首页 优秀范文 电力电子技术节能

电力电子技术节能赏析八篇

发布时间:2023-10-08 10:17:34

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的电力电子技术节能样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

电力电子技术节能

第1篇

关键词:火电厂 等离子点火 微油点火 节能降耗

中图分类号:TM621 文献标识码:A 文章编号:1003-9082(2014)09-0322-02

引言

为了缓解能源紧张的局势,世界各国的火电企业都进行燃煤锅炉的节油技术改进,我国也是开发了很多的节能降耗技术。比如,劣质煤燃烧技术的推广、以煤代油的技术等。总之,这些节能技术的应用使火电企业节省了很多的能源。特别是等离子点火技术和微油点火(气化小油枪)技术的应用,为火力发电厂燃煤机组的节能降耗开拓了广阔的空间。

一、火电厂等离子点火技术概述

1.等离子点火技术的构成

等离子点火技术的构成有发生器、燃烧器、电源柜、供电系统、辅助系统以及控制系统等。等离子点火的安装图如图1:

2.等离子点火技术的工作原理

等离子发生器是由线圈、阴极和阳极构成,这些金属材料多具有高导电率、高导热和耐氧化特点,而且冷却是采用水冷方式,可以缓解电弧高温的强烈冲击。工作原理如图2:

图2 等离子发生器工作原理图

冷却水和空气压力满足条件后,电源(6)输出电流,直流电机推动阴极(2)与阳极(1)接触。电源输出的电流到达工作电流后,直线电机(5)就会使阴极(2)离开阳极,就在这一瞬间,建立起电弧。阴极在空气动力和磁场的作用下,产生稳定的电弧放电现象,生成了等离子体,下面就是等离子点火技术的如图3:

图3 等离子点火技术图

同时,等离子燃烧器煤粉点火能形成局部极大的高温火核,使煤粉颗粒得到充分的破裂,不仅可以迅速的释放出挥发物,还能达到点火并加速煤粉的燃烧。另外,等离子含有化学活性颗粒,比如离子、原子和电子,可以进一步的加速化学成分的转换,从而促进燃料的充分燃烧。

二、火电厂微油点火技术概述

1.微油点火技术的构成

火电厂微油点火技术也就是指气化小油枪系统,是超低负荷稳燃技术与微油冷炉点火技术的科学结合成果。微油点火技术的构成有强化燃烧微油小油枪、煤粉燃烧器、浓缩装置、辅助系统、检测盒控制系统等。微量的油在特殊的燃烧室内通过高强度的雾化燃烧,生成高温的火焰将煤粉点燃,实现冷炉助燃煤粉启动的目的。这一先进技术的应用,不仅可以降低火力发电厂点火和助燃的用油量,还可以实现用煤代油的目的。下面就是微油点火技术的现场安装图如图4:

2.微油点火技术的工作原理

微油点火小油抢是用压缩空气产生雾化把燃料油进行挤压,形成极细的油滴,再用高能点火器使其燃烧,这样一来就使得油滴在极短的时间内实现了气化蒸发。气化状态下燃烧的燃油不仅可以提高火焰的温度,还可以缩短燃油的燃烧时间。同时,微油点火的火焰温度很高,甚至能达到2000℃。这样就可以使煤粉直接在燃烧器内点燃,达到火电厂电站锅炉启动、停止和低负荷稳燃的以煤带油目的。下面就是微油点火中的燃油及压缩空气总路系统图如图5:

图5 微油点火中的燃油及压缩空气总路系统图

三、火电厂等离子点火与微油点火技术的应用

1.火电厂等离子点火技术的应用

火电厂等离子点火技术应用的范围很广,比如,挥发粉大于20%的烟煤。适用等离子点火技术的机组容量等级可以分为: 100 MW、125 MW、300 MW、600MW等。火电厂等离子点火技术制粉的系统种类有钢球磨和直吹式系统。等离子点火技术的燃烧方式有切向和墙式燃烧器。总之,火电厂有近百种的锅炉都可以应用等离子点火技术,仅安徽的大唐电厂总装机容量就达40000MW。

2.火电厂微油点火技术的应用

火电厂微油点火技术的应用范围也是非常广阔的,比如,劣质的烟煤、贫煤等。适用微油点火技术的机组容量等级可以分为: 100 MW、125 MW、200 MW、300 MW以及500 MW等。火电厂微油点火技术的燃烧方式是切向燃烧直流燃烧器和墙式燃烧旋流燃烧器。微油点火技术的制粉系统种类有直吹式和钢球磨。目前,就以大唐田家庵电厂为例,使用的锅炉机组就有50余台,电厂总装机容量达到20000MW.

四、火电厂等离子点火与微油点火技术的比较

1.火电厂等离子点火技术的优点和缺点

火电厂等离子点火技术的优点有许多,比如,不仅可以节省燃油,实现电厂运行的无燃油状态,就安徽大唐电厂而言,节油率达到了100%。同时,电厂的运营安全系数得到提高,简化燃油的运行系统。另外,等离子点火技术的应用减少了燃油点火的冒烟量,排放的有害物质大大减少,使火电厂的环保效益得到提升。当然,火电厂等离子点火技术也有自身的缺点,比如,等离子点火技术系统设备比较复杂,因而,首次投资的资金数额巨大。同时,火电厂的等离子发生器的阴极和阳极使用寿命较短,需要经常更换,因而支出的费用较高。另外,等离子点火受到发生器功率的制约,有时劣质的煤无法点燃,还需要加油进行助燃。

2.火电厂微油点火技术的优点和缺点

火电厂微油点火技术的优点很多,比如,由于微油点火的系统结构简单,维护起来也相应的方便,因而火电厂的投入资金较少。同时,微油点火适用的煤可以是劣质煤、贫煤和烟煤等。另外,微油点火的节油效果也比较明显,就安徽大唐电厂而言,节油率达到65%.当然,火电厂微油点火技术也有自身的缺点。比如,微油点火技术在点火的时候,还需要使用一些燃油。同时,微油点火技术因为是最新研制的新技术,与等离子技术相比,还有一些不足的地方,如目前微油点火技术还没有用到1000MW机组上。

