制方法不断出现,《电力电子技术》教学内容必须随自身技术的发展及时更新,但实际授课教材大纲往往内容滞后,与电力电子技术的发展不协调,造成课堂教学与工程实践相脱节;基本沿用传统的以课堂教学为主、验证性实验为辅的教学模式,与先进的现代教学方法和教学手段不相适应,不利于学生对本课程的深入理解;目前课时越来越少,给高职学生的学习和教师教学带来难度。
3.教学方法改革
利用新的教学方法提高学生对电力电子课程的兴趣,被视为电力电子教学改革的重要手段。迅速发展的信息技术和网络技术不仅被应用于实验室建设,而且被广泛作为课程教学的新方法。国内外许多大学都已开发出电力电子的网上授课内容,并以多媒体的形式呈现,其中以瑞士的iPES最著名。
通观国内外高校电力电子教学现状,有很多值得我们学习和借鉴的新方式、新方法,在我国电力电子教学改革中,以下几方面值得注意。
(1)建立系统的观念。在教材编写与课程内容组织的过程中,从电力电子系统的观点出发,将相关知识有机融合,避免将各种电力电子器件、各种结构功能的电路作孤立讲解,因为电力电子电路通常都是几种电路组合在一起构成一个系统实现一定的功能的,仅仅孤立地讲解其中的一个意义不大。
(2)注重电力电子电路的设计,培养学生的电路设计思想和能力。从电路设计的角度出发组织电力电子技术的教学内容,是一种很好的教学方式。哪怕是最简单的电力电子电路的设计,也是一个很好的开端。
(3)课堂教学、仿真、实验并重。在课堂教学中引入各种先进的教学手段,在实验室中引入先进的仿真软件,如MATLAB、PSPICE等,同时下大力气建立电力电子技术实验室。通过各种实验电路搭建完整的电力电子系统,应是实验室的基本功能,而不仅仅是对各种功能电路的验证。
(4)在教学中,为了跟上电力电子技术快速发展的步伐,仅仅讲授教材中的内容是不够的,还应采取调研、讨论、讲座、专题报告等各种形式,使学生对电力电子技术的前沿技术有所把握,为学生未来的科研与工作打好基础。
(5)积极开展电力电子及相关课程的网上教学,用动画、多媒体等先进手段展示电力电子的课程内容,提高学生的学习兴趣。通过交互式网页设计使学生主动参与学习,增强教学效果,如“慕课”(MOOC,大规模在线开放课程)。
4.MOOC+翻转课堂
近年兴起的“慕课”已在全球高等教育界引发热潮,我国北大、清华、复旦等高校相继加入“慕课”平台。同时,国内高校认识到,应借势“慕课”冲击,努力提高教学质量,还能用较低的成本进一步均衡国内高等教育优质资源。建设“中国式慕课”很快由理念变为行动。
翻转课堂是指重新调整课堂内外的时间,教师不再占用课堂的时间讲授信息,这些信息需要学生通过看视频讲座、听播客、网络阅读等形式课后自行学习。教师更多地利用课堂时间对学生进行一对一的互动和指导。
把基于MOOC的翻转课堂法融入《电力电子技术》的教学实践活动中,使师生共同走进课程,体验、思考,成为课程的创造者和主体,这种教学改革在全国范围的课程改革中尚属前沿。
参考文献:
[1]陶生桂,胡兵.长三角地区电力电子技术发展及应用[J].变流技术与电力牵引,2007,1:38.
[2]关晓菡,赵徐森,张卫平,刘元超.电力电子技术实验教学改革探讨[J].第四届全国高校电气工程及其自动化专业教学改革研讨会论文集,2005:543.
关键词:电力电子技术;MatlabGUI;虚拟仿真平台;教学可视化平台
电力电子技术是使用电力电子器件对电能进行变换和控制的技术[1]。它是以高等数学、电路原理及模拟电子技术等课程为基础,同时也是自动控制原理,电机与拖动等专业课程的基础课,具有很强的实用性和综合性,是电气工程领域理论和实践相结合的专业核心课程之一,因此电力电子技术教学质量的好坏,将直接影响后续课程的学习[2⁃4]。电力电子课程概念多、知识面广、实践性强,这给老师讲课和学生理解带来很大的困惑,所以借助实验来加深学生对基本概念、基本理论和基本方法的理解很有必要。而传统电力电子实验教学受场地、器材、时间等诸多因素的影响,难以让学生达到基本的实验目标。虚拟仿真实验平台投入小,不受时间、地点的限制,具有一定的开放性,方便学生创新等优点。所以借助虚拟仿真平台来辅助课堂及实验教学会起到巨大的帮助作用[5⁃7]。本文借助Matlab/Simulink仿真环境,以及GUI(GraphicalUserInterface)设计友好的人机界面,通过GUI输入框中数值的不同,改变电路参数,即可在界面观察对应的波形变化。同时在界面中添加不同的入口画面,可以观察仿真原理图,以及该电路的原理分析。同时,在虚拟仿真平台中加入电路的闭环实例分析,加深学生对该电路的理解,提高学生的积极性和学习效率[8⁃9]。
1电力电子虚拟仿真平台的建立
1.1电力电子虚拟仿真平台结构
在设计GUI界面之前,首先需要确定虚拟仿真平台的结构。由于设计该平台的主要目的是为电力电子课程提供一个教学和实验的仿真平台,对电力电子课程中的一些常用电路进行动态仿真,帮助学生深刻理解电力电子课程中电路拓扑和电路实例。根据这些基本要求,并结合电力电子课程的特点,确定了虚拟仿真平台的结构框图,如图1所示。该平台包含了电力电子技术中常用电路,如整流电路、逆变电路、直流⁃直流变流技术、交流⁃交流变流技术及PWM控制技术5个基本模块。课程的其他内容可在虚拟仿真平台的基础上扩展,因此,该平台具有很强的通用性。为了使每个模块设计更加简单,虚拟仿真平台采用了分层设计方法,将该平台分为若干个模块,每个模块包括一些子模块。图2给出了直流⁃直流变流技术模块的组成框图,它包括原理分析、运行界面和实例分析三个子模块,其他模块的设计思想同该模块基本相同。
1.2Matlab图形用户界面设计
Matlab为用户提供了强大的集成图形用户界面开发环境(GUIDE),用户可以方便地设计图形用户界面,开发自己的用户程序[10]。图形用户界面(GUI)是由窗口、菜单、文字说明、标签等控件构成。用户通过提供的控件,如按钮、滑块、列表框等可以设计出易于理解的人机界面。一个图形用户界面必须包括控件(Compo⁃nent)、图形窗口(Graphics)和回调函数(Callback)三个部分,利用GUIDE创建GUI是常用方法之一。使用GUIDE创建GUI的基本步骤如下:(1)选择控件类型。根据预期的界面设计,选择控件类型。电力电子教学虚拟仿真平台中使用的控件主要包括按钮、输入框、标签、坐标轴及面板等。(2)设置控件属性。控件的基本属性包括字符(String)、标签(Tag)、字体大小(FontSize)、前景色(Fore⁃groundColor)等。通过设置控件属性,实现预期的功能指标。(3)编写回调函数。确定整个界面布局之后,需要编写控件的回调函数。鼠标右键单击控件,选择“查看回调”“callback”,编写回调函数。在界面设计中用到的主要函数如下:get_param(′boostdianlu/Vin′,′Amplitude′);%获取电路输入电压幅值set_param(′boostdianlu/Vin′,′Amplitude′,a);%设置输入电压幅值options=simset(′SrcWorkspace′,′current′);%指定模型从当前空间运行,获取编辑框中输入电压幅值参数sim(′boostdianlu′,[],options);%使用sim()函数使仿真模型从当前GUI函数空间进行仿真plot(tout,yout);%将输出波形绘制到当前坐标轴对象上
