发布时间:2023-10-11 16:23:38
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的化学反应工程原理样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
由于搅拌槽内的流场的流动具有复杂性,目前对搅拌槽等混合设备的设计和经验成分也采用理论计算的方式,在化工领域中,化工工业规模的反应器存在不均匀性等特点,不均匀性随规模扩大而加重,因此,对搅拌槽内部流场进行研究是非常有必要的。虽然许多化学家对化工领域中的搅拌机槽内的流场进行了分析研究,如Harvey等人采用二维模拟计算搅拌槽内流场的流体,但随着技术的不断改革与发展,计算流体力学的引进,改变了以二维模拟的计算方式,计算流体力学的方法不仅可以节约化工研究成本,采用实验手段不能获得的数据,计算流体力学方法也可以获得。Sun等人利用计算流体力学中的湍流模型计算了搅拌槽内的气液两相流动,并且对其进行了三维模拟,通过实验研究表明,计算流体力学的数值模拟能有效的计算搅拌器上部的气体部分,但是,CFD数值模拟也存在一定的缺陷,不能有效模拟搅拌器底部区域。计算流体力学CFD与多普勒激光测速仪LDV有效结合,可以对搅拌装置能更深入的研究,其主要原因是多普勒激光测速仪测量的数据可以准确验证计算流体力学CFD计算的结果,同时多普勒激光测速仪测定特定点的速度也可以作为计算流体力学计算的参考条件。
2.CFD在化学工程换热器中的应用分析
换热器是化学工程中使用最多的设备,通过计算流体力学的计算方式,不仅可以精确、详细的测量换热设备内流场的流动,也可以预测换热器的性能,经济可靠的换热器对化工工业具有重要作用。对于化工中的管壳式换热设备,其内部的几何形状设备结构复杂,利用计算流体力学模拟管壳式换热设备的壳侧流场,进而充分了解管壳式换热设备的壳侧在瞬间变化中的温度场、速度场,CFD的应用有利于分析研究换热器的基本原理和结构构造。
在我们以前普通的化学反应来看,对于反应后的副产物的处理是相当困难的,并且如果想处理,其治理成本是相当的高,所以以前那种普通的反应无法从根本上剔除化学工业中所带来的一系列危害。而我们所提到的绿色化学工程,就从根本上解决了上述问题。
1.1选择有益材料对于化学反应来说,最重要的还是选料的环节,它的好与坏直接影响着化学反应是否友好是否有益。有效的防范,以达到在过程以及结果的一种良性局面。
1.2采用高效高选择性的反应原料对于化学工业来说,化学反应是决定化学工业生产过程中生产成本和生产难度、充分利用化学资源等各方面的重要性因素。可以降低工业生产的成本,而且能够提高产物纯度,减少无效反应产物的排放,节约化学资源,在化学工业中,有机物的反应复杂,研究机制不确定,所以选择合适的反应原料,不断提高工业技术是对化学工业的发展有着重要的意义。
1.3使用绿色无公害的反应催化剂催化剂作为化学反应中能改变反应速率的的物质,在化学工业中应用广泛,绿色化学就是研究生产高效高质量的化学反应,不产生任何有害物质,无效产物可以做到循环利用,无公害。这项生产技术就是高度依赖化学反应过程中的催化剂,不断创新,不断推动绿色化学产业的发展,相关机构已经着手研究这些优良的催化剂.
2寻找高效绿色的化学催化剂对提升工业生产水平的作用
2.1化学工业中绿色化学的应用绿色化学的核心就是要利用化学原理从源头消除污染,做到完全无公害无污染,因此它又被称为清洁化学,应用范围广泛,它涉及有机合成、催化、生物化学、分析化学等学科。工业中化学反应发生的条件一般都是高温高压,在反应过程中,只有适宜的温度和压力才能使用现代化学工业的技术,另外加上绿色化学的高效催化剂,这项工程才得以不断发展。例如上文提到的低维材料碳纳米管,催化裂解反应中有很大的化学功效。
2.2化学工业中绿色化学和现代生物结合的应用。讲到了催化剂,这就涉及到另外的技术性学科生物技术。生物技术的就是高科技与高端专业知识结合的产物,学科内又分为细胞工程、基因工程、胚胎工程等等。在化学产业中主要应用于生物化学。在化学工业生产过程中,选取有机的生物材料,主要是动植物的原料,另外也会采用他们经过上千年演变的产物—地下的煤炭等。催化剂主要由人工催化剂和自然催化剂,分别由人工合成以及采用天然动植物的生物酶。这样能够满足现代化学工业发展的需要,同时也能切合可持续发展的指导思想,节约能源,维持现在生态平衡的状态,推动化学工业发展。
3结语