五、以安徽大唐电厂为例,分析等离子点火与微油点火技术节能降耗的效益

安徽大唐电厂在2010年的时候安装了二期2x300MW机组的微油点火技术和三期2x600MW机组的等离子点火技术。从2010年到2013年这段期间,电厂机组共启动按停炉统计如表1:

表1 2010年―2013年机组停炉次数

1.计算电厂的成本

电厂使用的柴油是0号,在没有进行先进技术的应用之前,电厂的正常点火一次需要花费的资金大约是30万元。电厂采用二期的微油点火技术后,节省了60%的原油,也就是一次的点火可以节省资金约18万。电厂三期机组采用等离子点火技术,因为是零油点火,因而一次点火节省资金约30万元。

2.计算电厂的效益

我们根据上面的表1,就可以计算出电厂一共节约的经济效益如表2:

表2 电厂采用新技术节约的经济效益结果

由表2可以看到,从2010年到2013年,电厂二期采用微油点火技术节省了资金将近300万元,电厂三期机组采用等子点火节省了资金约600万元。可见,电厂采用新技术等离子点火技术和微油点火技术,不仅可以节省大量的资金,还能降低能源的使用,节能降耗的效果很显著。

六、结语

随着市场经济发展的不断深入,国际石油资源市场出现了紧张局势,表现在油价不断地上涨。火电厂为了降低企业的运营成本,就必须要采用先进的节油点火技术,等离子点火和微油点火技术的应用势在必行。火电厂在新技术的采用上,还要根据电厂自身的特点选用不同的先进点火技术。比如,对于有优质、稳定煤源的机组最好采用等离子点火技术,二有着轻油系统的机组,最好采用微油点火技术。当然,等离子点火技术和微油点火技术在应用的实践中,还会出现许多的问题,这就需要火电厂企业对这两项技术要进行不断地改进和完善,更好的实现节能降耗的效益。

参考文献

[1]李琳琅,无油直接点火燃烧器在煤粉锅炉上应用的若干问题[J],锅炉技术,2013,12,

[2]杨宝荣,微油点火控制器在锅炉中的应用[J],微机计算信息,2013,12

第2篇

关键词:电力电子技术;电路系统;应用

电力电子技术是从上世纪开始发展起来的,也称为功率电子技术,它具有的特点是:小体积、小重量、大容量、低损耗、较长的使用寿命,而且方便维护、有优异的控制性能。电力电子技术的应用范围特别广,涉及通信、电器等多个领域,应用在电路系统是其中一个重要方面,因此,研究电力电子技术在电路系统中的应用尤为重要。

1电力电子技术介绍

电力电子技术是一个由多种技术支撑的平台,不仅包括功率半导体器件和现代控制技术,还包括计算机技术和电路技术。在近五十年来发展迅速,应用的范围也从传统产业设备以及电能质量控制逐渐发展到新能源开发,而且在民用产品方面也有较广泛的应用。在电力电子技术众多的应用方面中,应用于电路系统,尤其是直流输电的大功率电力电子技术是其中的重要方面。自本文分别介绍了将此技术应用在电路系统中的发电、输电、配电和节能这四个环节。

2电力电子技术在电路系统中的应用

自柔流输电概念出现后,越来越多的学者开始关注电力电子技术,并积极联合多种技术,开发出许多相关的支持和应用设备。下面对电力电子技术的多个电路系统应用方面进行详细介绍。

2.1将电力电子技术应用

在发电环节在发电环节,可以将电力电子技术应用在发电环境中的发电环节,涉及到的设备包括发电机组的大多数设备。在这种情况下,电力电子技术能够实现设备运行特性改善的目的。第一种情况是用于静止励磁,尤其是对于大型发电机,采用晶闸管整流方式,利用静止励磁的自并励方式,具有明显优势,能够获得极高的可靠性,而且结构相对简单,造价也不高,所以其应用技术已经获得了国内外相关专家学者的青睐。在这一项应用中,将中间的惯性环节也就是励磁机部分省去了,所以它的调节速度更快。调节速度的加快对于更好的控制规律的应用更为有益,从而控制效果的进一步优化就能随之实现。第二种情况是应用于水力和风力发电中。对于水力发电而言,水头压力和流量是决定其变速恒频励磁的关键因素,一旦水头出现较大的变化幅度,机组将会随着水头的变化出现最佳转速的改变。对于风力发电而言,有效功率的大小正比于风速的三次方,而且风车会随着风速的改变出现捕捉最大风能的功能的转变。在上述情况中,为了实现有效功率的最大化,需要实现机组运行的速度的变化,可以通过将转子励磁电流进行调整实现。也就是叠加转子转速,以保持输出频率也就是定子频率的不变,在这项应用中,涉及的关键技术是变频电源。第三种是应用在变频调速中。在发电厂中,风机水泵的耗电量是非常巨大的,根据统计,火电设备的总耗能的65%都是风机水泵贡献的,而其中的8%又是变频调速消耗的,也就是说风机水泵变频调速的运行效率是比较低的。如果要实现节能的目的,不管是在高压还是低压变频器中,将变频调速技术应用于风机水泵是最佳的解决思路。

2.2将电力电子技术应用

在输电环节在输电环节,尤其是高压输电过程中,电力电子技术应用素有“硅片引起的第”的称号,它的应用实现了电力网运行稳定性的大幅度提高。在直流输电技术中,直流和轻型直流输电具有容量大、性能稳定、易于灵活控制的特点,所以高压直流输电在长距离输电以及在海底电缆输电中拥有无法取代的优势。晶闸管换流器于上世纪七十年代第一次出现,代表着直流输电正式进入电力电子技术应用时代,从此以后,晶闸管换流阀开始广泛应用于直流输电工程。在1980年到1990年,柔流输电技术开始出现,这项输电技术是以电力电子技术为基础,借助现代控制技术,实现灵活调节交流输电系统的电压、阻抗和相位的技术,能够充分保证电力系统的稳定性。

2.3电力电子技术应用

在配电环节存在于配电环节的主要问题是电能质量的保证和供电可靠性的保证。其中对于电能质量问题来说,既要满足控制电压、频率和谐波的要求,又要满足不对称度的要求,同时还要防止出现瞬态波动和干扰。应用电力电子技术,结合现代控制技术,应用于电路系统中的配电环节,是近些年来发展起来的新型电能质量控制技术。市场对于这项技术的需求比较大,而且由于其开发简单、成本低廉,所以这项技术的应用前景非常好。