1.3Simulink仿真模型
Simulink是Matlab的一个功能组件,为用户提供建模和仿真的工作平台。Simulink的SimPowerStems仿真工具箱提供电机与拖动、电力系统与自动化以及电力电子等仿真模块,几乎涵盖所有电力电子电路的仿真模块。按照电力电子电路的基本原理,利用工具箱提供的模块可以进行仿真电路的搭建[11]。以“升压斩波闭环仿真电路”为例,说明建立仿真模型的基本步骤:(1)调用功能模块。根据升压斩波电路原理图,确定所需功能模块,找到它们所在模块库。(2)创建并保存模型。建好模型后,使用Save命令保存,以便下次使用时直接调用。(3)连接模块并设置参数。将各个功能模块按照布局进行连接,并设置每个模块的参数。(4)运行仿真并显示结果。
2电力电子仿真平台实例
根据图1所示的虚拟仿真平台结构框图和图2所示的直流⁃直流变流技术模块结构框图,采用GUIDE设计各基本模块和子模块的图形用户界面,编写各控件对应的回调函数,响应用户操作。该GUI界面由主界面、原理分析界面、运行界面以及仿真模型四个部分组成。
2.1直流⁃直流变流技术主界面
主界面是访问该节的第一个用户界面,如图3所示。直流⁃直流变流技术主界面由标题和功能选择按钮组成。在主界面中列出了包括降压斩波电路、升压斩波电路、升降压斩波电路等常用的六大类基本斩波电路。每一类电路中有三个按钮,对应三个入口,分别是“原理分析”、“运行界面”以及“实例分析”。用户点击其中任意一个按钮,即可进入对应的功能界面。
2.2升压斩波电路原理分析界面
以升压斩波电路为例,当点击“原理分析”按钮后,通过按钮对应的回调函数,就可跳转到升压斩波电路的原理分析界面,如图4所示。原理分析界面由三部分构成,分别是电路原理图、原理分析文字说明以及主界面按钮。学生通过原理分析界面巩固所学内容,进一步加深对升压斩波电路基本原理的理解,提高理论知识的学习效果。当点击“主界面”按钮时即可返回图3所示的直流⁃直流变流技术的主界面。
2.3升压斩波电路运行界面
当点击升压斩波电路“运行界面”按钮后,跳转到对应的运行界面,如图5所示。运行界面由参数设置栏,波形栏以及菜单栏三部分组成。在参数栏设置需要改变的参数,分别为电压E、电容R、电感L、电阻R。在输入框中输入对应的数值可改变仿真电路的参数[12]。波形栏共有三个坐标轴,分别显示输出电压,电感电压以及开关信号波形。菜单栏包括仿真按钮和主界面按钮两部分。点击“仿真”按钮进行电路仿真,点击“主界面”按钮返回图3对应的直流⁃直流变流技术的主界面。图5运行界面通过输入框改变仿真电路参数,不用在仿真模型中双击元件改变,提高了仿真效率,同时该界面可直观地观察电路参数的改变而引起的波形的变化。
2.4实例分析电路
当点击“实例分析”按钮后,打开以升压斩波电路为基础的闭环仿真电路图。“运行界面”只是针对课本中开环升压斩波电路进行操作,而在实际工程中,几乎所有的电路均使用闭环模型,由于闭环仿真电路在课堂中不作讲述重点,学生对闭环设计无从下手,不能将所学知识应用于实际工程。因此,在虚拟仿真平台添加“实例分析”入口,有助于学生从工程的角度理解闭环仿真电路的设计方法,以及闭环参数改变对电路的影响。
3结语
关键词:电力电子技术;教学改革;仿真
作者简介:李林琳(1977-),女,辽宁沈阳人,长春工程学院电气与信息工程学院,配电自动化吉林省高校工程研究中心,讲师;邢顺涛(1976-),男,吉林延吉人,长春工程学院电气与信息工程学院,讲师。(吉林 长春 130012)
基金项目:本文系2011年长春工程学院教学研究课题的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)03-0064-02
“电力电子技术”是电气工程及其自动化专业的专业基础课程,在人才培养方案和课程体系中起着至关重要的作用。通过“电力电子技术”课程的学习,使学生掌握电力变换的基本理论知识,为后续专业课程打下坚实的理论基础。本课程来源于工程实践,理论与实践并重,因此,本课程将实践贯穿始终,具有层次性和互补性。通过理论教学、实践锻炼、MATLAB仿真等教学活动,有助于提高学生理论联系实际和应用创新的能力。
一、“电力电子技术”课程教学改革的必要性
目前“电力电子技术”的教学仍然停留在传统的教学模式上,即在课程教学中依照教材的内容和顺序讲述各种电力变换原理。[1]这种传统的教学模式存在以下弊病:第一,传统的教学思想重视学生对书本知识的掌握程度,忽视学生的素质教育,忽视学生应用创新能力的培养;第二,传统的教学形式方法单一,课堂上教师讲授课程,学生只是被动参与,这样很难激发学生的学习兴趣;第三,由于现行教材不能很好地体现电力电子技术的应用和发展,且教材中讲授的理论都只集中在技术层次,而忽略了现场应用的实际因素。因此现有的教学存在与实际脱节的情况,从事电力系统及相关行业工作的学生走上工作岗位后,还需投入大量的时间去了解电力电子技术的新原理和在电力系统中的应用,以及电力变换对电力系统的影响。
本文主要是针对长春工程学院(以下简称“我校”)电气自动化专业的“卓越工程师培养计划”,在“电力电子技术”课程教学中探索科学合理的教学方法,加强实践教学工程针对性,培养学生创新思维,提高学生理论联系实际的能力,为成就未来的“卓越工程师”奠定基础。
二、探索“电力电子技术”课程的教学方法
1.采用多媒体教学,增加教学的直观性
由于“电力电子技术”课程中有很多电力变换的原理需要画波形,受板书的限制,授课的信息量很有限,所以可将“电力电子技术”课程的有关内容制作成多媒体课件进行讲解。讲述时多媒体教学可与黑板手写教学同时进行,将多媒体教学和手写的重点、难点知识相结合,增强教学效果。
现在“电力电子技术”课程的多媒体课件有很多,但是这些课件普遍存在一个共同的缺点:课件制作过于简单,缺少动画和过程讲解,很多原理图都是直接出现,很多结论也是直接给出,这样对于刚刚接触电力电子的学生来说很生硬,很难提高学生的学习兴趣。对于“电力电子技术”课程的改革,首先从课件入手,重新制作课件,在课件中增加大量动画和工程实例。比如在讲授整流电路时,对于每一种整流变换的电路图结合工作原理都制作了动画。教师在上课时,讲到某一回路和器件时,该回路和器件都有明显的标注、声音和动画变换。这样,学生有更直观的视觉和听觉感受,加深对工作原理的理解。
2.引入问题教学法,激励学生自主学习
该方法是指采用互动学习的方式,在引出一个新的知识点时,教师首先将问题提出,让学生先进行充分讨论,通过问题来激发学生学习的自主性,然后由老师进行总结,得出一个正确的结论。例如,老师在课堂上给学生提出问题:如果三相桥式整流电路中,某一相触发电路的触发信号丢失,整流电路负载侧输出的波形会是什么样?先请学生阐述自己的观点,然后由老师理论讲解。教师还可以利用MATLAB程序,在课堂上演示,使学生加深对理论知识的理解。这种方法可以极大地激发学生的兴趣,使学生成为主动的学习者。问题式教学方法与国际教育相接轨,国外的教育跟注重人的培养,老师不会每天给学生留作业,通常会让学生准备课题,上课进行讨论。国际教育更需要学生自己主动学习,学习完全是自己的事,这样更好地培养学生的逻辑思维、语言表述和创新意识。