化学反应器根据其反应体系相态的不同,可以分为均相和多相两大类,与均相反应过程相比,在多相反应器中各相之间往往存在着传递过程,包括热量传递和质量传递,传递过程的存在对多相反应过程的结果必然产生与均相反应过程不同的影响。例如在气固相催化反应工程中,气固相之间存在反应物与产物之间的质量传递,并进而发生热量传递,当反应过程较快而外扩散过程较慢时,过程表现为外扩散控制,无论本征反应速率如何,表观反应级数总为一级,表观活化能总为外扩散过程活化能;又如在气液相反应过程中,气相与液相之间也存在着反应物及反应产物之间的质量传递,质量传递过程的存在也必然影响到反应速率,尤其是反应速率较快时更是如此。
虽然两类反应器之间存在着一定的差别,但均相反应工程无疑是多相反应工程的基础,多相反应工程所涉及的各相中所发生的过程可认为与均相反应过程无异。因此,在均相反应工程中所建立的许多重要概念、理论和方法,完全可以原封不动地应用到多相反应器理论的讨论中去,如在均相反应器模拟时建立的轴向扩散概念,在建立多相反应器模型时便可以完整地移植过来;又如平推流和全混流概念,两类反应器中都有着极广的应用。
因此,主要针对“均相反应器”开发过程以图形形式显示其内在逻辑结构(图3),以使学生在学习本课程后能在头脑中形成化学反应工程学科的完整印象,从而更好地将其应用于实际反应器的开发过程中。
由图3可知,即使是均相反应器,相互之间也存在着很大的区别,因此,第一步是必须要对它们进行分类,可见分类的方法是本学科建立的基本方法。通过分类,人们更清楚地认识到各反应器之间的异同点,如均相反应器按几何形状划分可分为管式、塔式和釜式反应器三类;按换热方式可分为绝热、等温和变温反应器三类;按操作方式可分为间歇、半间歇和连续反应器三类;而按混合方式又可分为平推流、全混流和非理想流动反应器三类。根据反应器不同的特征对其进行划分,所产生的结果可能不同,但由此而获得一个极为重要的工程概念,即反应器型式。反应器型式在反应器设计优化中属于三大决策亦量之一,十分重要,在反应器设计中的第一步即是根据反应过程的特点确定反应器型式。
由图3还可以看出,针对化学反应器的开发,一般采取两种方法,一是数学模型法,二是经验放大法。在化学反应工程课程中主要讲解的是数学模型法,其基本思路是,应用分解的方法将实际反应器分解为两部分,即过程和反应设备。过程包括化学反应过程和传递过程,由于反应过程规律和传递过程规律相互独立,故对其规律可分别进行研究。而反应设备则主要包含反应器型式和几何因索两大类。
为研究化学反应过程规律,必须要消除掉传递过程的影响,由于化学反应规律和设备大小无关,故化学反应规律可在微型(或台式)反应器中进行。这一点非常重要,如化学反应规律在微型反应器中进行研究,则不仅节省了大量的资金,更重要的是在微型设备中易保持纯化学因索的影响,获得的反应性质、规律可以应用到不同规模的任何反应器中。化学反应过程的性质一般包括化学计量性质、化学反应平衡性质及化学反应动力学性质。
化学反应计量性质是反应平衡性质和动力学性质的基础,对平衡性质和动力学性质的研究都是基于反应计量性质明确的基础上进行的,计量性质主要包括反应系统中各组分之间的定量关系,及系统中独立的反应数。
反应平衡性质主要包括反应热效应和反应极限的计算,尤其是反应平衡常数及平衡转化率的计算。对可逆放热反应而言,平衡性质对过程的影响较为复杂,温度的升高对反应动力学速率往往是有利的,但对平衡而言,平衡常数随温度的升高而降低,所以温度对平衡性质和动力学性质的影响呈现相反的趋势,从而引起问题的复杂化。通常对可逆放热反应存在着最佳温度,且最佳温度随组分转化率的不同而不同,因此,在整个反应过程中,存在一最佳温度曲线,反应沿着最佳温度曲线进行,在转化率一定时,可以使用较少的催化剂。同时还须认识到,在反应后期,即较高转化率接近化学平衡时,反应过程往往是由平衡因索控制的。
化学反应工程研究的主要内容是化学反应动力学规律,化学反应动力学特性是化学反应器选型、操作方式和操作条件确定及反应过程优化的重要依据,因此,反应动力学测定是十分重要的工作。然而,反应动力学的精确测定是一项独立于工艺试验之外的专门实验,它不但要求具备满足实验精度的特定设备,而且在具体进行时又有相当可观的实际工作量。因此,进行动力学测定极为重要,其基本思路如图生所示redlw.com。
动力学方程通常分为3种形式,一是纯机理型方程,二是半经验半理论型方程,三是纯经验方程。基于碰撞理论、过渡态理论及分子动态学而推导出来的纯机理型方程,一般仅对简单反应体系适用,当前反应工程学科应用这类动力学方程进行反应器设计的并不多见。工业反应体系往往极为复杂,但作为动力学研究发展的方向,纯机理型动力学方程应是每个化学反应工程研究者必须努力的目标;纯经验性的动力学方程如描述微生物生长的Monod模型在反应器设计中亦常常使用,但反应工程学科通常使用的是半经验半理论的动力学方程,图生所示指的就是此类方程。