2.4电力电子技术应用

在节能环节电动机运用变负荷方式进行节电只是节能的一个方面,而电动机变负荷调速技术是节能研究的另一个方面,只有二者的有力结合才能实现真正的节能。交流调速是目前广泛用于冶金和矿山等部门的一项技术。风机、泵类是首先采用调速控制的变负荷机械,此技术用于替代风板或节流阀,在对风流量和水流量进行控制时的效果非常明显。变负荷的风机、水泵,国外普遍选择交流调速方式,但在我国这项技术还处于应用推广阶段。变频调速的具有调速范围广,效率和精度高,可以连续无级调速。这种技术具有损耗小,节电效率客观的优点,但同时也存在成本高,易产生高次谐波,从而对电网造成污染的问题。对于无功损耗的问题,功率因数的提高对于电气设备节能尤为重要。感性负载一般是指交流异步电动机、变压器等,在运行这些设备时,会同时消耗有功功率和无功功率,所以为了实现电能质量的优化,要同时保证无功与有功电源的优化。一旦电力网或电气设备出现无功容量不够的情况时,为使得设备功率因数提高,需要加设无功补偿设备。

3结束语

电力电子技术仍然处于快速发展阶段,这个过程中又不断的有新结构器件、新材料出现,而且不断进步的计算机技术也为现代控制技术的广泛应用提供可能。在相关辅助技术的发展支持下,电力电子技术在电路系统中的应用也越来越广泛。

参考文献

[1]李中国.电力电子技术在绿色照明电路中的应用[J].山东工业技术,2015(11):177.

第3篇

当今社会,能源问题是全球面对的一个共同的危机。由于全球各国的煤储量、石油储量都在迅速地减少,生态平衡遭到了严重的破坏,环境污染日益严重,因此,新能源的应用已经迫在眉睫,世界各国对此十分重视。为了新能源的利用问题,世界各国各自启动了各项能源计划,表明新能源的利用已经迫在眉睫。为了应对这种必然发展趋势的需要,在近些年来我国各高校与电力电子和电力传动相关的学科以上各级都开展了与新能源发电相关的电力电子应用技术的研究。可见新能源发电已经不可避免地成为我国乃至世界电力电子技术的主要的应用领域之一。目前我国正处于一个技术急缺的时候,在电力电子技术应用方面体现为:二并网变换器主要来源于进口产品,我国对外来产品的普通运行经验不够,我国的国产产品仍然在费力的摸索中逐步前进。我国产品的主要问题表现为:装备的可靠性差,产品的有关性能和功能还达不到要求,产品没有统一的标准。虽然这样,我国的电力电子技术的应用系统仍然的到了一定程度的发展。其表现如下:首先,我国的电力电子技术应用系统开始向大容量发展。我国发电系统的单机容量已经用兆瓦来作单位,并且它在向更大的容量方向发展。其次,电力电子技术应用系统的高能性。这种特性主要通过电力电子技术在应用时所展现的高可靠性和高效率,还有电力电子技术为了适应电网所需求的低电压穿越以及对电网进行的孤岛保护等。

2智能电网发展历程。

智能电网也是近几年来随着我国电力电子技术的发展在电子行业兴起的概念。在人们的潜意识里,基本上认为电力电子技术、传感技术、新能源发电技术、通讯技术等是驱动“智能电网”的主要因素。事实上,电力电子技术是一门包括灵活输电、新型储能、传感、先进的信息、控制等技术,它承载着大规模的可再生能源并网发电,以实现电网的安全、稳定、高效运行。近些年来,世界各国对于智能电网的研究愈加重视,2008年,美国提出了智能电网计划,企图用智能电网对各种新能源进行入网管理,并在此基础上全面地对能源进行分布式的管理,最终是美国创造出世界上高能源使用效率的记录。同年10月,我国也针对智能电网正式地启动了一个具有可行性的研究项目。并依据这一项目规划出了一个“三步走”的战略。所谓“三步走”战略,即在2010年将我国的电网高级调度中心建成,在2020年将我国具有初步智能特征的数字化电网全面建成,在2030年使得我国具有自愈能力的智能电网得以真正建成。可以说,电力电子应用系统近些年来被广泛运用与智能电网中。

3电气节能发展历程。

变频调速作为电气节能的主要内容。它是解决我国节能规划工程中电机系统节能的关键。我国政府对自2006启动的节能规划工程投入颇多,因此,节能这一举措势在必行。变频调速系统在运行过程中的主要依靠作为电机的电力电子变频器驱动电源。随着我国电子技术应用系统的不断发展,我国的变频调速技术也变得日趋成熟,在市场上有极大的发展空间,且其保质期延长了许多。目前,我国高压电机系统中采用变频调速技术的大约有20%,而低气压电机系统中采用此技术的大约占30%。可见,我国使用电力电子变频器来驱动源的变频调速系统在未来有着极大的发展空间。除此之外,变频调速系统将会在未来继续随着电子技术应用系统的发展成为一个集成型、专用型的系统产品。它的特点即是将变频器、电机以及其控制集于一体。

4电力牵引发展历程。

第4篇

1.1电力电子技术在电力系统中的应用

电力电子技术在电力系统通向现代化进程的道路上有着不可磨灭的功劳,我们都知道,在高电压输电的工程中,由电厂发出电之后,把电流通过变压器进行变电之后再输送,这样做的目的是因为在电流一定的情况下,电压越高电流也就越小,在输送的过程中损耗也就越小,可以节省大量的电流,因为电力电子技术的变流特性,尤其是在特高压的输送技术发展中,利用电力电子技术,将直流输送电端的整流和受端电流都应用了晶闸管变流装置,这就在一定程度上解决了长距离、大容量的输送电流导致的电流损耗过大的问题,这一举措为中国的电力行业做出了极大的贡献,使中国电力系统迈出了至关重要的一步。同时在同步发电机励磁系统和交流电动机的变频调速以及新能源发电和智能电网的应用等方面也得到了广泛应用。