3.推进案例教学法,引领学生探究工程实践
“电力电子技术”的理论教学应与电力企业及日常生产、生活实例相结合。实例可根据教学内容穿插引入,课堂上引用的例子尽可能是学生日常接触过的或电力行业中的设备,这样学生会更感兴趣。相关章节举出相应实例,指出课本上的基本电路、基本原理是怎样运用的实际中去的。这样一方面能深刻地讲述教材上的基础知识,另一方面能扩大学生的专业应用能力,将会有更好的教学效果。例如,在讲完脉冲宽度调制技术(PWM)基本原理内容后,通过风力发电生产案例引入变频器。首先给出变频器的主电路及各部分参数要求,其次根据变频器的主电路图,结合理论课讲过的整流、逆变和PWM控制理论给出变频器的工作原理,最后可以利用MATLAB仿真软件给出逆变器各参数波形图。
同理,在讲授电力电子各部分基本知识的基础上,可以适时地引入电力企业生产实际案例,使学生对电力电子技术在电力系统中的应用和电力变换对电网稳定性和电能质量的提高、及电力电子新技术的发展对新能源、高压直流输电和柔流输电技术等的影响有所了解,以提高学生的理论知识和实践能力。
三、加强实践教学
“电力电子技术”是一门实践性很强的课程,实验实践环节占据十分重要的位置。通过“电力电子技术”课程实验、实习、教学仿真及学生的科技创新活动等活动,构成了螺旋上升式的实践教学体系,逐步提高学生的实践动手及应用创新能力。
1.课程实验
电力电子实验室实行开放式管理,开设近十个实验,教师教学中可根据需要从中选做5个的实验。每个实验每个班级分批、分组进行,每组最多不超2人,每次实验都由任课教师和一名电力电子实验室老师共同指导,这样教师可以对每组学生进行详细指导。通过课程实验,可以增加学生的感性认识,提高学生的动手能力,激发学生对所学知识的探索欲望,加深对理论知识的理解。
2.仿真教学
仿真实验模块主要是根据教学内容设计了相关的仿真实验内容,要求学生完成简单的电路设计,实现所要求的电路功能。为完成“卓越工程师培养计划”的目标,现将MATLAB仿真引入到电力电子技术的理论与实践教学中,培养学生分析解决问题的能力,在掌握基本理论知识的前提下,培养学生创新意识。
在对比目前比较流行的仿真软件后,发现MATLAB更适合电力电子仿真。用计算机仿真可以方便地进行不同器件、不同参数的比较,进行反复试验。MATLAB提供的仿真工具箱SIMULINK,是一个功能十分强大的仿真软件,可以根据用户的需要方便地为系统建立模型,并且十分直观,它的仿真精度很高,仿真结果准确。应用计算机仿真来研究电力电子技术,有利于提高研究效率,降低研发成本。
“电力电子技术”仿真所用到的电气、电子元件模型全部都包含在MATLAB元件库里面。在MATLAB提示符下键入Powerlib命令,这个命令将打开SIMULINK仿真窗口,同时显示出电力系统模块工具箱。电力系统仿真环境简称“psb”,它几乎提供了组成电力系统的所有元件。其中包括:同步机、异步机、变压器、直流机、线性和非线性模块、传输线路、断路器、负荷模型、电力半导体器件、控制元件、测量元件以及信号显示模块等等。
应用MATLAB软件,着重研究整流、逆变、斩波及变频等基本电路的仿真及其波形结果分析,验证课本中的基本原理。例如整流电路中,对不同的触发角、不同的负载时参量输出波形会产生什么样的差别等,使学生能够对这些比较难以理解的抽象内容有一个直观的认识。如图1单相桥式可控整流电路原理图。
在仿真电路中,更改负载的参数就可以得到不同负载类型,如电阻性负载和阻感负载。对于相位控制的整流电路来说,控制角的相位直接影响输出波形,可以利用MATLAB仿真调整控制角α数值,观测单相桥式整流电路的输出波形,及晶闸管两端的电压、电流的波形图。当α=60°时,各参量输出如图2。
MATLAB软件也可以对一些复杂电路进行模拟仿真,如改变触发角对波形的影响、缺相对波形的影响等等,并对其波形结果进行量化分析研究。通过改变各项输入参数观察其波形变化,从而使学生对电路模型能够熟知和精通,加深印象,改善课堂教学效果。
3.体验式教学
根据卓越工程师培养计划,为提高学生的实践能力,部分课程的实践环节可占总学时的50%,根据“电力电子技术”课程的特点,可将课堂直接搬到仿真实验室、实训基地甚至单位现场。根据现场实际设备结合所学的理论知识进行讲解,加深学生对电力电子技术一些抽象概念的理解,做到理论与实际相结合。
对一些有兴趣的学生,可以组织参加教师的科研实践、学校或省级科技创新计划、全国电子大赛等。很多学生在比赛中获得优异的成绩,取得良好的效果。通过引领学生参与学科竞赛及科技创新活动,使学生对于知识的应用与创新有了完整的体验。
四、结论
电力电子技术在不断地发展,教学内容与方式也要相应地变化。结合教学方法的改革,可引入新的教学内容;理论授课结合仿真、工程案例和实践教学环节,使枯燥的理论变成体验式课程,激发学生的学习兴趣,使学生牢固地掌握电力变换的基本理论和当今电力电子技术发展的新动向,丰富知识面,为今后的工作打下坚实的基础。
关键词:电力电子技术;电气工程;课程设置
作者简介:刘晋(1974-),男,河北涿州人,华北电力大学电气与电子工程学院,讲师;牛印锁(1973-),男,河北定州人,华北电力大学电气与电子工程学院,高级工程师。(北京100026)
基金项目:本文系华北电力大学2010年教改项目的研究成果。
中图分类号:G642.3 文献标识码:A 文章编号:1007-0079(2012)06-0064-02
随着电力电子器件制造技术和微机技术的发展,电力电子技术在电气工程的各个领域得到了广泛的应用,电力电子技术在各个领域的应用带来了相应领域的技术革命。
在电力系统领域,电力电子技术除了广泛地应用于发电、输电、配电和用电等环节,在太阳能光伏发电、风力发电等可再生能源发电领域、电动汽车应用和节能等领域也得到广泛的应用。电力电子技术的广泛应用对电力电子技术教学和研究都提出了新的要求和内容。
“电力电子技术”已经成为电气工程专业重要的专业基础课。由于专业背景和就业方向的不同,国内不同高校以及国外大学在“电力电子技术”的课程设置、教学内容、教学重点、教学手段、实验内容以及后续专业课程设置等方面存在许多异同点。
本文对国内外几所大学“电力电子技术”本科教学方面的情况进行了初步的对比,对其教学安排、教学内容与手段和实验情况进行了对比总结,希望这些对比和总结能够帮助从事电力电子方面教学的教师开拓教学思路、丰富教学手段、提高教学效果,为该课程的教学提供有益的参考和借鉴。
国内大部分理工科院校都开设了“电力电子技术”课程,本文选取了国内的清华大学、西安交通大学、浙江大学、南京航空航天大学和华北电力大学进行了比较分析;国外大学选取了美国麻省理工学院和英国曼彻斯特大学进行了比较分析。
一、课程设置比较
清华大学电机工程与应用电子系、信息科学技术学院自动化系开设了“电力电子技术”课程,机械工程学院汽车工程系开设了“汽车电力电子学”。后续相关课程有“直流输电技术”、“电力传动与控制”、“电力拖动与运动控制”。