建立动力学方程模型的基本思路一般是先设定一定的基元反应机理,该机理通常分为两类,一是有限基元反应组合机理,二是链式反应机理,在此前提下,根据拟平衡态假设或拟定常态假设,可以推导获得一定形式的动力学方程。动力学方程通常分为两种,一是幂函数型,另一种是双曲函数型。视方程当中是否含有一阶微分,动力学方程又可分为积分式和微分式两种。
在动力学方程确定后,方程中包含两类物理量,一是伴随反应过程变化而变化的因索,通常是指反应温度、反应物浓度及反应时间;另一类是在反应过程中相对稳定的、反映反应过程性质的模型参数。模型参数无法由模型本身获得,必须通过实验确定,这也正是该动力学方程被称为半经验半理论的原因所在。因为模型参数必须由实验确定,于是就必然涉及实验的设计。实验设计内容通常包含两个方面,其一是实验用反应器的选择,其二是实验条件的确定。实验用反应器类型与工业反应器类型大同小异,不同之处仅仅表现在规模程度上,实验室反应器规模小,通常为11左右,因此,其传递过程影响易于消除,任意个对反应结果的影响主要是纯化学因索,如此易于反映反应过程的本质。而实验条件的设计方法包括两种,当独立的组分数仅为1个时,实验可采用单因索法,当独立的组分因索多于2个时,则往往采取正交实验设计方法。
通过实验获得一系列实验数据后,接下来的问题是必须求解出动力学模型参数,求解动力学模型参数的方法有积分法和微分法。基于积分式动力学方程的求解方法称为积分法,基于微分式动力学方程的求解方法则称为微分法。在大多数实际情况下,模型参数求解方法采用的都是微分法redlw.com。
当反应动力学规律确定后,必须要研究在实际工业规模反应器中通常出现的传递过程规律。为研究传递过程规律,通常可以在没有化学反应的情况下进行,这是因为传递过程是反应器的属性,基本上不因化学反应的存在与否而异。对于一个特定的工业反应过程,化学反应规律是其个性,而反应器中的传递规律则是其共性。因此,传递规律受设备尺寸的影响较大,必须在大型装置中进行。由于需要考察的只是传递过程,不需实现化学反应,完全可以利用惰性物料进行试验,以探明传递过程规律。正因如此,这种试验通常称为冷模试验。
进行冷模试验研究传递过程规律时需要关注的一个重要问题是:所选模拟设备的大小,即传递过程应在多大规模的模拟设备中进行?为保证所获得的传递参数准确、有效,所遵循的原则是必须保持在模拟设备中发生的传递过程与实际反应器中所发生的传递过程应“相似”,即符合“相似性原理”。冷模试验设备的大小必须依据此原理进行选择和设计。
在对反应过程和传递过程进行了充分的研究后,需要对相关成果进行综合处理,这一阶段主要是在计算机上进行模拟并完成的,如图5所示。
同时,为验证模拟结果是否可靠,还必须进行中等规模的试验,即中试,又名热模试验。热模试验存在3个问题需要解决,一是试验规模,二是试验的完整性,三是运行周期。如果热模试验结果与模型计算结果相符,说明模型正确,能够反映实际规律;如果不相符,则需要修正模型,直至与热模试验结果相符为止。
具备了传递过程规律和小试测定的反应过程规律,并且经过了热模试验验证,就能直接设计工业反应器了,这样就不存在设备的放大问题。数学模型方法本身可以直接通过计算就能获得大型反应器的设计,说明工业反应过程的开发并不必然地必须经过由小型反应器到中间规模反应器再到工业规模反应器的整个过程。
最后应当要注意的是,数学模型法要想获得成功,必须要具备2个基本前提:一是它要求有可靠的反应动力学方程;二是还要有大型装置中的传递方程,两者缺一不可。
例如,固定床反应器,虽然不少反应的动力学模型研究较为完整,然而由于具体工业反应器模型参数难以正确测定,尤其对复杂的工业反应,其本征动力学参数也难以把握,因此,对固定床反应器的数学模拟放大,迄今尚未有比较满意的工业应用。
化学反应动力学测定虽然有相当大的工作量,但它毕竟可以在小装置中进行。而工业反应器的传递模型却不是小装置所能解决的,它不但要求大型冷模试验和必要的热模检验,还需要工业规模的测试数据和工程研究的长期经验积累。因此,当没有可靠的大型设备传递模型时,数学模拟放大只能是纸上谈兵。此时,精确的动力学测定必然是徒劳的。当然,这并不意味着不需要有关的动力学知识和对反应动力学特征的认识。一个开发者应当充分具备动力学基础知识,并据此巧妙地安排工艺试验,以便把握反应动力学特征和有关影响因索,为工业反应器的选型和优化服务redlw.com。
由此可见,从化学反应工程的观点出发,机理的、定性的、半定量的动力学特征研究应当是结合工艺试验进行的重要任务。只有当工业反应器的传递模型足够可靠时,精确的动力学实验才是必要的,并可用于数学模拟放大。
2 化学反应工程思维方式