1.2电气节能的应用

节能已经成为了当前社会发展的必然趋势,因为电在人们日常生活中的重要作用,因此电气节能也就显得尤为重要。电气节能目前主要包括变频节能、电能质量控制、有源滤波等三个方面,在当前阶段,变频节能在这三个方面中又是重要的一点,人们所熟知的变频冰箱、变频空调等,它们已经开始为人们的生活提供服务。在未来的发展时期中,电机变频调速行业还要进行快速的发展,这主要是因为它的以下三个重要发展因素:一是因为变频器产品越来越成熟,而且应用广泛,现代电器产品都开始进入变频时代,又由于它的技术越来越新,企业投资产品的成本也越来越低,这就更为变频器产品的发展和应用提供了绝好的机会。二是因为变频调速节能非常明显的效果,为社会提供了广泛的效益,也为企业提供了较高的利益,所以越来越多的企业对变频调速节能产生了兴趣。三是国家也开始在这方面出台一些措施,对重点耗能企业进行严格控制,鼓励督促他们发展电气节能,不仅可以降低企业能源的消耗,同时也减少了资源浪费,为社会创造了巨大财富。

1.3电力电子技术在家用电器中的应用

电力电子技术在家用电器中的应用我们都深有感触,如日常生活中应用到的“节能灯”,就是电力电子技术发展的直接产物,它以其体积小、发光率高等的绝对优势已经取代传统的白炽灯和日光灯。同时变频空调、变频冰箱、电视机、音响设备、计算机等电子设备也是利用电力电子产品,它们已经进入到了我们的日常生活中,并为我们生活质量的提高做出了巨大的贡献。

2电力电子技术的发展

2.1电力电子技术的发展阶段

电力电子器件的发展分为两个阶段,一是传统电力电子器件,它是以电力二极管和晶闸管(SCR)为代表的第一代电力电子器件,自1957年生产第一只晶闸管以来,它以其体积小、功率低等优势首先在大功率整流电路中迅速取代了老式的汞弧整流器,并衍生出快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等多种品种。虽然此类器件通过门极只能控制开通而不能控制关断,而且它立足于分立元件结构,工作频率难以提高,大大限制了它的应用范围,但是因为它价格低廉,所以在大电流、高电压的发展空间依旧很多,目前以晶闸管为核心的设备在许多场合仍然被广泛使用。二是现代电力电子器件,它是将微电子技术和电力电子技术相结合,研制出的一种全新的高频、全控型器件。现代电力电子器件的主要产品有功率晶闸管、可关断晶闸管、功率场控晶体管、绝缘栅双极晶体管、MOS门极晶闸管等。这些产品当中,由于绝缘栅双极晶体管和MOS门极晶闸管两个为场控复合器件,所以也成为了最有发展前途的两种。

2.2电力电子技术的发展方向

器件是电力电子技术的基础,也是电力电子技术发展的动力,电力电子器件的发展方向也就决定了电力电子技术的发展方向。电力电子技术作为自动化、智能化及机电一体化的一个重要技术,未来电力电子器件可能在以下几个方面发展:(1)大容量化。利用微电子技术,提高单个器件的电压、电流容量,从而达到满足高压大电流的需要;(2)易驱动。由电流驱动发展为电压驱动,大力发展复合器件,还可专门研制专用集成模块,以便更适合中小功率的控制;(3)模块化。采用新技术和新工艺,将几个电力电子器件集中到一起,不仅缩小其体积减少连线,同时还可减低企业的生产成本;(4)功率集成化。充分利用集成电路工艺,将集成电路的功能与电力电子器件集成于一块芯片,实现集成电路功率化和功率器件集成化,并逐步向智能化方向发展;(5)高频化。采用新材料、新工艺,在一定的开关损耗下尽可能的提高器件的开关速度,使装置可以在更高的频率上运行(。6)降低导通压降。研制出比二极管压降还低的器件来提高交流效率、节省电能。

2.3电力电子技术的未来发展前景

电力电子技术已经进入到千家万户,它在人们的生活中扮演着各种各样重要的角色,在未来有着非常大的发展前景,这可以在以下几个方面体现出来:新材料的更新。现今社会经济飞速发展,人们的生活水平也越来越高,对于新产品新材料的要求也越来越高,这就要求我们需要在技术和材料上有新的更新。因为电力电子技术在人们日常生活中的应用越来越广泛,所以材料的更新更是显得尤为重要。在频率、功率等方面的研究可以有效降低器件的温度,减少器件体积,也可使成本大大降低,改进系统性能,扩大应用范围,使越来越多的领域可以从电力电子技术中受益。改进装置封装形式。在未来的发展前景中,电力电子技术将会对器件的装置形式进行不断改进,全面实现电力电子器件的模块化和集成化,这样不仅可以减少生产成本,同时可以获得更高的可靠性。发展新型的全半导体交流系统。随着社会经济的发展,人们生活水平的提高,对电子产品的要求也越来越高,经济使用并且体积娇小外形美观的电子产品越来越成为人们的钟爱,因此,电力电子技术的发展便可在体积小、重量轻、损耗小、无功率等方面做文章,加大设计力度和创新手法,以此来满足人们日益增长的物质文化需要。

3总结

第5篇

电力电子技术将各种能源高效率地变换为电能,实现了节能环保的作用,但在实践过程中仍存在许多问题,如,能源消耗问题,在电器设备中,变压器和交流异步电动机均属于感性负载,在运行过程中消耗有功功率与无功功率,设备的使用要求较高,技术不稳定,会造成装置的损坏。再如谐波污染,电力电子技术的快速发展也带来一定弊端,电力电子装置越来越多地应用于冶金、化工、煤炭和运输等诸多领域,随着这些装置的广泛操作应用,将大量的谐波和无功功率注入电网,使电网的电能质量下降,造成“电网污染”。诸如此类问题是技术实践中的难关,要做到环境,经济,科技的和谐统一,仍需科技工作者的研讨以继续完善技术实践体系。

2电子电力技术分类及在电力系统中的可实际应用领域

电力电子技术包括电力电子器件的制作技术和变流技术两个大类,应用领域宽,广泛用于交通运输、电力系统、电子装置电源、新能源等,在家用电器、变频空调、工业设备中预防电源间断的UPS应用、航天飞行器等领域也有应用实践的区域。具体来看,家用节能灯、变频空调、电视音响、洗衣机、微波炉等都是采用电力电子技术。电力电子技术应用广泛,其在工业及科技发展方面的作用也十分突出,下文针对两个不同应用方面提出一点看法