西安交通大学电气工程学院、电子与信息工程学院自动化科学与技术系开设了“电力电子技术”课程,共56学时,包括8学时的4个实验项目。
浙江大学电子信息工程、电气工程及其自动化和自动化等专业开设了“电力电子技术”课程,共56学时,包括16学时的实验项目,实验学时数相对较多。
南京航空航天大学电气工程及其自动化和自动化等专业开设了“电力电子技术”课程,共72学时,包括16学时的实验项目,总学时数和实验学时数相对较多。
华北电力大学电气与电子工程学院电气工程及其自动化专业、信息工程专业,控制与计算机工程学院自动化专业开设了“电力电子技术”课程,共48学时,包括8学时的4个实验项目。后续相关课程有“电力电子技术应用”(专业选修)、“HVDC与FACTS技术”、“电力电子课程设计”和“电力电子综合实验”。
国内几所高校课程开设情况见表1。
美国麻省理工学院EECS(电气工程与计算机科学)系开设了“电力电子技术”(Power Electronics)课程。
英国曼彻斯特大学EE&E(电气与电子工程)学院为电气与电子工程专业、机械电子工程专业2年级开设了“电机、拖动与电力电子”(Machines,Drivers & Power electronics)课程,上述两个专业在3年级开设了“调速”(Variable Speed Driver)和“电力电子”(Power Electronics)课程。
英国诺丁汉大学EE&E(电气与电子工程)系为电气与电子工程专业2年级开设Power Supply Electronics;为电气工程与可再生能源系统专业2年级开设Power Supply Electronics,3年级开设Power Electronic Design,Renewable Generation Technologies and Control,FACTS and Distributed Generation,Energy Conversion for Motor and Generator Drives,以及选修课程Advanced AC Drives,Technologies for Wind Generation,Advanced AC Drives with Project,Advanced Electrical Machines等相关课程。
从课程设置上看,国内大多数高校电气工程专业基本都将“电力电子技术”作为专业基础课程。但不同专业特色的学校在其后续课程设置上差别较大,该专业学生未来就业的方向和领域对后续课程的设置影响很大,这也是各个学校在电力电子技术教学上最具专业特色的地方。
二、教学内容比较
国内高校在“电力电子技术”课程教学内容上相差不多,主要内容有:电力电子器件、整流电路、逆变电路、直流斩波电路、交流―交流电力变换、电路脉宽调制(PWM)技术、软开关技术和电力电子应用介绍等内容。南京航空航天大学还增加了功率变换器中的磁性元件设计方面的教学内容。
麻省理工学院EECS系“电力电子技术”课程内容主要有:整流器,功率因数畸变检测与校正,磁场,DC/DC变换器,隔离DC/DC变换器,DC/AC变换器,EMI滤波器,损耗与吸收电路,软开关,热设计,控制,三相系统介绍,多相整流器,开关电源,谐振变换器,实际的电力电子系统设计中的相关问题和课程设计等内容。
英国曼彻斯特大学EE&E学院的“电机、拖动与电力电子”(Machines,Drivers & Power electronic)课程内容主要有:交流感应电机、交流同步电机、变压器、相控整流电路及其应用。“调速”(Variable Speed Driver)的主要内容有:感应电机特性,变频调速原理等。
通过对比可以看出,国内外大学在“电力电子技术”课程内容上差别比较大,侧重点也各不相同。国内使用的“电力电子技术”本科教材大都是在介绍电力电子开关器件的基础上,对各种交、直流电能变换电路的结构和工作原理进行定性和定量的分析,并涉及一些相关的应用技术。国外教材则更注重最基本原理介绍和电力电子实际应用电路系统的设计和计算分析。
三、教学方法与手段比较
在教学手段上,国内外大学大体相近,大都采用多媒体、动画技术与黑板相结合的教学手段。另外,国外大学采用手写、打印胶片投影授课也较为普遍,在课前把授课讲义发放给学生。
国内高校教学主要以课堂讲授为主,由于学生人数比国外学生多,课堂的互动性以及课堂讨论比国外高校要少,且效果不好。另外,国内学生课外查阅文献资料和阅读材料的环节常常被忽略,这点与国外高校差别较大。
在辅助教学方面,国内外大学形式上差别不大,主要通过习题课、答疑、平时测验和复习课等方式帮助学生进行课下的自学和考试前的复习。
四、实验环节比较
在基础实验内容上,国内高校基本上以电力电子器件特性、相控整流电路实验、直流斩波电路实验、交流电力控制电路实验、负载换相式逆变电路实验、交―直―交变频电路实验、SPWM逆变实验等作为基础实验。由于各个学校的实验条件和专业特色不同,开放性和设计性实验的内容和开展情况差别较大。
曼彻斯特大学EE&E学院电力电子课程实验内容较少,实验室条件(如实验室面积,实验台套数等)不如国内许多高校,但其学生对撰写的实验报告非常认真,国外学生正是通过认真撰写实验报告加深了对于实验原理和内容的理解。
在后续课程实验中,各学校侧重点各不相同。如华北电力大学在后续课程中开设开发了闭环直流电机脉宽调速实验、静止无功补偿(SVC)实验、高压直流输电(HVDC)实验等针对电力电子技术在电力系统应用的专业实验内容,具有鲜明的电力系统专业特色。
国内多数高校都存在学生人数多而实验室设备套数少,实验重复次数多和实验室教师工作量大的情况,这种情况在短期内很难解决。电力电子网络实验平台和虚拟实验室的研究和建设可以为该问题的解决提供一定的思路。
五、启发与体会
通过对国内外几所大学在电力电子技术本科教学方面的对比,有很多值得我们学习和借鉴的思路和方法,在“电力电子技术”教学改革中,笔者认为应注意以下几点:
(1)建立系统教学的观念。在课程体系的设置、教材编写、课程内容组织和实验项目安排的过程中,从电力电子系统的角度出发,结合本学校开课专业未来的应用领域,将相关的知识与未来实际应用有机融合起来,使学生深入了解电力电子技术在未来工作中的应用,从而提高学生的学习兴趣,使学生学习做到有的放矢。
(2)注重电力电子基础实验和设计性实验相结合,培养学生的电路系统设计思想和能力,根据本校专业发展和应用的实际需要开发相应的专业应用实验项目。
(3)注重课堂教学、仿真验证、实验验证和电路设计有机的结合。丰富教学手段,通过仿真与实验的对比分析,使理论和实践相结合,提高教学效果。
(4)建立电力电子教学资源平台,为国内各个高校相关专业的教师和学生提供一个互相学习、交流和资源共享的网络平台,从而不断提高“电力电子技术”及其相关课程的教学水平,为广大的师生营造良好的学习和学术研讨氛围。
六、总结
本文对国内外几所大学“电力电子技术”本科课程设置、教学内容、教学方法与手段、实验环节等进行了比较和分析,对“电力电子技术”教学提出了一些建议,希望为该课程的教学和教学改革提供一定启发和有益的参考。
参考文献:
[1]关晓菡,张卫平,张东.国内外高校电力电子技术教育现状综述[J].电气电子教学学报,2006,(2).