如上所说,在剖析化学反应工程课程各知识点及相互逻辑关系时,本研究采用了分类、分解和综合的思维方式,而分类、分解其实属于分析的方法。所以,分析、综合是反应过程开发中的基本方法,应深加注意,其中尤以分析方法更是在各种科学思维方式中处于最基本的地位。对于图3、图5所示的化学反应工程逻辑结构,当将它们具体应用到实际的化工过程开发中时,也可用图6简略地表示。图6表示了化学反应工程课程所提供的特有的工程思维方式。
3 结语
关键词:化学工程;石油化工;节能
不论是在生产领域还是石油化工当中,均必须要依赖于化学反应。化学反应当中的提纯与分离技术是生产阶段最为关键的一项技术策略,其对于整体石油化工生产工作有着无可替代的价值作用。若要想确保能够顺利完成对整体石油化工生产就必须要对质量传递及化学反应要有一定的了解,以及应用到相关的换热设备、流体传送设备,以便能够更好地开展节能工作。据此,下文将就上述原理与设备展开具体分析,以期能够实现对石油化工生产达到良好的节能效果。
1节能原理
1.1质量传递与节能
石油化工的分离主要是以精馏方式为主,这同时也是质量传递的关键所在。依据热力学原理可了解到,完全差异化的物流混合是一种自发性的行为,有着明显的不可逆性;相反的,若要将混合物分离为各种构成成本完全不同的产品之时,便要耗损掉一部分的外部能量。在蒸馏阶段物质位于不同相间的转移是处在温度与压力均保持恒定的状态下所实施的,相转移阶段的推动力量为化学势,其在应对相变以及化学改变之时作用价值巨大。在精馏处理阶段,蒸汽采用特定压力降通过精馏塔是导致不可逆的关键因素之一。其次为再沸器与冷凝器各自通过特定温度变化差异加入以及将热量转移,更为关键的一方面原因是气体与液体的两相接触亦或是在发生混合之后由于远远未能够满足于相平衡从而导致精馏阶段的不可逆性明显升高。因而,减小流体流动所出现的压力降,降低在热传导阶段的温差值,降低质量传递使得浓度差,都能够确保精馏阶段的功耗大大降低,促使被耗损的功耗大幅度降低。
1.2化学反应与节能
在化学反应阶段当中也会受到动量传递、热量传递、质量传递和化学反应等原理的支配。化学反应的速率及平衡性是存在密切相关性的,具体可由反应速率将化学平衡导出,然而却不能反推。因而化学反应的动力学相较于反应热力学是更加底层的一项核心基础。热力学纯粹是给出了化学反应的一种可能性,要达到这样一种可能性还需要能够由更高的动力学角度来探讨化学反应速率与有关影响因素。在化学反应阶段,绝大部分状况下均会同时出现热量放出亦或是吸入现象。怎样能够高效化地应用或供应反应热量将是在化学反应阶段实现节能最为关键的一方面内容。针对吸热反应,应当尽可能科学化地进行热量供应。吸热反应温度也应将其最大程度地减小,以便于能够更好地应用过程剩余热量抑或是采取汽轮机抽气予以热量供应,降低对高品质燃料的损耗。针对放热反应现象,便需要尽可能确保对反应热的科学化应用。放热反应温度必须要在允许的范围内达到最大值,以期能够确保所回收到的热量有着较高的品质。化学反应设备是开展化学反应最为关键的部分,在绝大多数的反应阶段当中往往都会同时存在有流体流动、热传导、质量传递等流程,其中每一项流程均会不同程度地产生一定的阻力,且还要耗损一定的能量。因此,对反应装置予以适当的改进,降低阻力,便可实现对能量耗损的有效减小。
2节能设备
2.1换热设备节能
这一设备最终重要的一项功能即为实现对热量的高效化传导,并且在热量传导之时有可能还会因为传热方式仍存有一定的缺陷而造成热量丢失。要想解决这一问题便应当就热量传导过程之中的温度差予以适当的优化协调,促使温度能够始终处在较为稳定的状况之下。热量传导还存在有顺流、逆流、交差流以及混合流等多种形式,特别是在逆流阶段所出现的温差变化是最为明显的,在顺流阶段所出现的温度变化是最不显著的。因而,为了尽可能地增强热量传导效应,还应尽可能地选用逆流传热形式,并借此来实现对热量损耗的降低。提高换热设备换热面积,促使其热传导效应能够尽可能增强。革新传导设备结构,并借此来提高单位体积内的传热面积,进而促使换热器工作效率能够尽可能地得以提升。若可选用部分直径相对偏小的传送管道,还可将管道采取密切排列的方式,采用形状适当的翅片管来提高热传导面积,增强热传导效率。要想提升热传导能量最有效的方式途径即为增强热传导系数,这同时也是在热传导设备节能研究领域最为关键的一项内容。而对于热传导效率的提升就必须要新增一部分的冷热流体以及和管壁间的换热系数,尤其是针对换热性能相对不足的那一部分,可将其管道壁垒的表面设置为粗糙结构,以期能够实现对底层流体热传导效率的影响。此外,还可在管道内新增部分插件,引导其转动同时生成一部分的热量。
2.2流体传送设备节能
2.2.1泵节能