2.1社会供电系统应用

传统的电力供量已无法满足现代需求量,不仅要开发资源,技术的开发更具主要性。提高能源的使用效率,需要电力技术的实践,而电力电子产品相配套使用,能够提高安全指数,经济节能,体现生态化,经济高效化的现代化精神,使现代技术与环境高效统一。据资料表明,新能源发电在未来几十年,总量将增加几倍,随着太阳能、生物质能、风能发电成本的大幅度下降,将增加竞争力。然而二次能源的运用仍有一定的局限性,如,太阳能发电需要解决发电时间的局限性,风力发电需要解决土地资源利用的矛盾,只要在技术上有新突破,克服局限性,将对人类社会造就巨大福祉,科研人员更应该看清实际应用的具体要求进行探究。

2.2远距离输电应用

直流输电(HVDC)和轻型直流输电(HVDCLight)技术相比较,直流输电具有输电容量大、稳定性好、控制调节灵活等优点。1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。之后世界上新建的直流输电工程均采用晶闸管换流阀。FACTS技术是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪90年代以来,国外在研究开发的基础上开始将FACTS技术用于实际电力系统工程。其输出无功的大小,装置结构简单,操作方便,成本较低。诸如此类,通过技术之间的比较探讨才能进行更高效地实践。

3对技术化的应用提出意见和发展指引

3.1针对发展过程的某些具体状况

进行专题探讨,如谐波污染,针对解决方案进行研究,对无源滤波器与有源滤波器两种治理方式进行比较:无源电力滤波器,用无源电力滤波器进行抑制谐波、补偿无功和提高电网的功率因数,但滤波效果受电力系统阻抗的影响较大,与无源电力滤波器相比,有源电力滤波器具有更大的优势,有源电力滤波器可以补偿各次谐波,还可同时补偿无功功率、抑制闪变、调节和平衡三相不平衡电压,滤波特性不受系统阻抗和频率的影响,可消除与电网阻抗发生串、并联谐振的危险。

3.2注重生态化的科技研究,节能

是电力电子技术应用未来发展的重要领域。进行电机系统的节能是趋势所需,据资料表明,按照国家计划,今5年内,将投500亿元,争取年节电达到1000亿kWh,作为国民经济行业主力设备电动机系统的调速节能,存在巨大的需求。未来10年,对经济型调速装置的开发、变频调速,城市交通系统,磁悬浮列车异步电动机的变频调速,电动汽车起动和稳定运行,要求有大量技术施用。

4结语

第6篇

【关键词】电力电子;电力传动;发展

中图分类号: F407 文献标识码: A

一、前言

电力电子技术在我国应用广泛,随着科技的不断发展,电力电子与电力传动水平也逐渐提升,同样也面临着挑战与机遇。

二、电力电子的含义和任务

从学术角度看,主要任务是研究电力电子功率电子(半导体)装置,逆变器的拓扑结构和控制及其相关电力电子系统中的应用过程中,实现对电力、磁能量转换、控制、传输和存储,为了达到一个合理的平衡,以及各种形式的有效利用,提供了高质量的电能。本问主要内容和研究范围包括:电力电子技术、电力电子器件及功率集成电路。电力电子技术研究内容主要包括新的或旧的电力电子功率、节能与新能源电力电子、军事和空间的电力电子变换器变换技术应用工程、智能技术、电力电子控制系统和计算机仿真、建模、以及电力电子技术的相关应用。研究内容主要包括大功率变换器的节能应用,可再生能源发电、钢铁、冶金、电力、电力牵引、推进、信息和网络的电力电子系统以及电力电子系统的可靠性、故障分析复杂电力电子系统的稳定性、适应性。电力电子系统集成,研究内容主要包括电力电子模块标准化;单芯片和多芯片系统的设计;电力电子集成系统的稳定性,可靠性。

从工程应用的角度看,无论是电力、机械、采矿、运输、石油化工、纺织等传统产业,或通信、激光、机器人、环境保护、原子能、航空航天等高新技术产业,提供高质量的电源的都是其正常运行的基础,特别是能源的节约。而电力电子是不同的能量有效地转化为高质量的电能,实现节能、环保的一个重要手段,提高人们的生活质量,已成为重中之重。其中信息技术是先进制造技术的另一种集中体现,传统产业要实现桥梁的自动化、智能化、节能化,机电一体化。电力电子技术的突出特点是高效、节能、节材。因此电力电子技术已经成为我国国民经济的重要基础,是一个重要的现代科学技术,其发展支撑着工业和国防。因此,无论是高技术应用领域或各种传统行业,包括照明、家用电器和同样广泛的应用领域,都与人们的日常生活密切相关。现实生活中电器和电子产品已经无所不在。由于目前我国还没有形成一个完整的自主的电力电子电力系统,所以它已成为建立现代科学的瓶颈,该行业和我国自主国防系统站之间也应该加强联系的紧密性。

三、电力传动系统的发展现状分析

目前,我国高校的教学模式是对电力的理论和实践的普遍现象的认知。由于电气工程及其自动化专业,是一个强大工科专业,电力技术的专业实力和计算机技术的相互渗透,“电力电子技术”,“电机驱动控制系统”和“交流调速”课程所涉及的基本理论和一系列要求知识,扎实的理论基础,学生必须具备较强的分析和解决问题的能力和实践能力。

1.输入电流为正弦和四象限运行开辟了新的途径

高性能交流驱动系统电压型PWM逆变器中的应用日益广泛,PWM技术的研究更深入。PWM技术可分为三类:正弦PWM,优化PWM及随机PWM。

2.应用矢量控制技术、直接转矩控制技术及现代控制理论

交流电机驱动系统是一个多变量、非线性、强耦合、时变的控制对象,变频调速控制,交流电动机的动态控制是70年代初提出,不仅可以控制每个变量的振幅,而且在控制阶段,为了解耦矢量变换方法对交流电动机的磁链和转矩,高性能的交流传动系统逐渐向实际使用。高动态性能的矢量控制变频器,目前已经成功应用于轧钢机主传动系统,电力牵引系统和数控机床。此外,为了解决复杂系统的控制精度之间的矛盾,同时也提出了一个新的控制方法,如直接转矩控制,方向控制电压,特别是微机控制技术,现代控制理论中的各种控制方法已经应用,最优控制双模拟调节器控制,可以提高系统的动态性能,滑模变结构控制(滑模)能提高系统的鲁棒性。