关键词:电力电子技术;实验教学;教学改革
作者简介:姜风国(1976-),男,山东烟台人,烟台大学机电汽车工程学院,讲师。(山东 烟台 264005)
基金项目:本文系烟台大学教学改革与研究立项(项目编号:C044)的研究成果。
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)02-0137-02
“电力电子技术”是烟台大学机电汽车工程学院(以下简称“我院”)测控技术与仪器专业本科生的一门重要的专业基础课程,在整个专业课程体系中起着承上启下的重要作用。电力电子技术具有很强的理论性、实用性和实践性,[1-3]在做好理论教学的同时,加强实验教学非常重要。实验教学对帮助学生理解和巩固课堂理论知识,[4]培养学生的操作技能、创新意识和探索精神具有重要的作用。目前我院在电力电子技术实验教学环节中仍在使用2002年购买的杭州天煌教仪的“TKDD-1型电力电子技术及电机控制实验装置”,该实验装置经过多年使用,器件老化,故障率高,烧坏设备的情况经常出现;实验数据与理论值之间的误差很大,严重影响了实验效果;能做的实验数量少,而且多数为验证性实验,学生只能被动地接受实验结果,学习兴趣不大。这种单调的实验教学模式无法满足新形势下电力电子技术教学的需要,为此,对实验教学方法进行改革迫在眉睫。教研组尝试将以往纯粹的验证性实验教学改为多种模式相结合的方式来进行教学,取得了很好的教学效果。
一、保留必要的验证性实验
在实验初级阶段,学生刚接触电力电子技术实验,对实验设备和仪器还很陌生,此时采用传统的“老师讲、学生听”的方式,通过教师操作演示给学生看,对学生掌握实验设备和仪器的正确使用方法、强电实验中安全用电的基本知识和注意事项以及进行规范操作很有好处。因此,需保留“三相桥式全控整流电路”验证实验,通过该实验可对学生起到良好的引导作用。
二、利用仿真软件增加虚拟实验
计算机仿真具有生动直观、经济、灵活的特点,[5]不但可以弥补实验设备数量不足的缺陷,而且不用担心实验设备损坏和学生的人身安全问题。在电力电子技术实验教学过程中引入计算机仿真,可以使枯燥的理论知识变得生动有趣,激发学生的学习兴趣和积极性,加深学生对理论知识的理解,有利于学生开展探索性、研究性实验,实现理论与实践的紧密结合,在提高教学质量和改善实验效果方面起到了很好的作用,而且仿真实验不受时间和地点的限制,学生也可以在课外用计算机仿真,克服了实验课时有限的限制。
例如,图1是运用Multisim10软件对三相半波可控整流电路带电阻性负载时的仿真电路。电源为220V、50Hz的三相对称正弦电源,晶闸管选用2N3898,采用脉冲发生器作为晶闸管的触发信号。控制角α=0°时的仿真结果如图2所示。示波器XSC1显示的是输出整流电压的波形和晶闸管两端的电压波形,仿真结果与教材一致。学生可以很方便地仿真不同控制角α和不同负载情况下输出电压的波形,甚至可以模拟电路出现的故障,如开路、短路或脉冲丢失时的情况,在很大程度上满足了学生的探索性要求。仿真实验克服了传统实验调试过程中控制角α调节不准而导致的理论值与实测值不符的问题以及由于晶闸管两端电压较高(峰值为539V),考虑到学生和设备的安全而一般不允许学生操作的缺陷。
三、增加课程设计环节
课程设计是学生在整个学习过程中的一项综合性实践环节,是实验教学的一个重要组成部分。过去的教学内容中没有课程设计这个环节,部分学生学完该课程后,只了解了课本上的一些原理知识,对电力电子技术的具体应用并不清楚。通过增加课程设计环节,选取日常生活中比较熟悉、比较有代表性的一些产品,如可调光台灯、可调直流稳压电源、手机充电器等作为设计题目,把抽象的理论知识转变为活生生的实物,以拉近理论与实际生活的距离,从而激发学生的学习兴趣,提高学生对该课程的重视程度。通常2~3名学生做一个题目,学生们既有分工又相互协作,以共同完成设计题目。由于时间有限,不一定所有的学生都能做出实物,但要求每个题目都要用仿真软件仿真出结果。通过课程设计,可以使学生全面、综合地运用在“电力电子技术”和其他课程中学到的理论知识,让学生意识到各个课程之间不再是相互孤立的,而是一个紧密联系的整体,从而培养学生综合分析问题、发现问题和解决问题的能力。
四、开放实验室,开设综合与设计性实验
烟台大学自2011年开始实施教学实验室开放工作,设立了实验室开放专项基金,在教学计划外安排时间向学生开放实验室,为学有余力、有兴趣做探索性实验的学生提供了良好的条件。同时,教师可利用此机会,积极申报与电力电子技术相关的课题,鼓励学生走进实验室参与综合、设计、创新性开放实验项目。学生可以自主设计产品,也可以选作教师提供的课题,设计过程中教师要给予一定的指导,学生可自行查阅资料,购买元器件,设计、焊接和调试电路。学生在采购过程中了解了元件的参数和特性,在调试过程中学会了使用示波器,培养了分析问题、解决问题的能力,这样做不仅有利于因材施教,为学生的自由发展创造良好条件,而且可以提高实验室的利用率,同时还开发了学生的潜力,为学校组织山东省机电产品创新大赛、全国电子设计大赛等培养了人才。如学生制作的数字晶闸管触发器、三相桥式全控整流电路实验装置等产品实际使用效果很好,完全可以取代TKDD-1型实验台上的相应挂件,还可以供下一届学生做实验时使用。
通过开放实验室项目的实施,实现了理论与实践相结合的实验教学理念,充分调动了学生的兴趣和积极性,达到了培养其创新能力和动手能力的目的。
五、结束语
通过多种实验教学方法的综合运用,改变了传统的照葫芦画瓢式的实验教学,使实验变得生动有趣,富有创造力,对激发学生做实验的兴趣,更好地理解课堂上所学的理论知识,培养学生的创新思维、探索精神和动手能力,培养符合社会需求的专业应用型人才具有积极的促进作用。
参考文献:
[1]孙建廷,雷刚.新时期“电力电子学”教学模式改革与探索[J].中国电力教育,2011,(21):182-183.
[2]葛瑜,王武.电力电子技术递阶式实验教学研究[J].实验技术与管理,2011,28(5):156-159.
[3]海德伦,秦毅男.电力电子技术实验手段探索[J].实验室科学,2006,(6):106-108.