在流体流动或者是在传输阶段内,都会在一定程度上和传输管道内壁产生撞击摩擦,从而便会造成部分能量转换成了热能,致使能源耗损量大大提高。依据能量守恒定律来就流动情况展开分析,需针对流体的流动速度采取适当的控制措施,从而尽可能地降低管道当中的额外阀门零件,若有需要还可适当新增一些减阻剂来减小流体耗损能量。另外,还可选用更高质量同时效率也更高的泵,来促使流体当中所通过的零部件其表面能够更加光滑,降低摩擦系数并最终实现对流体能量耗损的全面降低。
2.2.2压缩机节能
在生产石油化工之时,除过离心式压缩机外常常还会应用到复式压缩设备,尽管此两种压缩设备在原理以及节能的方式上存在着一定的差异性,然而其在实施压缩之时,均可促使有效能受损。导致这一问题现象出现的关键因素是由于采取了非等温压缩处理方式。因此,若要确保压缩设备能够达到更好的节能效果,便需要对压缩设备的结构予以调整,促使其转变为多级别压缩,在传输下级过程内逐渐冷却,从而也便能够最大程度地促使压缩设备接近于等温压缩,可较为高效的降低能量损失,极大地降低额外的能量浪费。
2.2.3离心式压缩机节能
这一种类型的设备在运行过程当中出现能量损失的环节主要为流动、冲击、轮阻等环节。若要促使这一设备能够达到更为优异的节能效果,便需转变其操作方式及设计方案。具体包括:利用对吸入过程压力的提升,来减小在吸入过程内所出现的热能,降低叶轮阻力,转变叶轮及叶片角度,以促使其能量耗损可得以显著减小。
3结语
总而言之,随着当今世界能源危机问题的日渐严重,资源短缺问题不断凸显,节能技术的重要性也上升到了空前的高度。节能技术有着多种形式与类型,每一种节能技术也都有着其最为显著的优势特点,科学应用好有关的节能技术,尽最大努力减小能源耗损将是未来在能源应用领域最为重要的一项研究内容。石油化工资源作为一种不可再生能源,其完全枯竭只是时间长短问题,对此就必须要在这一方面大力加强有关的研究工作,由每一个环节来降低浪费,以期最终能够实现对经济成本的节约。
参考文献
[1]李宝立.石油化工节能之关键技术[J].中国化工贸易,2015,7(16).
[2]王铁良,王立锁.浅析夹点技术在石油化工中的应用[J].中国化工贸易,2013(1):140.
[3]唐满红.我国石油化工系统节能分析及节能潜力分析[J].石化技术,2015,22(9):254.
[4]刘维康,魏寿彭,李宇龙,等.化工热力学与石油化工节能[J].广东化工,2014,41(4):47-48.
关键词:绿色化学;研究发展;环境保护;应用
1、绿色化学的基本概念
绿色化学是利用化学原理来防止污染的一门学科,也称环境无害化学、环境友好化学、清洁化学,在绿色化学基础上发展起来的技术称为绿色技术、环境友好技术或清洁生产技术。绿色化学的化学反应过程,实现“零”排放,不产生污染。绿色化学对生产过程来说,包括节约原材料和能源、淘汰有毒原料、减降废物的数量和毒性。 绿色化学通过改变化学品或生产过程的内在本质,来减少或消除有害物质的使用或产生,是非常科学的,是化学工业可持续发展的基础。
2、绿色化学的原则
绿色化学经过先驱者10多年的研究与探索,总结出了绿色化学的一些理论和原则,为绿色化学的今后研究工作奠定了墓础。P.T .A nastas和J.C. W aner提出的12条绿色化学的原则目前为国际化学界所公认,它反映了近年来在绿色化学领域中所开展的多方面的研究工作内容,同时也指明了未来发展绿色化学的方向。
3、绿色化学主要研究内容
绿色化学的研究主要是围绕化学反应、原料、催化剂、溶剂和产品的绿色化开展的,具体包括:新合成方法和路线的研究,特别是新型催化剂和催化过程的研究;新化学原料的研究,包括生物质资源的沽净转化和综合利用;新反应条件及过程的研究,包括对超临界流体、环境无害的介质等的研究;绿色产品的设计和研制的研究。
4、绿色化学的主要研究对象
4.1 原料的绿色化
现有的化工生产中,仍有不少产品在生产过程中使用着剧毒原料。为了确保环境安全和人类的健康,寻找无毒、无害的原料来生产人类所需的化工产品,是十分必要的。
4.2 化学反应的绿色化
提高化学反应效率符合化学反应绿色化的要求,化学反应的绿色化包括 (1)原子经济性。即最大限度地利用原料和最大限度地减少废物的排放,减少环境污染。 (2)反应的选择性。化学反应的选择性包括位置选择性、化学选择性和立体选择性。
4.3 产品的绿色化
产品的绿色化是绿色化学的关键部分,其实质就是大力研制并且提供人身更安全的环境友好型化工产品,如新的海洋生物防垢剂、THPS杀菌剂、灭火制冷剂、二酰基肼杀虫剂等。可降解塑料、环境友好农药、绿色燃料、绿色涂料、CFCs替代物等等都是很有发展前景的绿色产品,随着技术的进步,越来越多的产品将会取代原来的对环境有害的产品。
4.4 催化剂的绿色化