3.广泛应用微电子技术

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(Digital Signal Processor――DSP)、专用集成电路(Application Specific Integrated Circuit――ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。

四、电力电子技术目前存在的问题

在过去,中国的国民经济各部门虽然引进了许多国外先进技术,又注重本土化的问题,虽然他们大多经过几年可以达到70%的本地化率,但只要我们仔细分析,不难发现,外国公司拒绝转让技术的重要组成部分,是电力电子技术和高技术动力传动产品的核心技术相关。电力电子技术的应用涉及的核心可以概括为:大功率变流技术、电力电子技术和控制技术、大功率并网逆变器技术、大功率电力电子器件和电力电子数字控制技术。

实现系统状态反馈控制必要条件以及前提是系统能观性的研究,在控制系统的极点配置、动态解耦控制、镇定、渐进跟踪和、静态解耦控制、扰动抑制和线性二次型最优控制等方面都具有很强的意义。电力电子变换器又纯电路系统构成,按照基尔霍夫定律,在该系统中的电力都是可以计算以及检测出来的,所以一般来说,电力电子变换器可以称之为一种能观性的系统,可是电力电子系统中依然有能观性问题。

发现电力电子变换器的混沌现象是在20世纪90年代,该发现解开了长期性的疑惑,电力电子变换器经常会呈现出某种不规则或奇异现象,例如运行时突然崩溃、控制系统的间歇振荡、不明的电磁噪声、系统无法按设计要求工作系甚至统运行的不稳定等。实际上目前对电力电子变换器混沌问题的研究显示,这些现象的产生就是电力电子变换器运行的稳定性问题,当电力电子变换器参数变化到一定范围时,就会产生不稳定运行状态,混沌现象就随之出现。诚然如果在电力电子变换器初期研究就有计划的进行稳定性分析,它的混沌现象可能就会被尽早发现,尽早发现就能及时避免,长期以来只能将它归结为系统故障和外界随机干扰的误解就被消除,也不会因此影响到电力电子变换器的设计、研究和开发,使电力电子变换器性能的得到提高。与此同时也可尽早研究利用电力电子变换器混沌特性提高变换器的特性,例如优化变换器参数设计,避免有害混沌现象的出现,消除奇异或不规则现象,提高电力电子变换器稳定性;利用混沌运动的初值敏感性,提高电力电子变换器的动态响应特性和进行微电量检测;利用混沌功率谱特性降低电力电子变换器中的电磁干扰;利用混沌同步特性实现电力电子变换器的均流控制等。由此可以说明电力电子变换器稳定性不是一个是否需要研究的问题,而是一个必须研究的问题。

五、电力电子技术在电力系统中应用的发展方向

从目前的情况来看,最可靠的电子技术是未来电力电子技术发展的新热点。采用表面贴装技术先进的电力电子技术,多个设备的主电源集成在一起,具有多种功能,大大降低了电力电子装置的重量和体积,同时也降低了损耗和成本,提高工作效率。新材料是电力电子器件的发展的基础,因此在电力电子技术发展的一个瓶颈是新材料的开发。近年来,新的半导体材料,如碳化硅。如果集成技术的突破和新的半导体材料的突破性的整合,会有更多更好的新设备的性能,功能更强大,smanpower高压功率集成电路是一个明显的例子,他的存在,极大地满足了需要大力发展现代农业。除了这些,自动控制芯片的发展也很迅速。为了更好的使用性能优良的新装置,为了如波形生成,满足驱动电路,控制电路和实时保护等方面的要求,只有通过新材料,新技术的发展,不断创造快速性能更加完善,人工智能程度高新的高速控制芯片,更方便的工业应用。

中国的电力电子器件的集成技术能力与发达国家相比,仍然存在较大差距,要想中国电力电子技术的创新发展,形成产业化规模,必须有中国特色产业的创新,这就要求坚定不移地坚持和掌握生产、学习和研究共同发展相结合的道路。从跟踪国外先进技术,在其基础上逐步走上自主创新,从创新的跨学科的相互渗透,从器件选型和电路结构的变革创新,这是特别有用的技术创新的动力。从新材料科学中的应用创新,促进电力电子器件制造技术的发展创新,提高器件的可靠性。这种形式的基础上积累的创新之路。使技术创新和产品应用以及市场营销相结合,从而快科技创新的自我强化的循环,推动技术创新和促进稳定的基础,使我国的电力电子技术和设备制造技术形成一种新的朝阳产业,从而转化为更先进的生产力,由粗放经营向集约型营销发展,从而促进我们的产业的发展和国民经济高速度、高度、可持续发展。

六、结束语

只有以正确的态度来面对电力电子与电力传动面临的挑战与机遇,才能使该部分技术更加完善,也是我国科技进步的体现。

参考文献:

[1]杜鱼.我国电力电子与电力传动面临的挑战与机遇.民办教育研究.2013年3月,第2期,166-168.

第7篇

[关键词] 电力电子技术 电力系统 应用

0.引言

电力电子技术经历了半个世纪的发展历程,目前已在众多领域得到广泛地运用,诸如民用产品、传统产业设备发行以及新能源开发等行业。它将现代控制技术、功率半导体器件、计算机技术和电路技术作为支撑依据已经在国民经济中发挥出不可替代的重要作用,其直接影响着未来输电系统的性能。HVDC――直流输电――是在电力系统中最为成功的电力电子技术。继上世纪八十年,提出了FACTS――柔流输电――的概念,从而电力系统中应用电力电子技术引起了众多学者的研究与关注,众多的阐述以及总结有关设备的基本原理层见迭出,相继又产生了各种设备。电力系统是电力电子技术得以充分应用的一个重要领域,因此,探讨电力电子技术在电力系统中的应用具有现实的意义。

1.电力电子技术在发电环节中的应用

在电力系统的发电环节中,将牵涉到众多种类的发电机组的设备,怎样提高和加强此些设备的运行特性是我们所要达到的目的,而电力电子技术在发电环节中的应用就能够很好的实现这种目的。