关键词:电力电子技术;虚实结合;考核方式
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)30-0211-02
一、引言
“电力电子技术”是多学科交叉而形成的一门新兴技术,在工程实践中,该技术高速发展,不断有新的器件、新的电路拓扑结构与新的控制方法问世。“电力电子技术”课程是电气工程及其自动化与自动化专业的重要专业基础课,也是实用性、工程性和综合性很强的课程。该课程的特点是内容多,课时少,在新形势下,如何在有限学时内获得最好的教学效果,使学生在有限的课堂时间内较好地掌握课程内容,培养学生的工程实践能力和创新能力,是一个亟待解决的问题。经过长期的“电力电子技术”课程的教学摸索,笔者从理论教学内容与方法、实践教学和考核方式三个方面对课程进行了教学改革的尝试。
二、理论教学内容与方法
“电力电子技术”是以电力电子开关器件为基础,以四类基本变换器和两种控制方法为核心,以四类应用为目标的一门科学。随着电力电子技术的飞速发展,新器件和新的控制方法不断出现,因此“电力电子技术”的教学内容必须根据自身的发展及时更新。目前全控型器件已逐步取代晶闸管而成为电力电子技术的核心。因此,教学内容中适度压缩和删减了半控型器件及控制电路的学习,强化全控型器件及控制电路的教学。
教学方式有传统板书与多媒体教学两种方式。板书方式可以使学生对知识理解的更深刻,但是较死板。为了更好地提高教学质量,增强学生的学习兴趣,充分利用多媒体教学形象、直观、信息量大的优点,激发学生的学习兴趣。课程组开发了集PPT、Flas为一体的课件,通过直观、形象和交互性的演示,使得电力电子技术当中难懂的电路拓扑结构变换和波形变得简单易懂。另一方面,注重与工程相结合,与其前修课“电机与电力拖动基础”课程相结合提出问题,调动学生学习兴趣,主动去思考问题,解决问题。如图1所示,在讲解直流降压斩波电路之前,以直流电机调速在课堂上演示给学生看,激发学生的兴趣。接下来就进一步提出问题,怎么调速?以增强学生的求知欲望。然后再和学生一起学习相关知识,在讲解过程中,始终紧扣相关问题,增加其对电力电子技术的理解。
三、实验教学的措施
随着高等教育规模的不断扩大,原有教学仪器设备资源相对短缺,无法满足实验教学的需要;仪器设备陈旧老化,不能适应新的教学要求;大部分院校都仅用挂件结构或实验箱来完成实验,几乎所有的电路和系统都是封闭式的。教学采用课堂教学加验证性实验的教学模式。实验过程,学生几乎是在老师或实验指导书的指导下机械式连线、读取实验数据,记录实验数据和波形,对原理不求甚解,缺乏独立分析解决问题能力。为了弥补传统教学方式的不足,提高学生分析问题、解决问题的能力,在传统教学方式的基础上,开展了“电力电子技术”的计算机仿真辅助教学。虽然目前能够进行电力电子仿真的专业软件很多,如Matlab/Simulink、Pspice等,需要专门开设相关的课程才能够应用。为了使学生既能进行仿真实验,不用花费更多精力学习新的软件,为此专门开发了电力电子技术仿真实验系统,其界面如图2、图3所示。通过该实验软件,学生利用课下时间,在充分理解电路工作原理的基础上,自己搭建实验电路,进行参数设置,即可得到直观的动态效果。实践证明,实验软件的应用,课本上大篇幅的过程描述与复杂的运行曲线用仿真波形表现出来,能够变抽象为具体,变枯燥为生动,形象直观地进行教学,有助于激发学生学习兴趣,提高教学质量。并且节省了实验箱上操作的时间。
在实验教学内容方面,以验证性实验为基础,通过该类实验可以使教材上的基本理论得到充分的验证,加深学生对理论教学中各个知识点的理解,使学生对实验仪器的使用及注意事项有比较清楚的了解,同时也可以培养学生的基本操作、数据处理和计算技能。在此基础上增加了综合性实验,例如与“电机与电力拖动基础”课程相结合的“直流电动机可逆调速系统设计”,该综合性实验项目专业实践性很强且与生产紧密联系,培养学生把专业理论知识综合运用于工程实践的能力,提高学生的综合素质水平。还可以与“单片机原理与应用”课程相结合的“基于单片机的交流恒流源设计”,是利用单片机控制全控型器件,实现斩控式交流电路的要求,教师提出实验要求,学生自己设计并进行实验调试。通过这些实验的设置使学生能充分理解相关课程之间的关系与其应用,而且培养学生解决实际问题的工作能力,提高其综合素质,为今后的设计或工作积累经验。
四、考核方式的探索
传统采用闭卷考试的方式,考核学生对知识的理解和记忆具有效果,但是这种方式使学生机械式学习,不利于激发学生的创造性和探索新知识的主动性。因此,探索合理的考核方式对提高学生学习积极性和主动性有很大意义。为此,采取了理论与实践相结合的考核方式,以其能够更加公平、真实地反应学生的学习水平。理论考核成绩占70%与实践考核成绩占20%,平时成绩占10%。理论考核重点考察学生对相关知识的理解和记忆能力。实践考核以实际电路实验,考察学生的创造性和动手能力。平时成绩反应学生学习该课程时所表现的状态,包括探索新知识的主动性、查阅资料的广泛性等。实践证明,通过这种多元化的考核方式,提高教学质量。这样一来,就能改变课程结束时“一考定成绩”的做法,防止考前突击的行为。学生反映良好,教学效果甚佳。
五、结束语
本文从理论教学内容与方法、实践教学和考核方式三个方面对该门课程的教学改革进行的探讨。随着电力电子技术的不断发展,为了适应人才创新能力培养的需要,不断调整、更新教学内容,及时补充该学科的前沿知识,如软开关技术、电网谐波抑制技术等内容,以增强对学生的吸引力。将继续不断地改进教学方法加强实践训练,充分发挥学生在学习中的主动性和创造性,以适应培养应用型本科人才的需要。
参考文献:
[1]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2004.
[2]高玉峰,刘亚龙,王治国.《电力电子技术》课程教学改革实践[J].科技教育创新,2008,(1).