目前在许多化学反应和化学工艺中,常采用对设备腐蚀较大,污染环境、危害人体健康和社会安全的化学原材料作为催化剂,目前围绕催化剂的绿色化展开的研究主要有:仿酶催化剂、固体酸催化、水溶性有机金属配合催化剂及多相催化体系。
4.5 溶剂的绿色化
溶剂在化学品生产过程中,广泛的用做反应分离的介质或用做清洗剂。当前广泛使用的溶剂是挥发性有机化合物(VOC),其在使用过程中有的会引起地面臭氧的形成,有的会引起水源污染。
4.6 化学设计的绿色化
化学设计的绿色化是利用计算机进行辅助的绿色化学设计。其做法是:首先建立一个尽可能全的化学反应的资料库,利用计算机进行可能的化学反应的组合;其次确定目标产物和可能采用的原料;第三让计算机找出能生产目标产物的反应及所需原料,第四以上一步的原料为目标产物再做搜寻,找出该目标产物的合成反应原料,直到得出预定的原料;最后比较各条可能的反应路线的经济技术性及环境效应,从中选出最佳途径。
4.7 合成技术的绿色化
合成技术的绿色化是近年来发展起来的,其宗旨是要减少有毒有害物质的使用,该技术采用一些特别的非传统的化学方法,获得多种环境效果,改善产品的选择性,降低单位产品的能耗。其中电化学发是新世纪洁净技术的重要方法,该方法在化学反应中无需使用有毒有害试剂,而且还可以使反应在常温、常压下进行,所以,电化学方法在洁净合成中个有独特的魅力。
5、绿色化学的新技术和新工艺
5.1 催化技术
催化剂,不仅可以加速反应的过程,极大地改善化学反应的选择性和提高转化率,提高产品质量、降低成本,而且能从根本上减少或消除副产物的产生,减少污染,最大限度地利用各种资源,保护生态环境,这是绿色化学研究所追求的目标。
5.2 生物技术
生物技术被认为是21世纪最具有发展潜力的产业之一,是当代科学的高新技术,生物技术在医药、食品、能源、冶金、化工、精细化学品的制造等方面具有广泛的应用。它的最大特点在于能充分利用生物质资源,节约能源,易于实现清洁生产,而且可以实现一般化工技术难以实现的化工过程。生物技术主要包括:基因工程、细胞工程、酶工程和微生物工程。
5.3 超声技术
超声技术,即声化学,它是声学和化学的交叉渗透而产生的一门新兴交叉学科。声化学能改变反应的进程,提高反应的选择性,增加化学反应的速率和产率,降低能耗和较少废物的排放,因此声化学技术作为一种安全无害的“绿色技术”,在合成化学中具有广泛的应用。
2009年 4 月 26 日
一、实习目的:
建筑环境与设备工程专业认知实习,是重要的实践教学环节,通过认识实习可以使学生对本专业从事的领域和业务,本专业的工程情况建立一定的感性认识,使同学们明确自己的专业范围,了解专业一些简单的设计、施工、维护管理、调试等方面的知识。为以后的专业学习打下必要的基础。
二、实习内容:
1、气源部分
熟悉天然气锅炉的构造、工作原理、主要参数;熟悉天然气锅炉的工艺流程及设备、发生站流程及设备;
地点:**区**总公司地下供暖系统
时间:2009年4月24日
天气虽然恶劣,风力很大,但是我们对知识的渴求丝毫不减,在指导老师的带领行下,我们一行来到**公司。在实习过程中。我抱着虚心的态度,积极地记下并了解各种设备的结构,及时向老师请教自己不理解的疑问,去总结我们认识上许多错误的认识。 由于在观摩之前我查阅了相关资料,所以对于老师的讲解较为理解,对我**地下天然气锅炉房的供暖原理,我有较清楚的认识。
天然气锅炉由三部分组成:燃烧设备、换热设备、自动控制和安全保护装置。燃烧设备主要是由燃气燃烧器、点火装置、燃烧室、送风与排烟系统组成。
目前国内锅炉的内部换热设备有两种,一种是采用套管换热器,也就是生活热水套在采暖换热器内,直接由火来加热;另一种结构形式是生活热水采用间接加热,即通过板式换热器来换热。自动控制及安全保护装置主要有风压开关、流量开关、熄火保护、缺水保护、过热保护、温度传感器和控制器等组成。燃气壁挂锅炉的工作可以简单看成由两个过程组成:一个是燃烧过程,就是将燃料与空气混合着火燃烧释放出化学反应热的过程;另外一个是传热过程,就是指把燃料燃烧释放的化学反应热通过受热面传递给水的过程。
当燃气供给阀打开,按下启动按钮,燃气壁挂锅炉将自动完成整个燃烧和换热过程。首先是风机启动,风压开关工作,空气进入进行20秒的前吹扫,然后燃气电磁阀打开,燃气进入燃气燃烧器,同时点火变压器开始工作,将220V电压变成6000V以上高电压,两个点火电极彼此放电(若一个电极则是对地放电)形成电弧把燃气引燃,熄火保护装置执行保护工作监视燃烧室火焰状况。燃气在燃烧室中燃烧, 把换热器中的锅水加热,锅水温度升高用于供暖或将生活热水加热, 水把燃气燃烧形成的化学反应热进行有效吸收,完成热量的传递过程。
2、输配部分