1.1 大型发电机的静止励磁控制

静止励磁的优点是具有较为简单的结构、较高的可靠性,并且造价也不高,其通过晶闸管整流自并励方式已在各大电力系统中普遍的使用。因为对中间惯性环节即励磁机的省去,使得它具备了特有的快速性调节,这样一来,为先进的控制规律提供提供了充分发挥作用,同时控制效果更加良好。

1.2 水力、风力发电机的变速恒频励磁

水力发电的有效功率主要取决于以下两点:水头压力以及流量。在具有相对大的水头变化幅度的情况下,抽水蓄能机组最佳转速也会随着水头的变化幅度而产生变化。风速的三次方同风力发电的有效功率呈正比,风车捕捉最大风能的转速会随着风速的变化产生变化。因此,机组变速运行,易言之,对转子励磁电流的频率进行调整,让它同转子转速叠加后具有相对恒定的定子频率,进而取得最大的有效功率,电力电子技术在在水力、风力发电机的运用当中,变频电源是技术核心。

1.3 发电厂风机水泵的变频调速

发电厂的厂用电率平均是8%,在火电设备总耗电量中,风机水泵耗电量大约占到65%,不但具有较大的耗电量,而且运行效率也不高,为了实现节能的目的,在使用高压(低压)变频器的时候能够使风机水泵变频调速,进而降低耗电量。从当前的状况而言,低压变频器技术的成熟性毋庸置疑,在国内乃至国外都有很多的生产厂家,仅是系列产品在一定程度上还不具有完整性。然而能够设计并生产高压大容量变频器的厂家还没有几个,这就需要通过校企合作的方式,进行联合开发,从而达到满足生产需求的目的。

2.电力电子技术在在输电环节中的应用

2.1高压直流输电技术。 20世纪70年代,在瑞典建成世界上第一项晶闸管换流阀实验工程,从而替代了以前的汞弧阀换流器,这是电力电子技术在直流输电中获得应用的一个里程碑时段。从此之后,在直流输电工程,都以使用晶闸管换流阀为主。近年来,随着科学技术的不断发展,新的直流输电技术通过使用诸如GTO等可关断器和脉宽调制技术,不必采用换流变压器,从而能够让整个换流站搬迁,在较短的输送距离中,这就加强了中型直流输电工程的竞争力。另外,由于使用了可关断的电力电子器件,避免了换流器换相的不成功,加之不存在要求受端系统的容量,所以,能够应用于海上石油平台等这些小系统的供电。将来还能够用于城市配电系统。这些年来,直流输电技术获得了进一步发展,IGBT等可关断电力电子器件组成的换流器被应用在轻型的直流输电器件上,通过脉宽调制技术进行无源逆变,使得直流输电向无交流电源的负荷点送电的难题得到解决,不仅在极大地简化了设备,而且减少了造价成本。

2.2柔流输电(FACTS)技术。柔性的交流输电技术产生于上世纪八十年代的后期,这些年取得迅速的发展。FACTS是指现代控制技术同电力电子技术相结合,达到连续调节、控制相位角、电压等的目的,进而在很大程度上加强输电线路的输送能力,提升电力系统的可靠性,减少输电过程的损耗量。因为传统的调节电力潮流的手段仅能达到调节局部稳态潮流的作用,加之机械开关的动作时间较长,没有较快的响应,根本不可以适应在暂态过程中快速柔性连续调节和阻尼系统振荡的需求,所以,电网发展的要求使得柔流输电(FACTS)技术获得良好的应用与发展,截止目前,柔流输电控制器有许多种,且均能对电力系统中变量,例如励磁电流、电压、阻抗以及功率等等进行控制,继而提高交流输电的运行性能。

3.电力电子技术在在配电环节中的应用

在配电环节,我们亟待解决的问题是加强供电的稳定性以及提高电能质量。应用用户电力技术(Custom Power)亦称DFACTS技术是配电环节应用电力电子技术的最为普遍的技术,它是现代控制技术同电力电子技术的有效结合,配电环节应用用户电力技术的主要手段是通过交流输出电系统,加强供电的稳定性,提高配电的输出能力,并且提升电能质量。此外,在配电环节被普遍运用的电力电子技术还有柔流输电即FACTS技术,而用户电力技术可以看做是FACTS设备的缩小版或者姊妹型新技术,其功能原理在前文已进行分析,在此不作赘述。当前,DFACTS技术和FACTS技术已经发展到融合为一体。

4.电力电子技术在节能环节的应用

4.1变负荷电动机调速运行

为了使电力电子技术在在节能环节有所作为,我们就需着手于以下两方面:①电动机自身方面的应用;②变负荷电动机的调速技术的应用。倘若能将两者有机的结合在一起,势必会使电动机的节能获得显著的效果。近年来,风机和水泵在国外大多数采用调速控制,鉴于在国内对其的应用还不够成熟,以及由于变负荷的风机和泵类等采用交流调速替代节流阀(或者挡风板)对水流量、风流量进行控制都能取得良好的效果,并且具有较高的效率和精度,以及较广的调速范围,加之能够连续无级调速,同时在调速过程中具有相对小的转差损耗,节电率能够达到百分之三十,然而采用调速控制虽然有上述优点,却也存在较高的成本以及产生高次谐波的缺点,但这并不会影响其在矿山和冶金等部门的推广。因此,我国对其应加强研究,并需要进一步推广,

4.2减少无功损耗,提高功率因数

交流异步电动机以及变压器在电气设备中均属于感性负载,其在运行的过程中对无功功率、有功功率都要消耗,所以,同有功电源一样,无功电源是确保电能质量的不可或缺的部分,要在电力系统中维持无功平衡,不然,将导致功率因数的降低,系统电压的下降以及设备的损坏,甚至致使大规模的停电事故的出现,为了杜绝此类事件的产生,我们要在电力网或电气设备无功容量不足时,增装无功补偿设备,提高设备功率因数。

5.结束语

综上所述,电力电子技术能够在电力系统的众多领域得到广泛地运用,随着现代计算机技术的不断发展,我们应加大电力电子技术的研究力度,使其应用性更加的完善,对电力系统的控制以及节能起到更大的作用,以及最大幅度地提高电力系统的稳定性,从而获得巨大效益。

第8篇

【关键词】电力电子;器件;应用

一、引言

在上世纪各项科学技术及社会需求的带动下,电力电子技术出现并得到了很大的发展,逐渐它在电控装置、电气自动化系统当中的应用越来越广。如今,各式各样的自关断器件大量的出现,使性能得到了很大程度的提高,同时容量方面也有很大的扩展。以PWM控制为代表的、采用数字控制的电力电子装置性能日趋完替。目前,电力电子技术已经被应用于各个领域当中,从电力到工业再到交通,无不有其身影,且目前开始迅速想家电、通信以及节能方面开始发展。

二、其他学科与电力电子技术之间的关系分析

(一)电子学与电力电子技术之间的关系

与传统的电子器件制造工艺相比,电力电子器件的制造工艺、技术与其没有太多的差别,两者基本相同。如今的电力电子器件生产、制造一般都为集成电路,应用了微电子制造相关方面的技术,许多设备都和微电子器件制造设备通用,说明二者同根同源。

(二)电气工程与电力电子技术之间的关系

电力电子技术广泛用于电气工程中的高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动电解、电镀、电加热、高性能交直流电源等领域。通常把电力电子技术归属为电气工程学科,并且电力电子技术是电气工程学科中最为活跃的一个分支,其不断进步给电气工程的现代化以巨大的推动力。

(三)控制理论与电力电子技术之间的关系

控制理论广泛用于电力电子系统中,使电力电子装置和系统的性能满足各种需求。电力电子技术可看成“弱电控制强电”的技术,是“弱电和强电的接口”,控制理论是实现该接口的强有力纽带。控制理论和自动化技术密不可分,而电力电子装置是自动化技术的基础元件和重要支撑技术。

三、电力电子技术主要器件分析

电力电子器件既是电力电子技术的基础,也是电力电子技术发展的强大动力。电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展史是以电力电子器件的发展史为纲的。至今电力电子器件发展可分为三个阶段,电力电子技术的发展也相应地分成三大步。

(一)不可控器件

1955年美国通用电气公司研发了第一个电力电子器件一一硅整流管(SR)。它的问世使变流技术从机械整流、汞弧整流进入电力半导体整流。1957年出现了硅晶闸管(SCR),接着晶闸管的派生器件:逆导晶闸管(KN)、双向晶闸管(KS)、快速晶闸管(KK)、门极辅助关断晶闸管(GATT)、非对称晶闸管(ASCR)等相继问世,从而使电力电子技术不仅具有整流功能(交流直流),而且具有逆变(直流交流)、斩波(直流直流)、变频(交流交流)等功能。在这一发展阶段的电力电子器件,基本上都是分立器件或几个分立器件的组合,它们能被控制导通,而不能被直接控制关断,要靠“电流过零”或强迫换流才能关断,这就形成了以晶闸管及其派生器件为代表的第一代电力电子器件。

(二)半可控器件

半可控器件的代表是晶闸管,它在1956年由贝尔实验室发明,并在1958年由GE公司组织生产,称为硅可控整流器(Silicon-ControlledRectifie或SCR),中文简称晶闸管。晶闸管是一个四层三端结构,三个端子分别为发射极、集电极和门极,它的导通条件除集电极与发射极问加正向电压外,还需在门极加正向脉冲,否则不能由断态转变为通态。另外,晶闸管开通后没有切断电流的能力,要靠电流自行过零,才能恢复阻断状态。因而,这是半可控器件,即只能控制开通而不能控制阻断。

80年展起来的半可控电力电子器件,主要有巨型晶体管(GTR)、门极可关断晶闸管(GTO)、绝缘栅双极晶体管((IGBT)、单极场控晶体管(电力MOSFET)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)和MOS控制晶闸管(MCT)等,形成了第二代电力电子器件。在结构上,它们具有功率集成器件的特点,在功能上,它们具有通过电流信号(或电场)控制器件导通或关断的特点。

(三)全可控器件

全控型器件主要是功率晶体管GTR,功率场效应管Power-MOSFET,门极可关断晶闸管。GTR是一种NPN开关器件,可用基极电流开关集电极主电流,即具有自关断能力,它还具有开关时间短、通态电压低、开关损耗小、高频性能好、驱动简单、成本低廉等优点。因此它正在中小功率交流调速、逆变及斩波等方面取代着晶闸管的地位。GT可工作在10kHz,广泛应用于500kW以下的感应电机变频调速、不间断电源以及脉冲电源。

门极可关断晶闸管GTO是一种既可在门极加正脉冲使之由断态变为通态,又可在门极加负脉冲使之由通态变为断态的器件,因此这种器件可控制电路的通断。

四、电力电子技术在各领域当中的应用

目前,电力电子技术已经被应用于各个领域当中,从电力到工业再到交通,无不有其身影,且目前开始迅速想家电、通信以及节能方面开始发展。

(一)电力系统当中对电力电子技术的应用

将电力电子技术引入电力系统并获得广泛应用的领域,首推应是同步发电机励磁系统,这种励磁系统由于动作迅速,容易设计出高顶值电压,并且控制功率小,因而,作为电压调节系统具有优越的性能;另一领域是交流电动机的变频调速,它的应用,节约了可观的电能。近年来,国外还研究将电力电子技术引入抽水蓄能电站,以提高水泵水轮机的效率,并已取得成果。

在电力系统的发电、输电和配电环节中都离不开电力电子器件和电力电子技术。电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用极大地改善这些设备的运行特性。在输电环节中,电力电子器件大量应用于高压输电系统,被称为“硅片引起的第”,大幅度改善了电力网的稳定运行特性。配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和小对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,成功地解决了这些难题。

(二)一般工业中对电子电力技术的应用

在工业中大量应用交直流电动机进行电力拖动,直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来电力电子变频技术的迅速发展,使交流电机的调速性能可与直流电机媲美,交流调速技术大量应用并占据主导地位。

电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电力电子技术还大量用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。

(三)家用电器中对电力电子技术的应用

照明在家用电器中有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,正逐步取代传统的白炽灯和日光灯变频空调器是家用电器中应用电力电子技术的典型例子之一。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。

五、结语

当前,电力电子技术仍在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛,从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。

参考文献

[1]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010(04).