关键词:电力仿真软件;电力电子技术;仿真效果;软件选择
作者简介:冯兴田(1978-),男,山东广饶人,中国石油大学(华东)信息与控制工程学院,讲师;王艳松(1965-),女,山东蓬莱人,中国石油大学(华东)信息与控制工程学院电气工程系主任,教授。(山东 青岛 266580)
基金项目:本文系中国石油大学(华东)教学改革项目(项目编号:JY-A201210)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)13-0065-02
“电力电子技术”课程作为电力学、电子学和控制理论的交叉学科,是电气工程专业非常重要的必修课。随着电力电子器件的迅速发展,变流技术的发展也是日新月异,使得“电力电子技术”在电气类本科教学中的地位和作用越来越突出。然而,该课程涉及的内容较多且复杂,并在不断更新,如何能够让学生较快、较好地掌握所学内容成为教师们面临的一大难题。
电力仿真软件走进“电力电子技术”的教学课堂在很大程度上有效地解决了这一难题。电力仿真软件通过数字仿真实现电力电子电路的分析、设计、调试等,直观的仿真结果给学生带来了浓厚的学习兴趣,并为将来的电路设计、科学研究打下一定的基础,因为小到本科学习中的基本实验、毕业设计,大到科研中的课题研究、设备装置的开发,通常都要通过仿真结果提供实验参数的参考依据。然而,面临众多电力仿真软件,如何根据实际情况进行合理的选择成为另一难题。本文将通过分析“电力电子技术”教学中常用的几种电力仿真软件提供合理选择的依据。
一、常用电力仿真软件
“电力电子技术”教学中常用的电力仿真软件主要有以下几种:MATLAB、PSIM、PSpice、PSCAD。MATLAB是主要面对科学计算、可视化以及交互式程序设计的高科技计算环境,功能全面,能够用于各个行业的建模仿真分析。MATLAB最重要的组件之一Simulink提供一个动态系统建模、仿真和综合分析的集成环境。其中,电力系统Power System工具箱包含的模组侧重电力系统方面的建模仿真,而电力电子元件模组则是专门针对电力电子电路的仿真设计的。
PSIM是针对电力电子领域以及电机控制领域的仿真应用包软件。它具有仿真高速、用户界面友好、波形解析等功能,为电力电子电路的解析、控制系统设计、电机驱动研究等有效提供强有力的仿真环境。
PSpice软件具有强大的电路图绘制功能、电路模拟仿真功能和图形后处理功能等,以图形方式输入,自动进行电路检查,生成图表,模拟计算电路。它不仅可以用于电路分析和优化设计,还可与印制版设计软件配合使用,实现电子设计自动化,并且适用于“电力电子技术”课程的计算机辅助教学。
PSCAD可以较为简单地模拟复杂电力系统,包括直流输电系统和其相关的控制系统,并能够显著地提高电力系统电磁暂态模拟研究的效率。它还可通过联合使用实时数字模拟器RTDS硬件来开发模拟器,用以模拟包含高压直流输电系统的大型互联电力系统。
二、常用电力仿真软件的特点
比较分析上述几种电力仿真软件的性能及其在“电力电子技术”教学中的实际仿真应用情况,其特点如下:
1.图形界面友好,操作简单易用
通过拖曳相应的功能模块,按照电气联结关系进行连接,操作过程非常简单,而且紧密结合“电力电子技术”的内容,只要具备基本的计算机软件操作水平和电力电子技术知识就很容易上手。
2.建立仿真工程的步骤类似
采用这些软件进行仿真工作,其基本步骤主要包括:建立仿真工程文件、放置电路元件、设置元件参数、电气连接元件、设定仿真步长和仿真时间等参数、运行仿真操作、观察各点波形结果、分析仿真数据等,使用过程大致相同。
3.节省时间和仪器设备
进行实际电路设计之前,先采用这些软件进行设计分析,可以随意设置电路参数、更换电路元件,并在软件中反复调试、“实验”,简化实际电路操作中的一些步骤,大大缩减电路设计人员的设计周期;通过采用软件中的功能元件还可省去一些测量仪器的使用,并能够避免实际电路实验中的元器件消耗,能够尽可能接近实际电路的雏形。
4.软件升级迅速及时
仿真软件的产品升级紧跟科技的发展。诸如,随着新能源的快速发展,这些仿真软件中也及时增加了风机、光伏发电等模型,满足广大科技工作者的使用。而且,软件版本也在不断升级换代,各个方面针对用户在不断完善。
三、常用电力仿真软件选择与应用
综合分析上述几种电力仿真软件的特点,结合多年来在“电力电子技术”教学中的仿真应用实践,总结了几点区别,以期提供选择和应用合适软件的依据。
1.元件模型及参数设置
这四种软件的元件模型不尽相同,特别是对于一些较为复杂的元件,诸如变压器、晶闸管等,其仿真过程中的暂态变化曲线并不一致。而且,其参数设置也不尽相同,MATLAB/Simulink里的元件参数设置较为细致全面,尤其是对于“电力电子技术”中涉及的晶闸管、IGBT等大功率器件,对它们本身的性能参数有详细的设置,比如器件的上升时间、下降时间等,因而MATLAB/Simulink常用于仿真一些暂态响应过程,比如变压器的磁饱和特性、晶闸管的强制关断过程、状态切换的暂态响应等。其余几种软件主要适用于仿真一些常用的电力电子电路,诸如整流电路、逆变电路、DC/DC变换电路等,对于元件本身性能参数没有严格的要求,或者说主要用于仿真电力电子电路的稳态响应过程。
2.具体仿真操作
在实际的仿真操作中,几种软件也略有差异。像连接元器件的方式上,MATLAB/Simulink的元件大多具有输入输出顺序,要根据元件在电路中的位置选择合适的元件。如果选择不正确,元件之间不会实现电气连接,搭建电路的过程相对复杂。而其他几种软件的连接方式较为简单,通常元件都可实现电气连接,当然,这就需要用户自己判断元件之间的电路连接关系了。另外,各种软件的波形显示窗口、数据文件处理、波形拷贝使用、波形暂态特性、特殊功能部件、THD及损耗测量等只是细节的操作不同。特别指出的是,鉴于MATLAB在数据处理方面的强大功能,而有些软件的仿真波形不适合在文章中使用(比如清晰度不够、横纵坐标难设置等),用户可采用其他软件进行仿真工作,最后生成数据文件之后再将该数据文件导入MATLAB进行数据处理,以得到较好波形效果和处理操作,也不失为一种方法。
3.仿真精度、速度和准确度
仿真精度与仿真步长有直接的关系,各软件的步长设置定义不尽相同,因而仿真精度难以直接比较。然而,MATLAB/Simulink里可以选择不同的数学算法,从某种程度上讲,其仿真精度较高;而且,MATLAB也是各行业较为认可的仿真软件之一。从仿真速度来讲,针对“电力电子技术”中的电路,通常情况下PSIM和PSCAD的仿真速度相对较快一些,其次是PSpice,当然,这也跟用户搭建电路的风格特点以及实际情况有关。而MATLAB/Simulink如果采用图库的电路元件按照实际电力电子电路搭建电路仿真,速度会很慢。如果自己建立数学模型仿真,速度会很快。比如,在一个具有光伏发电、风力发电、传统同步机发电源的电网系统中,包含了“电力电子技术”中的整流器、逆变器、DC/DC变换器等典型电力电子电路。如果采用图库中的大功率器件晶闸管、IGBT等搭建电路实现整流器、逆变器、DC/DC变换器时,仿真速度会大大降低;若自己建立整流器、逆变器、DC/DC变换器的数学模型或者采用向量模型进行仿真时,速度会大幅提高。当然,这就增加了建立数学模型的过程,读者可根据实际情况选择。另外,对于仿真确定的参数虽然可以提供实际电路参数的依据,但与实际电路参数之间还是有一定的差距,还需要综合分析比较计算数据、仿真数据和现场实际情况来定,当然最终还需要实验来验证,但这毕竟大大减小了实验的风险和不确定性。
4.复合功能和应用领域