熟悉城市管网的布置特点、压力级制和各种构筑物(门站或储配站、区域调压站)的工艺流程、工作原理及站内主要设备。熟悉液化石油气储配站的布置、工艺流程及运行原理。
(一)存在的问题分析
1.学生情况高等职业教育一般学制三年,学生年龄在20岁左右,与本科学生相比,高职学生生源质量相对较差;部分学生基础差,而且没有养成良好的学习习惯。前期在高职学习的两年里,由于高职院校的定位与本科院校有差异,从而造成学生对相应课程的掌握程度不够,有些学生仍没有养成好的学习习惯,学习能力相对较差。
2.课程衔接本科教育培养的是研究设计型人才,理论知识的广度和深度远超出专科的要求。高职专科教育培养的是应用操作型的人才,理论知识贯彻“必需”和“够用”的原则,强调动手能力和实际操作能力的培养与训练。因此,专科院校的课程设置中,基础理论知识的课时数和学习深度远比不上本科院校,有些课程没有开设。[7]对于本学院参加自学考试“专接本”的学生来说,由于对“高等数学”、“物理化学”等先期课程的知识掌握得不够扎实,加上本身的抽象思维能力差、工程课程基础薄弱等原因,从而使得其在“化学反应工程”课程的学习过程中遇到的问题较多,一时难以适应。
(二)课程教学内容设定和教材选取
1.教学内容设定的思想“化学反应工程”课程的内容十分丰富,在相对较短的时间内要将所有内容都讲授完很困难。对于参加自学考试“专接本”的学生来说,由于学习的时间紧,学完全部内容有些困难,这样就需要对内容进行精简提炼。由于自学考试“专接本”目的明确,教学内容设定时,应紧扣江苏省高等教育自学考试“化学反应工程”科目的考试大纲的要求,根据大纲要求来设定教学内容并组织实施,以做到有的放矢,从而提高教学效率。
2.教学内容的具体设置根据大纲的要求,均相反应动力学和理想反应器、非理想流动、非均相反应这几部分内容是考核的重点,也自然是教学内容的重点。下面对这几部分进行分解,以确定具体实施的教学内容。均相反应动力学和理想反应器着重介绍:影响反应速率的因素;反应速率方程式的建立方法;两种理想流动模式的特点以及由此造成的两种理想反应器内温度、浓度、反应速率分布的区别,进而影响到反应器的生产能力和反应的选择性;反应器的教学模型———物料、热量衡算式,在不同反应器不同操作方式下的建立方法;理想反应器的设计计算;如何根据反应特性和反应器特性进行反应器型式和操作方法的评选等等。非理想流动部分的重点是:搞清楚反应器内返混的概念,返混与停留时间分布的区别和联系;停留时间分布密度函数E(t)和停留时间分布函数F(t)的物理意义;理想反应器的E(t)和F(t);如何由示踪实验数据确定E(t)或F(t)和分布函数的特征值,并由此确定非理想流动模型的模型参数。非均相反应主要是熟悉掌握气固催化反应和固定床反应器。非均相反应部分的重点是:如何判别是否存在内扩散影响,内扩期的影响程度如何,以及在有内扩散影响下如何确定催化剂的有效系数。
3.教材选取本门课程的讲授过程中采用以主要教材为主、参考教材为辅的理念,要求学生对大纲涉及内容进行系统、深入地阅读、思考。选用的主要教材为陈甘棠先生主编的“十一五”国家级规划教材《化学反应工程》第三版,该教材内容全面丰富。
(三)课程教学实施
1.参考考试大纲和历年试题,以基础知识为主组织教学根据考试大纲要求,本门课程自学考试试题侧重于检验基本概念、基本原理和基本计算方法的理解掌握和灵活应用的程度。试题面覆盖各章,但体现重点章节。体现对内容了解、理解、掌握三个深度的要求。另外,根据对前几年本课程自学考试的试卷的分析,发现有相当部分的题目考查的都是基础知识,所以基础知识是根本。教学过程中,注重基础知识的讲授。通过对基础知识的深入讲解,使学生较好掌握基础知识并在此基础上能举一反三。如:化学反应速率的表达式,贯穿反应动力学的基本知识,形式虽然相对简单,但根据条件的不同,会有多种变化形式,讲解时要求学生把握基本,再依据所给条件进行相应变化,以期达到融会贯通的效果。授课时,要求学生按章做读书笔记,理出主要的概念、原理、公式和方法。
2.注重习题的训练学习反应工程者,往往能看懂书上的概念,但不会做题目。因而必须尽可能多做习题。首先可从看懂教材中例题入手,然后可以选择一些反应工程例题与习题书上的例题进行试做,将结果与题解对照。在独立解题时,对于计算复杂的题目,可以只列出解题思路。同时,由于实际考试时的题型分为选择题、填充题、名词解释、简答题和计算题等多种形式,学生做习题时也要多接触各类题型;学生做过习题后,教师对典型的题型进行集中讲解,以帮助学生理清不同题型的解题思路和掌握相应的解题方法。在总复习阶段,教师详细分析讲解一到两套模拟试题,学生独立完成几套模拟试题的练习是非常重要的环节,可以让学生清醒了解自己对课程知识的掌握程度,利于复习提高。
3.传统授课方式和多媒体教学相结合采用多媒体技术,能用图、文、声、像和动态视频等效果直观地把传统媒体技术条件下难以表述的现象与过程主动而形象地显现出来,所以采用多媒体技术来辅助教学,通过形象的手段来表达抽象的内容,往往可以收到事半功倍的效果。由于本课程涉及的内容相对抽象,学生开始学习时,往往难以理解和掌握。采用形象的多媒体教学,能加深学生对知识的理解和掌握,起到较好的效果。如对于各种反应器的型式和结构、流动模型、气固相催化反应步骤等知识点,采用多媒体动画能帮助学生更形象、直观地理解所学内容。
4.培养学生自学能力高职教学要求学生识记的比重相对较大,理解掌握的内容相对较少,学生分析解决实际问题的能力相对较差,习惯被动地接受知识。“化学反应工程”课程的知识理论性相对较强,处理问题时要求学生有较强的独立思维和抽象思维能力。因此,课程的讲授时注重对学生思维能力的培养。进行课程讲授时根据教材的特点,对教材要点、难点、关键之处罗列提纲,通过设疑、引读,引导学生养成预习、自学的习惯。同时,由于时间的关系,课程讲授时相对较快,会有部分学生跟不上节奏,这样就要求学生在课后能养成自学的习惯,能根据自学考试大纲的要求,结合教师的讲授,有针对性地进行自学。
二、课程教学效果
通过以上对“化学反应工程”课程的教学实施,学生基本能较好地掌握课程的基础知识和内容,除个别学生因后来中途缀学外,绝大部分学生都能顺利通过自学考试,从而达到了教学目标。图1为本校“化学反应工程”自考近年来的通过率,全省平均通过率为65-70%左右。从图1可以看出,本校“化学反应工程”的自考通过率高于全省平均水平,课程教学取得一定的效果。
三、结束语
本文介绍了3个化学小发明。第1个是外置药桶型泡沫灭火器,它可以反复使用并可随关随停;第2个是新型启普发生器,它适用液体和液体反应随用随制气体;第3个是冰雪天汽车上坡防滑橡胶履带,它利用化学反应放热解决了雨天上坡路面湿滑的问题。
生活中一些看似难以解决的问题,通过细致观察,理智分析,就会捕捉到一闪即逝的灵感,找到巧妙的解决方法,经历探究过程中无数次的失败或成功,会感受到小发明的无穷魅力。
1外置药桶型泡沫灭火器
正常的泡沫灭火器内有两个内胆,分别盛放两种液体,它们是硫酸铝和碳酸氢钠溶液,两种溶液互不接触,不发生化学反应。需要工作时,把灭火器倒立,两种溶液混合在一起,就会产生大量的二氧化碳气体,如图1所示。其化学反应方程式为:Al2(SO4
传统的泡沫灭火器平时不能碰倒,否则就会发生化学反应,直至泡沫灭火器内部材料用尽。笔者的改进就是在桶盖上安装外置药液瓶,内部改进为3个室,上面一个为NaHCO3盛液室,另一个为Al2(SO4)3盛液室,最下部为反应室,模型如图2所示。
使用前封闭输液开关,安装两个外置药桶,一个装满碳酸氢钠溶液,另一个装满硫酸铝溶液。根据化学反应条件,碳酸氢钠药桶的体积大约是硫酸铝药桶体积的6倍。使用时,打开输液开关,液体进入各自的盛液室,拨动单向门联动开关,液体进入反应室开始剧烈反应,通过导管喷出气体,单向门可以利用反应室气压控制液体流入速度,防止压强过大引起爆炸。需要停止时,封闭气体出口,单向门开关封闭液体,药液不进入反应室,反应停止。长期不用时,关闭联动开关及输液开关即可。
2新型启普发生器
实验室常见的启普发生器要求是块状固体与液体反应制备气体,利用气压升高使固液分离,从而使反应中止,以达到随用随制,随关随停的效果。其原理如图3所示。
笔者设计的启普发生器结构如图4所示。容器分上下两室,上室A盛液体,下室B可放置固体或液体。上下室通过一根倒U型管连通,通过虹吸现象可以使A室液体滴入B室,当化学反应产生的气体越来越多时,气压使液体不再滴入,反应停止,达到控制反应的效果。
短管下安装一个浮沉子防止气体进入A室逃逸。浮尘子上部为锥形容器(上部封闭一些气体,下端开有小孔),下部为镂空小球,中间由细线相连。当加装A液体时,浮沉子上浮,液体透过镂空小球进入U型管滴入B室,开始化学反应制备气体;当关闭气体出口时,B室气压高于锥形瓶内气压,液体通过小孔进入锥形瓶,浮尘子由于重力增大下沉,封闭U型管,防止气体进入上层容器。
这种新型启普发生器,不但可以完成传统启普发生器液体与固体反应制取氢气、二氧化碳、硫化氢等气体实验,也可以完成液体与液体反应制取二氧化硫、二氧化氮、一氧化氮、氨气等气体实验。
3冰雪天汽车上坡防滑橡胶履带
一场冰雪过后,高架桥上坡路面摩擦力迅速变小,部分汽车开不上去,造成道路拥堵。传统解决办法是撒盐化雪或铺设草垫,不但污染环境而且腐蚀桥梁。笔者设计的防滑橡胶履带可由工程车铺到引桥上,防滑履带下安装遇空气自发热的化学药品,融冰后可以紧贴路面,天气转暖后由工程车收回,装上发热材料反复使用,其模型如图5所示。