Simulink 依托于MATLAB,能够利用MATLAB强大的数据处理功能并结合其他的功能函数等进行电力电子电路的仿真,复合功能相对丰富,应用领域也更宽广,而且易于实现与其他设备、软件的衔接。比如RTLAB仿真系统就将实际功率设备通过MATLAB进行衔接控制,实现实时仿真。PSIM仿真系统不只是回路仿真单体,还可以和其他公司的仿真器连接,为用户提供高开发效率的仿真环境。例如,在电机驱动开发领域,控制部分用MATLAB/Simulink实现,主回路部分以及其周边回路用PSIM实现,电机部分用电磁界解析软件JMAG实现,由此进行连成解析,实现更高精度的全面仿真系统。PSpice集成度高,集成了许多仿真功能,如直流分析、交流分析、噪声分析、温度分析等;而且,PSpice程序采用改进节点法列电路方程,用牛顿-莱普生方法的改进算法进行非线性分析,用变节步长的隐式积分法进行瞬态分析,在求解线性代数方程组时采用了稀疏矩阵技术,大大提高了仿真结果的准确性。PSCAD则适用于富含电力电子电路的复杂电力系统,包括现今发展迅速的高压直流输电系统及其相关控制系统、含有各种分布式能源的大型互联电力系统等等。
5.故障模拟与功率器件性能
对于初学“电力电子技术”的同学来说,搭建实际电力电子电路实验容易带来一些问题,如触发脉冲不合适带来的功率器件上下直通现象、功率器件耐压耐流参数选择不合适等都会带来器件的损坏、系统的崩溃。通过采用仿真软件仿真可以事先发现这些问题,及时解决。从另一方面说,学生亦可借助电力仿真软件进行故障模拟,直观地观察波形变化情况,注意出现的问题,强化认识,比如可以人为设置IGBT等功率器件的直通现象、耐压参数、击穿电流等,通过观察各点波形变化情况,达到教学与实践结合的效果。这种故障模拟和器件性能测试方面的仿真通常通过MATLAB/Simulink实现,能够达到较好的仿真观察效果。
“电力电子技术”教学中可参考上文对学生给予指导,可以先介绍简单易操作的软件,如PSIM、PSCAD等,结合各种软件的特点与适用范围,针对不同的仿真对象和问题进行适当的选择,也可以多种软件结合使用,效果更佳。
四、结语
电力仿真软件在“电力电子技术”教学中发挥重要的作用,有针对性地选择电力仿真软件可以提高仿真速度、精度及准确度。本文通过详细分析比较常用的四种电力仿真软件的特点和适用领域,结合教学仿真中的一些实际问题与使用操作,给出了它们具体应用的选择依据。
参考文献:
[1]陈建业.电力电子电路的计算机仿真[M].北京:清华大学出版社,2003.
[2]飞,叶文.MATLAB 仿真软件在“电力电子技术”教学中的应用[J].中国电力教育,2010,(3):85-87.
[3]孙佐.基于PSCAD/EMTDC 的电力电子技术仿真教学[J].池州学院学报,2009,(6).
【关键词】电力电子 检测 教学设计
IGBT为绝缘栅双极型晶体管,是能源变换与传输的核心器件,俗称电力电子装置的“CPU”。 IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,一般所说的IGBT即指IGBT模块,封装后的IGBT模块直接应用于变频器、UPS不间断电源等设备上。随着节能环保等理念的推进,此类产品在市场上将越来越多见。在高职电力电子课程教学中如何让学生自觉用理论指导实践,理解并掌握IGBT的检测方法,教学设计尤为重要,本文从IGBT检测的角度探讨如何进行相关内容的教学设计。
一、从构造理解IGBT的管脚测量与栅极保护
1、IGBT的构造
IGBT有三个管脚:栅极G、集电极C和发射极E,在构造上是由一个N沟道的绝缘栅场效应管MOSFET和一个PNP型三极管GTR组成,它实际是以GTR为主导元件,以MOSFET为驱动元件的复合管。IGBT的理想等效电路及实际等效如图1所示。
IGBT除了内含PNP晶体管结构,还有NPN晶体管结构,内含的PNP与NPN晶体管形成了一个可控硅的结构,有可能会造成IGBT的擎柱效应,使栅级失去对集电极电流的控制作用,因此IGBT有集电极最大电流的限制。
IGBT与MOSFET不同,内部没有寄生的反向二极管,因此在实际使用中若输出端连接感性负载时需在集电极和发射极间搭配适当的快恢复二极管,构成IGBT模块。
2、从IGBT构造认识栅极保护
IGBT的栅极通过一层绝缘氧化膜与发射极实现电隔离,由于此氧化膜很薄,若静电聚积在栅极引起过压或电容密勒效应引起栅极过压,均会导致绝缘层击穿损坏,其击穿电压一般达到20~30V。因此使用中要注意以下几点:
(1)在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸。
(2)在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块。
(3)尽量在底板良好接地的情况下操作。
3、从IGBT构造解释管脚间测量电阻
使用指针式万用表测量IGBT管脚间电阻时,一般是将万用表拨在R×1KΩ挡。当驱动元件无外加电压时,管子集电极C与发射极E之间处于关断状态,同时因栅极绝缘,故测量IGBT两两管脚间正反向电阻时,阻值均为无穷大。针对集电极和发射极间并联了二极管的IGBT模块,栅极与其它两脚间正反向电阻仍为无穷大,集电极与发射极间正向电阻为无穷大,反向电阻较小,此时较小的反向电阻实为内部并联二极管的导通电阻,由此结果也可识别IGBT模块的管脚。使用数字式万用表时可使用二极管专用档位测量正反向电压。
二、从基本工作原理理解IGBT开关作用检测及好坏判断方法
IGBT和功率MOSFET一样,属于电压控制型器件。在栅极-发射极间施加电压UGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。在栅极-发射极间施加电压UGE为负电压时,MOSFET内沟道消失,IGBT关断。温度为25℃时,开启电压为2~6V,加于栅极-发射极间的最佳工作电压可取15V左右。
使用指针式万用表用于检测IGBT开关作用并判断好坏时,一定要将万用表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT导通,而无法判断IGBT的好坏。当指针式万用表拨在R×10KΩ挡时,用黑表笔接IGBT的集电极(C),红表笔接IGBT的发射极(E),此时万用表的指针指示阻值为无穷大。用手指同时触及一下栅极(G)和集电极(C),这时IGBT被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT被阻断,万用表的指针回无穷大位置。此时即可判断IGBT是好的。
三、从逆变电路的组成理解IGBT模块检测方法
在交-直-交变频器主电路中,由整流电路将交流变为直流后,再由逆变电路将交流变为频率和电压可调的交流,实现电机的变频调速。图2所示为六个IBGT模块构成的逆变器电路,图中P为变频器内部直流的正端, N即为直流的负端,输出U、V、W端子是接到电机的端子。
逆变器IGBT模块检测:将数字万用表拨到二极管测试档,测试IGBT模块C、E之间以及栅极G与E之间正反向二极管特性,来判断IGBT模块是否完好。以图所示的六相逆变器为例,将负载侧U、V、W相的导线拆除,在直流端P、N无电压时,使用数字万用表二极管测试档,红表笔接P(集电极C1),黑表笔依次测U、V、W,万用表显示数值为超量程;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400mV左右的电压。再将红表笔接N(发射极E2),黑表笔测U、V、W,万用表显示数值为400mV左右;黑表笔接P,红表笔测U、V、W,万用表显示数值为超量程。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为超量程,这时可判定IGBT模块栅极正常。如果有数值显示,则栅极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的栅极已被击穿短路。栅极损坏时电路板保护栅极的稳压管也将击穿损坏。
参考文献: