发布时间:2023-11-14 10:28:47
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的生物医学成像技术样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:医学成像技术;翻转课堂;教学模式;创新性人才
基金项目:南京邮电大学教学改革项目(JG03215JX87)
中图分类号:G642
一、引言
翻转课堂教学模式是一种以学生自主学习,老师指导辅助的一种新颖的授课模式。随着互联网的普及和计算机技术在教学领域的应用,使得“翻转课堂式”的教学模式被应用到很多国内外的教学实践中,并取得了良好的教育效果。由于课程性质的不同,翻转课堂教学模式被进行了不同程度的延伸和改变以适应不同的课程性质与教学目的。因此,我们针对具体课程教学过程中存在的问题进行授课模式的探索,将翻转课堂教学模式的思想应用到实际的教学实践中,探讨结合翻转课堂教学特点的课程设计及应用。
二、当前课程中存在的问题分析
《医学成像技术》是生物医学工程专业必修的一门重要的专业基础课[1-3]。该课程针对临床广泛使用的CT、核磁共振、超声等医学成像设备的成像原理和基本成像算法进行了系统化的讲授。其内容既包括理论公式的推导,又含有算法程序设计的讲解和实验,为在医学图像处理领域学习的本科生的就业和继续深造打下了坚实的基础。该课程包括成像原理部分和图像处理实验设计两大部分内容,是一门能够直接应用于工程实际的技术课程。关于成像原理部分,现有的课程教材内容学科性、理论性较强,所涉及的学科知识点较复杂和概括,学生学习该门课程的原理部分一般只能针对课本中所给出的数学模型和数学公式对成像算法进行比较浅显的表层理解。关于图像处理实验部分,该课程教材给出了两个算法设计实验,学生针对这两种算法进行简单的编程实现,这使得学生形成了一种固有的实验思维,对编程能力以及算法理解存在着片面性和局限性。因此,如何能够使学生通过这门课程的学习,更好的理解和掌握医学成像的原理和技术方法,使学生能够跳脱固有的思维定式,运用已掌握的知识解决遇到的医学图像处理问题成为这门课程的授课重点。
三、翻转课堂模式在实际教学中的应用
翻转课堂的学习模式在现代的教学应用中一般是让学生在课前利用丰富的网络教学资源在教师的指引下,按照一定的学习主题,阅读相关的背景资料,尝试对知识进行理解,并在实际的课程学习中,带着之前学习所产生的疑问与授课老师进行探讨和分析。这样的学习模式有助于帮助学生形成良好的学习态度,帮助学生驾驭复杂而系统的学科知识。
由于本课程涉及到的理论背景知识复杂,学科专业交叉等特点,我们从课件设计,本专业的学生分析以及教学实践三个方面来进行授课模式的构建研究。
(一)课件设计
针对本课程的教学重点和实际要求,通过对国内文献调研和国外相关课程教材的学习研究,我们发现运用丰富的计算机工具和多媒体设备可以很好地完善医学成像教学课件的理论知识内容。普遍性的单一的演示文稿教学课件往往会使学生的注意力下降,单纯的文字说明并不能让学生对课程本身产生浓厚的学习兴趣,特别是在成像原理部分关于公式的推导和分析很难让学生有一个深刻的理解和认识。因此,通^动画演示、视频讲解等多媒体辅助,可以使数学公式变为画面直观的呈现给学生,这种形象的说明能够充分的表现出原理部分的基本特性,更有助于学生的理解。
(二)学生分析
生物医学工程专业是一门具有高度综合性的交叉学科。作为生物医学工程专业的学生,我们侧重培养学生自主学习的能力以及发散性的思维,提高锻炼学生发现问题,分析问题和解决问题的能力。而将翻转课堂理念应用于该专业学生的专业课教学中,可以更好的提高学生的综合技能,使即将步入社会的本专业学生能够更快更广地适应社会的需求,也使得进一步深造的学生具备更强的自主科研能力。
(三)教学实践
本课程的教学实践环节分为课堂教学和课内编程实验教学两部分。在实际的课堂教学实践环节中,通过结合翻转课堂教学模式,我们对《医学成像技术》课程的教学过程进行调整。首先,在教学过程中,学生以小组的形式对分段知识点进行自学研究并制作出PPT进行公开发表,这些PPT可作为课后的复习补充材料,在对已经学过的知识点进一步巩固和深化理解,同时,由于在实际教学活动中,安排了相应的课题发表环节,使得学生的口语表达能力和团队协作能力得到了提升。
四、结论
《医学成像技术》课程具有学科交叉融合、知识点抽象、内容枯燥等特点,通过借鉴翻转课堂教学模式,本课程的教学流程和授课模式改变了传统教学模式中教师单纯利用单一教学课件教学的授课模式,充分调动学生的学习自主性,利用为课件中添加演示动画等影音资料等方式将枯燥的专业理论知识变得既生动形象又简单易懂,使学生既能够便捷的进行有目的地理论知识学习,又有利于培养对于实际问题的解决能力。另外,在翻转课堂教学模式下的课件演示动画展示及综合实验程序设计等都能够更真实地反映学生对知识点的掌握程度。
翻转课堂教学模式与各种其他教学模式一样都同时具有先进性和局限性。翻转课堂教学模式在提高学生自主学习能力等方面有一定优势。然而,这种教学模式对课程、教师、学生以及学校软硬件的配备上都有一定的要求,并不是所有的情况都能够适用翻转课堂这种教学模式。因此,在翻转课堂教学实践中,我们要选择合适的课程、教师、学生和学校,要把握好翻转课堂的“度”,尽可能地发挥传统课堂教学的优势,避免由盲目运用翻转课堂所带来的不利影响,从而更有利地促进教育改革的深入发展。
参考文献:
[1] 梁高峰,景爱华,宋卫东等.现代医学成像技术课程教学的改革和实践[J].医教科研,2014,11(24):76-78.
[2] 戴修斌,王俊,晏善成等.医学成像课程教学改革探讨和研究[J].时代教育,2011,7(9):36-38.
麻省理工学院研究生奥特克莱斯特・古普塔表示,当光子从墙上反弹并射在室内拐角处暗藏物体上被反射回来时,利用光子环绕和反弹的时间数据,他们能够获取有关物体几何形状的信息。
先进光学系统主要由超快激光器和两维超快扫描照相机组成,它们的工作频率可达每秒万亿次。科学家用它们能在1 s内拍摄数10亿张图像,通过分析反弹光子的运动状况“看到”室内拐角处的物体。
超快扫描照相机与其他照相机不同,它是根据光子进入照相机的时间来成像。古普塔说,这样的成像方式为人们提供了了解光子需要多长时间被反弹回来的良好途径。如果在拐角处存在某种物体的话,光子返回得越快则进入超快扫描照相机的时间就越早。他们用超快扫描照相机捕捉和计算光子数,每张图像上有3个或更少的光子。通过快速大量的成像来生产扫描图像,帮助他们决定光子传输的距离(以cm计算)。当数据收集完成后,他们便能了解拐角处暗藏物体的基本几何形状和三维成像。
新的成像技术具有众多潜在的应用,其中包括在救灾方面的应用。古普塔认为,如果有房屋倒塌,新技术能够帮助救灾人员知道废墟内是否有人存在。事实上,新技术几乎适用于各种各样的灾害现场,特别是需要了解内部具体情况以及角落处是否有人的火灾,火灾的危险程度以及有害环境,由此人们不会冒险派人进入燃烧的房屋内,新技术可以极大地减少救灾人员可能面对的威胁。
关键词: 新专业建设 学科发展 兴趣小组 生物医学工程
生物医学工程是一门新兴的交叉学科,综合生物学、工程学和医学理论和方法,在各层次上研究生物系统的状态变化,并运用工程技术手段解决临床医学中的关键问题。要求学生掌握宽广而扎实的电子学、生物学、医学理论基础,能在理、工、生、医等学科高度交叉中进行前沿科学研究、知识创新,产学研结合,并推动相关科学技术发展,以满足我国对生物医学工程领域高级人才的需求。生物医学工程属于工学门类,是生物医学工程专业一级学科。
本学科是利用生命科学、医学、电子信息科学等领域的最新研究成果用于生物信息工程、生物电子工程、大型医疗仪器系统、现代医疗监护系统等领域的科研工作。工程硕士学位授权单位培养从事生物医学信息检测、医用仪器、医学影像、生物电子学、生物医用材料等方面研究开发、生产制造、检测与控制、管理与维修的高级工程技术人才。生物医学工程领域研究和人才培养侧重于生命科学、电子信息科学、医学等的交叉和渗透。该领域是生物医学信息、医学影像技术、基因芯片、纳米技术、新材料等技术的学术研究和创新基地,是与21世纪生物技术产业形成和发展密切相关的工程领域,是关系提高医疗诊断水平和人类自身健康的重要工程领域。
天津工业大学生物医学工程专业是一个年轻的、处于高速发展中的理、工、生、医交叉融合的新兴学科方向。生物医学工程专业作为电信学院的新兴专业,近年来发展迅速,有较大的发展潜力。专业下设5个实验室,医学仪器及设备实验室、医学成像及光谱成分分析实验室、生物医学电子学实验室、医学建模与仿真实验室、膜片钳实验室,拥有一批踏实肯干、敢于创新、勇于攻关的年轻科研人员,并将不断吸引其他相关学科的硕士、博士研究生、博士后等进行学科交叉的研究工作。科研方面利用人体信息检测技术与智能服装相结合,设计出检测、监控、调节人体状态的一体化智能服装;膜片钳方向主要进行生物物理和生物化学方向研究,同时与天津大学和天津各大医院开展密切合作,在医疗仪器研制和临床实验等方面积累一定的经验和成果。
本专业开设的主要课程有:C语言程序设计、电路理论、模拟电子技术、数字电子技术、大学物理、分析化学、高频电子技术、医学基础、工程光学、信号与系统、数字信号处理及DSP技术、通信原理、嵌入式系统、生物医学电子学、生物医学光子学、医学成像新技术、无线传感网络、生物医学仪器设计基础等。本专业毕业生可以在国家机关、医院、国防、科研机构、学校、工厂等企事业单位从事医疗产品设计、研发和管理工作,服务于天津医疗产业联盟的发展需求。本专业学制四年,学生毕业后可获得工学学士学位,本专业具有硕士学位授予权。
在本科生人才培养方面,本专业也是广开思路,在大一刚入学就进行思想教育,根据学生兴趣对其未来发展进行规划,由于本专业是一门新兴的交叉学科,因此学生喜欢的专业方向也不一样,有生物、医学、电子等设计物理、化学等不同方向的需求,学生提出的就业方向也不完全一致,区别于传统的专业学生,如电子信息工程专业学生虽然兴趣不统一,在专业方向上容易把握,而生物、医学、物理、化学等涉及的学科更多,对新专业教学提出新挑战。如何适应不同学生不同需求,我们系的老师进行了深入探讨。
关键词:稀土上转换纳米材料;生物医学;生物材料;发光材料
1稀土上转换纳米材料结构组成
UCNP通常由基质、敏化剂与激活剂构成。目前研究发现,以NaYF4作为基质,Er3+、Tm3+、Ho3+离子对共掺杂的材料是UCL性能最好且最具潜力的UCNP[3]。其合成方法主要包括水热/溶剂热法、溶胶凝胶法、热分解法等。其中,水热/溶剂热法和热分解法因具有灵活控制晶粒生长并且一次合成过程可以同时实现纳米材料的制备及表面修饰等优点,是目前应用最广泛的合成方法[4]。通过以上方法合成的UCNP通常由疏水性配体(油胺、油酸)封端,导致合成的材料水溶性和生物相容性差。为了将UCNP更好地应用于医学领域,对其进行表面功能化修饰尤为重要。主要方法包括配体除去、配体氧化、配体交换、表面硅烷化,以及两亲性聚合物包覆等方法。
2生物医学应用
2.1生物传感
UCNP具有多个发射峰且发射谱带窄,以及近红外激发下显示出低背景自发荧光的特性,使其特别适用于生物传感的应用。UCNP已被广泛用于检测各种生物变量(如温度、pH值)。支持温度传感应用的是波尔兹曼分布理论。Er3+是常见用于温度传感的镧系离子,Er3+在520nm和550nm处的UCL,分别对应2H11/24I15/2和4S3/24I15/2能级跃迁,因此可以用来检测温度。MaestroLM等[5]设计了第一台NaYF4∶Yb/Er纳米材料用于细胞测温,使用它可以精确检测单个癌细胞,如HeLa癌细胞的温度(25℃~45℃,区间区分低至为0.5℃)。Rodríguez-SevillaP等[6]将具有光热转化作用的金纳米棒与细胞共孵育后,向培养液中加入UCNP,最后采用800nm激光对金纳米棒进行辐照,使其产生热量,进而引起细胞周围温度的升高,通过UCNP的荧光值计算出相应位置的温度值。
2.2生物成像
2.2.1CT成像
CT是临床诊断和治疗中应用最广泛的成像技术之一,该技术基于X射线衰减系数。UCNP中一些镧系元素离子具有较强的X射线衰减能力,所以其可作为CT造影剂。在镧系元素中,镥具有最高的原子序数。ShenJW等[7]将NaLuF4作为基质材料的UCNP应用于CT成像。其他研究者也对基于Yb3+的NaYbF4∶Gd/Yb/Er,NaYbF4∶Tm和基于Gd3+的NaGdF4∶Yb/Er的UCNP作为CT成像进行了充分研究[8,9]。UCNP为CT造影剂的构建提供新的原料来源。
2.2.2MRI成像
MRI是一种较新的医学成像技术,其扫描通常需要造影剂以提高灵敏度和准确度。在元素周期表中具有最高数目未配对电子的Gd3+常用作MRI造影剂。Gd3+与二亚乙基三胺五乙酸(diethylenetriamine-pentaaceticacid,DTPA)的螯合物是临床上最常用的造影剂之一[10]。研究发现其造影剂在体内释放游离Gd3+具有高毒性,将Gd3+离子掺入UCNP中可以显著降低释放从而减少毒性[11]。ZhangH等[12]研制出用于标记T细胞的超小型NaGdF4-TAT纳米探针,静脉注射24h后通过T1加权MRI可以灵敏地跟踪标记过的T细胞簇。BijuS等[13]研究出一种新型UCNPMRI造影剂(NP-PAA-FA),其可作为低于1.5TT1加权造影剂、3TT1/T2双重加权造影剂和超高磁场高效T2加权造影剂。该造影剂主要特征是通过改变磁场强度而改变造影剂的类型,此项研究将极大地推动MRI造影剂在医学领域发展。
2.2.3光学成像
UCNP已经引起了许多研究者对将其应用于光学造影剂的兴趣。典型的NaYF4∶Yb,Er可以在980nm激发下发出明亮的荧光,由于其声子能量低、上转换荧光效率高和发光颜色丰富等优点,已广泛用于小动物成像[14]。ZhangK等[15]通过酰胺化反应将纳米金刚石(nanodiamonds,ND)和NaYF4∶Yb,Er纳米颗粒结合,制备出UCNP-ND用于光学成像和细胞中药物递送的新型纳米平台,由于强烈的上转换荧光和pH响应性药物释放,UCNP-ND可以为可视化和肿瘤治疗中药物递送提供新的思路。
2.2.4多模态成像
常规的单个成像技术有其固有的限制和缺点。多模态成像可以弥补其缺点,使疾病在早期诊断阶段得到更加准确的信息,从而提高疾病的治愈率。MRI/CT双模态成像是最普遍的成像组合。JinX等[16]通过热解法首次合成具有优异的MRI/CT成像性能和相对低毒性的聚乙二醇(polyethyleneglycol,PEG)修饰NaGdF4∶Dy的纳米粒子。CT和MRI成像无法进行细胞水平成像,光学成像在细胞水平具有较高分辨率和灵敏度,但不具有较高空间分辨率和难以提供三维组织的缺点。因此,将荧光成像与CT和MRI成像相结合,可以获得组织和细胞级的高分辨成像。SunQ等[17]合成了具有优异MRI/UCL/CT三模态成像性能、较低毒性且无荧光淬灭的NaGdF4∶Yb/Er,Tm@NaGdF4∶Yb@NaNdF4∶Yb纳米材料。将多种成像相结合制备一种多功能成像探针在生物医学领域具有潜在的应用价值。
2.3肿瘤治疗
2.3.1光动力治疗
光动力治疗(photodynamictherapy,PDT)[18]是在激发光的照射下,光敏剂(photochemicalsensitizer,PS)被激发将氧气转化为活性氧,杀死癌细胞的治疗方法。其因具有微创性和时空选择性被广泛应用于肿瘤治疗领域。典型PDT由PS、激发光和氧气构成。常规PDT受到激发光穿透深度的限制,UCNP具有UCL性质用于PS的激活,从而提高穿透深度[19]。UCNP介导的PDT在深部肿瘤治疗方面已取得巨大成果。然而,缺乏肿瘤选择性而对正常组织不可避免的光毒性仍然是一个棘手的问题。LiF等[20]研究出肿瘤pH敏感光动力纳米材料(pHsensitivephotody-namicnanomaterials,PPN),由自组装PS接枝的pH响应性聚合物配体(pHresponsivepolymerligand,PPL)和UCNP组成。在正常血液pH=7.4时,PPN带负电,没有光活性,在肿瘤细胞外pH=6.5时快速将其表面电荷从阴性转变为阳性,并在肿瘤细胞内/溶酶体pH=5.5时进一步分解成单个UCNP,此过程促进聚集的PS解离成自由分子,而显著增强PS的光活性。在NIR照射下,PPN的UCL可以诱导酸性肿瘤微环境中游离PS的光激发,从而杀伤肿瘤细胞。体内和体外实验均表明,PPN可以克服传统PS不足作为潜在新型PDT用于未来癌症诊疗。
2.3.2光热治疗
光热疗法(photothermaltherapy,PTT)[21]是利用具有较高光热转换效率的材料作为光热剂,在NIR照射下吸收光能并转化为热能来杀死癌细胞的治疗肿瘤的新方法。由于稀土离子的消光系数较低,在直接光照下转化为热能的能力有限。而当其与较强消光系数等电位纳米粒子(如Au、CuS)耦合时,可提高PTT的有效性。QianLP等[22]制备出NaYF4∶Yb,Er@NaYF4@SiO2@Au纳米颗粒(粒径70~80nm)用于PTT可有效破坏人神经母细胞瘤细胞,显示出较好的抗肿瘤疗效。FanW等[23]将超小型CuS加入到UC-NPs@SO2纳米粒子表面制造出一种核心卫星纳米治疗(core-satellitenanotheranostic,CSNT)物质,基于CuS显著的PTT效应,CSNT可以在NIR照射下产生细胞毒性热,还通过掺杂的高-Z元素(Yb/Gd)作为放射增敏剂产生高度局部化的增强辐射效果。
2.3.3成像指导肿瘤治疗
近年来,随着纳米医学的迅速发展,集多功能为一体的可视化成像指导的肿瘤诊疗成为一个热点话题。研究发现UCNP可以同时实现肿瘤的诊断与治疗。YuZ等[24]研究出一种超小型具有良好靶向性并可在光学成像,MRI、CT成像下进行PDT的新型UC-NP[MNPs(MC540)/DSPE-PEG-NPY]。该UCNP对过表达Y1受体的肿瘤(如乳腺癌细胞)具有高靶向性,核壳MNP(MC540)可以实现优异的上转换荧光成像,其中掺杂Gd3+和Lu3+稀土离子可分别增强MRI和CT成像。其在体外和体内显示出良好PDT治疗效果。该纳米材料的研发将为临床中过表达Y1受体的肿瘤诊疗提供一个新思路。为了提高肿瘤治疗效果,研究者将两种或以上治疗模式集合于一体,实现疗效互补、协同作用以增强抗肿瘤疗效。LuM等[25]制备多功能纳米材料AuNRs@SiO2-IR795,实现集成的PTT/PDT和荧光成像,协同PDT/PTT对体外癌细胞抑制效率显著增高。
3总结与展望
(一)背景及意义
二十一世纪我国将面临人口众多、交通拥挤、医院容量有限,以及由于独生子政策导致的日益严重的人口老龄化等一系列严重的社会问题,远程医疗技术的发展可望为我们提供一个缓解上述问题的有效途径。最简单的远程医疗形式是通过PSTN(公共电话网络)进行心电(ECGs)的远程解释,但目前的远程医疗技术研究与试验则是伴随当前IT技术的发展而发展的一个范围更加广泛,意义更加深远的新兴领域。它是现代通讯技术和计算机与现代医学相结合的产物,它利用电子通讯及多媒体技术实现远距离医学检测,监护,咨询,急救,保健,诊断,治疗,以及远距离教育和管理等等。远程医疗旨在通过提供一种管理良好、高效和跨越时空障碍的全新医疗保健服务模式,最终达到共享医疗保健资源,降低医疗保健费用,提高医疗效率和质量的目的。另外,在战场救护,交通等意外事故危重病人的紧急处理等方面,远程医疗技术也有很大的应用价值!广义地讲,远程医疗是指医护人员利用通讯和电子技术来跨越时空障碍、向人们提供医疗保健服务。根据不同的应用,远程医疗又可分类为远程监护,远程治疗,远程会诊和远程教育等等。
(二)发展过程
最早的远程医疗雏形可以追溯到1905年Einthoven等人利用电话线进行的心电图数据传输实验。但真正具有一定实用价值的远程医疗系统在50年代才开始出现,该系统可以通过电话线和专用线传送简单的医学数据。而在70~80年代远程医疗开始利用电视系统传输医学图像,即以远程放射医学(Tele-radiology)为主。随着现代微电子学、通讯技术、计算机及网络技术的发展,在90年代人们开始实践与评估该系统在远程医疗咨询、远程教育、远程专家会诊等多方面的应用。近几年来,随着医用数字影象设备如CT、MRI、B超以及DSA等的迅速普及,促使越来越多的医院采用数字图像存储通讯系统(PACS,PictureArchivingandCommunicationSystem),逐步实现医院的无胶片管理,为普及远程医疗奠定了良好基础。当前,远程医疗系统技术的技术支持有:交互视频影像设备(interactivevideo),高分辨监视器(high-resolutionmonitors),计算机网络(computernetworks),蜂窝电话(cellulartelephones),高速开关系统(high-speedswitchsystems),以及以光纤和卫星通信为核心的信息高速公路等。需要说明的是,在目前的中国,由于网络的普及面仍然十分有限,在一些中小县城市,既缺少高水平的医疗专家又缺少足够带宽的信息网络,患者的经济能力也十分有限。在这种背景下,基于电话线的远程医疗服务在一定程度上满足了当前的需求,显示出了一定的发展空间,值得国内的医疗电子企业重视。
(三)适宜范围和初步的临床效果
远程医疗技术(Tele-medicine)最大的作用在于它对农村和不发达国家的那些得不到良好服务的人群提供健康护理服务。在这些地方,合格医生的缺乏是一个很大的问题。其他需要远程医疗的地方包括:边远的兵站,需要保密的地方,出院后病人的监护,家庭监护,病人教育,医学教育等。有些医学部门,如放射学(radiology),病理学(pathology)和心脏病学(cardiology),他们需要高保真的电子医务数据和图像为诊断服务,因而特别适合于采用远程医疗。随着远程医疗技术的成熟,它能够提供服务的医学部门和范围也会随之相应地增加。比如,以下这些领域的远程医疗实践正在逐步增多:矫形外科学(orthopedics),皮肤病学(dermatology),精神病学(psychiatry),肿瘤学(oncology),神经病学(neurology),儿科学(pediatrics),产科学(obstetrics),风湿病学(rheumatology),血液学(hematology),耳咽喉科学(otolaryngology),眼科学(ophthalmol-ogy),泌尿科学(urology),外科(surgery)等。总的来说,有关报告显示,远程医疗提供了医生与远端之间的可靠的高质量的数据和音频视频通信。通过将远程医疗和直接的医生诊断相比较发现,二者没有大的差异。这些初步的结果说明,远程医疗提供了与医院相当的服务质量。目前,远程医疗已被成功地用于直接的病人监护,它明显地改进了医生的诊断能力和对病人的处理选择。远程医疗在临床医学中的作用已被完全证实,它的使用情况已经超过了立法和行政部门的步伐。因此,在未来健康监护工业的发展策略中,远程医疗应是一个不可忽略的因素。一个重要的目标是实现两个“所有”:方便地实现所有的医学服务和面向所有的地方。
(四)远程医疗系统与信息技术
很显然,远程医疗(Tele-medicine)应当有许多不同的系统和技术要求(分级的)。但大致可分为两类:实时的(RealTime,RT)和先收集后处理的(store-and-forward,SAF)。对于RT交互模式,病人与现场医生或护理人员一起在远处,专家在医学中心。对于SAF模式,所有相关的信息(数据、图形、图像等)用电子方式传到专家处,在这里,专家的反应不必是立即的。在大多数情况下,几小时或几天后才能收到专家的报告。一种理想的远程医疗系统当然是同时具备RT和SAF两种模式,但显然这种复合模式意味着显著增加的费用。例如,一个理想的RT-SAF组合,需要在急诊室内或附近有一个基站,并在远处有多个对病人实施治疗计划的地方,那里带有诊断室或移动的监护单元。基站需要有控制系统或工作站、在线的医学数据库、视频相机和监护仪、微型耳机和话筒以及图形图像输入设备。在远端,需要有完全可移动的视频相机和监护仪、各种诊断设备、图形图像输入设备、PC或工作站等。如上所述,当前的技术可以使得远程医疗系统具有可靠的高质量的数据和视频-音频通信(在医学中心的医生和远端病人之间),能够提供与到医院就诊相当的服务。随着远程医疗的范围和广度的扩展,需要进一步关注的技术和临床问题包括:传输的图像、视频信息的知觉质量以及其他临床完善性所要求的程序;当前技术能够提供的检查的透彻性,以及远程医疗服务和当前临床常规检查的有机结合问题等。远程医疗当中的一个重要技术成份是通信系统,它的基本的传输介质是铜质电缆、光导纤维,微波中继,卫星转发。一个混合的网络可能是,卫星传送用于很远距离的情况,光纤用于视频图像,铜电缆传数据、信号和控制信息。RT、SAF两种模式的通信要求都可以预测。RT模式要求短时间内传送大量的信息,它强调的重点是传输、交换和交互的时间。它的决定性因素是容许能力(传输速率和带宽)。而SAF模式则对传输速率和带宽的要求不大。只要能将整块的数据传送就行。一般的多媒体远程医疗系统应具有获取、传输、处理和显示图像、图形、语音、文字和生理信息的功能。按照远程医疗系统的组成划分,它一般由三个部分构成:用户终端设备,医疗中心终端设备和联系中心与用户的通讯信息网络。不同的远程医疗应用,对通讯系统和系统终端设计又有不同的要求。相应的设备费用也依要求的不同而变动较大。
(五)相关的有待解决的技术问题
仍然有待解决的,与远程医疗全面、广泛地实施有关的关键技术问题包括:数码医院的建立,目前有些医院己有医院信息系统(HIS)和图像归档与通信系统(PACS—picturearchivingandcommunicationsystem)和DICOM(Digitalimagingandcommuni-cationsinmedicine)。医院现有的这些系统是远程医疗的重要组成部分,它们的扩展是建立远程医疗系统的一个有利条件。此外,还需要建立标准的医学信息库;开发功能可靠、操作方便的终端设备•以及接口技术问题,因为远程医疗系统涉及多种医疗设备与通讯系统的连接,建立通用的标准接口将会减少系统建立时的复杂程度和节省费用;系统加密问题,以确保医疗数据在通讯网络传输中的安全性,维护病人的隐私权;家庭以及偏远地区的宽频通讯问题,初期通讯网络的铺建应考虑到远程医疗的用途。目前,有关研究主要集中在:(1)人-机接口和通讯网络的研究,主要解决各种信息的有效上网和传送;(2)传感器技术的研究,目标在于研制有源、无线和小型的换能器,实现生理信号的方便而可靠、准确而无损的测量;(3)各种先进的数据与图像压缩方法的研究,在尽可能减低有用信息丢失的同时,达到尽可能高的压缩率,最终实现远程医疗数据与图形图像信息的的高效传输;(4)医学信息与数据传输安全问题的研究,为相应的立法等提供技术保证。
二、医学成像技术与三维医学图像处理
(一)医学成像技术
1895年德国物理学家伦琴发现了X射线,并被应用于医学,产生了以X光照片为标志的医学影象学。此后的整个20世纪可以说是医学成像的盛世。面对各种纷纷涌现的众多成像模式,我们不仅要问:这些成像技术各有何特点?它们的发展前景又如何呢?到目前为止出现的所有成像方法,几乎都与核或电磁有关。如果从利用的电磁波的频率高低上对医学成像模式进行分类,在静态场领域有电生理成像,低频领域有阻抗CT,高频领域有微波CT,光领域有光学CT,在更高的频率领域有X线CT。其中X线CT早已进入实用的阶段。此外还有利用磁场相互作用机制的磁共振成像技术(MRI)。加上最近受到重视的一些功能成像方法,如功能磁共振成(fMRI)和正电子发射断层扫描技术(PositronEmissionTomography,PET)等,如此众多的医学影象手段提供了大量的有关病人的各种信息,包括形态的和功能的、静态的和动态的等,被广泛应用于诊断和治疗,成为现代化中必不可少的手段和工具。
1•电阻抗断层成像技术
电阻抗断层成像技术(ElectricalImpedanceTomography,EIT)是近些年来兴起的一项医学成像技术。其基本思想是利用人体组织的电特性差异形成人体内部的图像。它通过体表电极向人体送入一交流电流,在体表不同部位测量产生的电压值,由此重检一幅电极位置平面的人体组织电特性图像。这种图像不仅包含了解剖学信息,更为重要的是,某些组织和器官的电特性随其功能状态而改变,因此图像也包含了功能信息在内。此外加上对人体几乎无创伤、廉价、操作简便等优点,EIT受到了日益广泛的关注。但由于受到数据采集系统和算法等因素的限制,目前该技术并不十分成熟,基本处于实验室阶段。EIT技术根据测量目标的不同可以分为两类:静态EIT和动态EIT。静态EIT以测量对象内部电阻(导)率的分布为成像目标;而动态EIT则是测量对象内部的电阻(导)率的相对变化量的分布为成像目标。由于动态EIT技术只需反映阻抗的相对变化量,相应地,其算法简便、快速,可以实时成像,而且系统对具体目标形状有较高的鲁棒性。虽然由于假设条件难以满足、推导过程不严格等缺点使得动态EIT的成像质量不高,但由于其对人体形状和电极摆放位置的适应性强、能反映变化的信息等优于静态EIT的这些优点,它已被用来进行临床研究。相信随着算法的改进和成像质量的提高,动态EIT有望在临床上发挥更大的作用。
2•电生理成像技术
电生理成像技术指基于体表电磁信号的观测,进行的体内电活动情况成像的技术。具体有心电磁和脑电磁问题两大类。但两类问题在技术上是密切相关的,它们分别是利用测量得到的心电图(Electrocardiogram,ECG)和脑电图(Electroen-cephalogram,EEG)来研究人体的功能。这里以脑电为例,其中又可以分为两个层次,一为脑电源反演,一为成像。在成像方面,人们希望能从头皮上获得的空间分辨率较低的电位分布推算出皮层表面上空间分辨率较高的脑电电位分布,因也称为高分辨率EEG成像。人们相继发展了等效源方法(Sidmanetal,1992;Yao,2000),有限电阻网络法(杨福生等,1999),和球谐谱分析方法(Yao,1995)。脑电源反演就是利用测得的头皮电位,推算颅骨内脑电活动源的空间位置的一项技术。其具体方法有非线性优化算法和子空间分解算法。在这些方法中,大都是以某一时刻的电位观测值为已知信息,唯有子空间分解算法是直接建立在一段观测记录之上,从而较好地同时利用了观测记录中的时间和空间信息,因而受到了广泛的重视(Mosher,1992;尧德中,2000)。电生理成像技术与其它的医学成像技术如CT、MRI等相比,具有其不可替代的独特功能。它检测的是生物体的自发(或诱发)的功能信息,是一种真正的非损伤性的成像技术,且可以进行长期检测,而fMRI等只能检测诱发的间接的功能信息。另外一个优点就是它具有很高的时间分辨率。目前的一个重要发展方向是,电生理成像技术与其它影像技术相结合(如EEG与fMRI结合),实现优势互补,以得到两“高”(高时间分辨率和高空间分辨率)的结果,帮助研究人员进行更精确的分析和判断。
3•微波CT
微波CT可以说是一种比较新的成像模式,它是1978年才被提出来的。它的基本原理是:利用电磁波的传输特性,通过测定透过身体的电磁波来重建体内图像。微波CT大体可以分为两大类:被动测定型和主动测定型。被动测定型也可以称为无源型,利用的是由生物体发出的属于微波范围的那一部分电磁波,如人体热辐射等,最终获得热图像(因此,类似的还有红外成像);主动测定型也叫有源型,是用外部入射微波照射生物体,然后利用透过微波和反射微波重构图像,获得的是形态图像。微波CT作为一种医学成像模式,它的主要特点是,同X-CT相比更容易查出癌变组织;与超声相比更有利于肺的诊断;不存在电离辐射的危险性。微波CT需要解决的最大问题是如何提高空间分辨率。要想提高分辨率,必须缩短波长,提高频率,但波长愈短其在体内的衰减愈大。同时,微波在介质中传播时产生的衍射和散射会造成重建图像的模糊。所以提高微波CT的图像分辨率是一件极为困难的工作。随着技术的进步和图像分辨率的提高,微波CT将很有希望成为新一代的医学成像手段。
4•光学CT
光学CT也将是21世纪的重要研究领域。其基本思路是将光输入待测组织,测量其输出,重建该组织。由于人体对可见光是屏蔽的,但对红外或红外波段的光有一定的穿透能力,利用它进行断层成像。光学CT大致可以分为内禀(Intrinsic)光学成像、光学相干层析成像、光子迁移技术成像等几种。内禀信号指的是,由组织活动(如神经元活动)引起的有关物质成分、运动状态的改变而导致起光学特性发生变化,而这种变化在与某些特定波长的光量子相互作用后得到的包含了这些特性的光信号。通过成像仪器探测到这些光信号的某一时间间隔内的空间分布,进而重建组织图像。无损伤内禀光学成像方法近年来正加紧研究,以期用于人脑功能的研究。光学相干层析成像,即将光学相干剖析术(OCT)用于成像,它是采用低相干的近红外光作为光源,采用特制干涉仪完成光的相干选通,这样接收到的信号就只包含尺度相应于相干长度的一薄层生物组织的信息。若同时加以扫描,就能得到三维剖析图像。OCT技术从提出至今虽然只有短短几年的时间,但已表现出极为诱人的应用前景。目前它已在视网膜及黄斑疾病的早期诊断,皮肤、肠、胚胎检测等领域发挥出巨大的作用。这种技术已成为国内外在生物光学方面的一个活跃点。利用灵敏的探测器和适当的重检算法,就可以确定测量组织的光学特性。通过检测组织的光学特性,可用于肿瘤诊断、代谢状态动态监护、药物分析及光动力学治疗等场合。光子迁移技术成像(PhotonMigrationImaging,PMI)利用的是在红光和近红外光谱区,生物组织的某些不同成分对于光的散射和吸收表现出不同特性,而且在不同生理状态下的组织光学参数也不大相同。高频调控的正弦入射光经组织传播后,由于吸收和散射延迟了光子行程时间,引起了相位和光子能量密度的变化,显著和精确的相位变化体现了吸收的变化。光学方法正处于迅速发展之中,一方面,与XCT、MRI等其它成像方法相比,光学CT具有价格低廉、运行安全,另一方面,它体积小重量轻,特征信号容易获得,技术发展成熟。光学CT还有一个吸引人的优势是,它在空间分辨力和时间分辨力这两个基本的成像性能上可以说是首屈一指,目前已达约5mm的物方象素和每秒25帧以上的视频速度。因而可以预料,光学CT会在医学研究和临床等方面发挥越来越大的作用。
5•正电子发射断层扫描技术
正电子发射断层扫描技术(PositronEmissionTomography,PET)作为一种传统的核医学成像技术,它的历史可以追溯到1932年,在那一年CarlAnderson在研究宇宙射线所拍的云室照片时发现了β+的存在;此后不久ErnestLawrence发明了可发射β+核素的回旋加速器,这些是实施PET的两个不可缺少的前提条件。PET的成像原理是,将由发射正电子β+的核素标记的药物由静脉注入人体,随血液循环至全身。正电子与人体内的电子相遇并湮灭产生两个背对背的γ光子,这对具有确定能量的光子可以穿透人体,被体外的探测器接收,从而得到正电子在体内的三维密度分布及这种分布随时间变化的信息。PET的标记药物很丰富,且这些核素的半衰期都很短,病人所受到的辐射剂量可以说是微乎其微,并可在短期内进行重复测量。尽管PET具有近乎无损的测量、三维动态成像、定量检测化学物质分布及实现真正的功能成像等独特的优点,但早期由于对短寿命核素认识的不足及探测技术缺乏等原因,直到1976年第一台全身(whole-body)PET才正式投入市场并应用于临床。此后PET才真正开始进入了一个蓬勃发展的时期。目前全世界已有上百家的PET中心,利用PET进行临床医学、基础医学、脑科学等方面的研究。在临床方面,主要用于诊断神经类疾病、心脏疾病、癌症等,也可辅助设计治疗方案和评估药物疗效,并可用于探讨一些神经类疾病的发病机制。因为各种精神类疾病,如癫痫、精神分裂症、痴呆等,以及脑肿瘤、脑血管病等,都将引起血流、葡萄糖和氧代谢的异常,PET即可通过测量这些生理参数来诊断疾病。同时,PET的独特优点也给神经科学提供了观测手段,被越来越多地用来研究人类的学习、思维、记忆等的生理机制,帮助人类进一步了解自身。因为给正常人不同的刺激(如光、语言等)或让其进行不同的活动(如记忆、学习、喜怒哀乐等),也将引起不同脑区域的血流和代谢的变化,进而帮助研究脑的功能。相信在不远的将来,随着PET技术的进一步成熟,PET将会成为诊断和研究上不可缺少的工具。
6•X-线成像技术
X-线成像技术可以说是在医院当中应用的最传统、最广泛的一种医学影象技术。X-线图像建立在当X-线透过人体时,各种脏器与组织对X-线的不同吸收程度的基础上,因而接收端将得到不同强度的射线,传统的做法是将之记录在胶片上得到X胶片。随着电子技术的发展,这种传统方法的弊端日趋突显出来。当X-线图像一旦形成,其图像质量便不能做进一步改善;不便于计算机处理,也不便于存储、传输和共享等。在评价20世纪X成像技术时,多数资深专家均认为影像的数字化是最新、最热门及最重要的进展。数字化成像可以利用大容量磁、光盘存储技术,以数字化的电子方式存储、管理、传送、处理、显示医学影象及相关信息,使临床医学彻底摆脱对传统硬拷贝技术的依赖,真正实现X-摄影的无胶片化。目前采用的直接数字化X-线影象的方法主要有两种:直接X-线影象探测仪(DirectRadiographyDetector,DRD)和平板探测仪(FlatPanelDetector,FPD)。DRD最早由Sterling公司申请专利,现已进入商品化阶段。FPD由Trexell公司研制成功。这两项技术的发展方向均是设法进一步提高分辨率和实时性。数字影像可以说是伴随着计算机技术的发展应运而生。1981年第15届国际放射医学会议上首次展出了数字放射新产品。进入90年代中后期,国外已经推出了多种新型的数字化X-线影象装置;传统X-线装置中的X-线乳腺影像设备也已数字化。到目前为止,市场上的数字化的X-线影像设备已占70%以上。可以预期,数字化的X-线影像设备将逐步成为市场的主宰,并将使21世纪的X-线诊断发生令人瞩目的变化。
7•磁共振成像(MRI)
在磁共振成像(MagneticResonanceImaging,MRI)领域,自从1946年哈佛大学的E•M•Purcell和斯坦福大学的F•Bloch发现了核磁共振现象并因此获得1952年诺贝尔物理奖起,直到70年代初,它一直沿着高分辨核磁共振波谱学的方向发展,成为化学、生物学等领域研究分子结构不可缺少的分析工具。1972年R•Damadian注册了第一个关于核磁共振成像的专利,提出了磁共振成像的思想,并指出可以用磁共振成像仪扫描人体检查疾病。1982年MRI扫描仪开始应用于临床。由于质子(1H)结构简单,磁性较强,是构成水、脂肪和碳水化合物的基本成分,所以目前医学上主要利用质子(1H)进行MRI成像。其成像主要利用磁共振原理,以一定宽度的射频脉冲磁场使具有磁性核的原子产生共振激发;被激发的原子核的退激时间的长短反映了磁性核周围的环境情况。通过测量生物组织退激过程中磁化强度的变化,即可获取反映内部结构的图像。磁共振成像由于其空间分辨率高、对人体危害性小、又能提供大量的解剖结构信息等优点而被广泛应用于临床诊断。随着技术的发展和需求的提高,动态成像或功能成像是未来世纪MRI的研究方向(functionalMRI,fMRI)。一个成功的应用是用外面的造影剂或内生的血氧度相关效应(BOLD)描述视觉皮层的活动。BOLD的成像原理是基于血红蛋白的磁化率随脱氧过程而急剧变化。在静脉血管内脱氧血红蛋白浓度发生变化时,会在血管周围引起磁场畸变,而这种变化可以被探测记录下来。在功能神经科学研究领域中,BOLD成像有很多优点。这类研究完全非侵入性,产生的图像数据与解剖结构的数据是完全配准的。BOLD技术已经发展得比较好,它在解释大脑在正常和病理状态的功能方面很有前途。迄今为止,fMRI虽然只有短短几年的历史,但理论与实验都已取得了许多有重要意义的结果。它的最大优点是无损伤(不用外源介质),可以直接进行反复的非侵入性的功能测量。与同样属于功能成像的PET相比,fMRI则是更新的技术,成像速度比PET快,而且提供了更好的空间分辨率。fMRI未来的发展方向是,一要进一步加强对fMRI信号的实质的认识和理解,这是基本的前提。另一方面,从实验设备的硬件和软件的结合上进一步提高灵敏度和分辨率(包括时间分辨率和空间分辨率),这是核磁共振现象的本质决定的一个永恒的研究主题。除了以上与电磁或射线相关的成像技术外,还有基于超声波的多种结构、组织和功能的成像技术,这里不再详述。
(二)三维医学图像处理
医学图像处理是指对已获得的图像作进一步的处理,其目的或者是使不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等。随着技术的发展,医学图像的处理已开始从二维转向了三维,以求从中获得更多的有用信息。三维医学图像分析所包含的研究问题很广,目前主要有:图像的分割、边缘检测、多模式图像和数据的配准(Registration)和融合(Fusion)、虚拟现实技术、图像的快速重建和显示、图像处理算法性能评估、信息集成(Informationintegration)和传输技术等。所有这些的研究都可以集中到如下两个方面:
1•图像的融合和可视化
医学影象技术的发展为临床诊断和治疗提供了包括解剖图像和功能图像在内的多种图像模式。临床上通常需要将同一个病人的多种成像结果结合起来进行分析,以提高医学诊断和治疗水平。比如在放射治疗中,CT扫描可以用于计算放射剂量的分布,而MRI可以很好地定位病灶区域的轮廓。常规的方法(如将几张图像胶片挂在灯箱上)使医生很难对几幅不同的图像进行定量分析,首先要解决的这几幅图像的严格对准问题。所谓医学图像配准与融合,就是通过寻找某种空间变换,用计算机图像处理技术使各种影象模式统一在一个公共坐标系里,融合成一个新的影象模式显示在计算机屏幕上,使多幅图像的对应点达到空间位置和解剖结构上的完全一致,并突出显示病灶或感兴趣部位,帮助医生进行临床诊断,制定放射治疗计划和评价等。近年来医学图像配准和融合技术的研究和应用日趋受到医学界和工程界的重视。对医学图像匹配方法的分类可以有多种不同的标准。1993年,VandenElsen等人对医学图像匹配的方法进行了分类,归纳出了多达七种分类标准。一般的匹配方法的实现步骤为:特征提取;特征配对;选取图象之间的几何变换、确定参数;执行变换。基于特征点选取的不同,匹配算法可以分为两种:基于外部特征的图像配准方法和基于内部特征的图像配准方法。基于外部特征的图像配准通常是在研究对象上设置一些标志点(如采用螺丝植入骨头方法固定立体定位框架等),使这些标志点在不同的影象模式中均有显示,然后以这些共同的标准点为标准对图像进行配准。这种配准方法因为不受图像畸变等因素的影响,所以精度很高,可达1~2mm,可以作为评估基于内部特征的图像配准方法的标准。但其植入式的特点会给患者带来一定的痛苦,一般仅限于手术室使用。目前的研究集中在基于内部特征的图像配准方法上,这种方法一般是用图像分割方法提取医学图像中相对运动较小的解剖结构,如点(血管分叉点等)、2D轮廓线、3D曲面等。用这些提取出来的特征对之间的位置变化和变形来确定图像之间的变换和配准。配准的精度取决于图像分割的准确性。这种方法优点之一就是其回溯性,即以前获取的图像(没有外标记点)也可以用内部特征点进行匹配。目前,基于内部特征的图像配准方法比较成熟并已广泛应用于临床。但目前大多数模糊动态图像的精确分割和特征提取仍是一个尚未完全解决的问题。最近又发展了一种直接利用所谓的基于体素相似性的配准方法,又称为相关性方法,它是直接利用不同成像模式的灰度信息的统计特性进行全局最优化匹配,不需要进行分割和特征提取。因此这种方法一般都较为稳定,并能获得相当准确的结果。但是它的缺点是对图像中的噪声信号敏感,计算量巨大。在目前出现的各种相关性算法,如互相关法(correlation)、联合熵法(jointentropy)、相对熵法(relativeentropy)等算法当中,临床评估的结果是相对熵法(又称为互信息法,mutualinformation)是最精确的。医学影像的三维重建和可视化也是一个值得关注的问题。常规影像如CT、MRI等得到的均为组织的二维切片,医生很难直接利用它们进行分析、诊断和治疗。三维医学图像的重建将有助于观察复杂结构的立体形态;有利于医生制定放射治疗计划;有助于神经外科手术的实施;有助于对不同治疗方案进行评估等。对三维图像重建算法的研究,近几年来国内外学者进行了许多探讨。目前通用的做法是,先从切片图像中提取出物体轮廓信息,重建三维结构,再由计算机图形学中的光线跟踪法(RayTracing),根据一定的光照模型和给定的观察角度、光源强度和方位来模拟自然景物光照效果,计算物体表面各点的灰度值,最终构成一幅近似自然景物的三维组织或器官图像。目前各种各样的图像所涉及的数据量越来越大,各种算法也越来越复杂,所以处理时间也较长,而用户则希望实时、快速地得到图像处理结果,及时用于诊断与治疗。因此,医学图像处理的加速也是一个主要的研究方向。为了提高系统的运行速度,当然有许多方法可以考虑。除了算法上的改进外,应用多处理器进行医学图像处理与分析的加速是一种不错的方法。在有些情况下可以直接利用DSP进行加速。
2•基于影象的计算机辅助治疗方法及系统
发展各种医学影象的最终目的就是为了更细致的了解人体的结构和功能,辅助医生对病人做出诊断和治疗,提高人类的生活质量。目前以此为目标的研究主要有:基于影象的三维放疗计划系统、立体外科手术仿真系统、医学中的虚拟现实系统等。在过去的放射治疗时,先有医生根据CT或MRI胶片上的定位标志点来计算病灶的三维坐标,然后根据病灶位置和形状布置焦点,经计算机计算出等剂量线,在灯箱上用打印输出的剂量线与胶片上的病灶进行对比,如不吻合则重新规划焦点。反复重复直到满意为止。最后计算出每个焦点的治疗时间。总的说来这个过程很不方便,而且可能会引起很大的误差。目前临床上开始采用的三维放射治疗计划系统则大大方便了肿瘤医师的工作。在整个治疗计划的计算机化过程中,可以说是涉及到了三维医学图像处理的各个环节,如图像配准与融合、轮廓提取、三维重建等。三维放疗计划系统的推出不仅提高了医生的工作效率,而且精度大大提高,是以后肿瘤治疗中心制定放疗计划的常规工具。今后放射治疗的方向是适形放射治疗(ConformalRadiotherapy,CR)。该方法通过旋转照射或静态多射野照射,使得高剂量区剂量分布的形状在三维上与靶区(病灶)的实际形状一致,同时尽可能地降低靶区周围的健康组织和重要器官(如脊髓)的照射量,从而大大提高治疗效果。CR由于能够调整射野内的射线强度分布,故又称为调强放疗(Intensity-modulationRadiotherapy,IMRT)。调强算法根据医生指定的限制因素计算每个射野的最接近医生要求的强度分布,是一个典型的多参数优化问题。1989年,英国科学家S•Webb首次提出采用模拟退火法求解最佳强度分布。此后各种调强算法可以说是层出不穷,成为当今放疗中的一个热点。随着多叶准直器技术(Multiple-LeafCollimator,MLC)的发展,医生可望给出单次肿瘤致死剂量,起到外科手术的效果。虚拟现实(VirtualReality,VR)就是力求部分或全部地用一个计算机合成的人工环境代替一个现实世界的真实环境,让使用者在这个三维环境中实时漫游和交互操作。VR是综合人机界面、图形学、传感技术、高性能计算机和网络等的一门新兴学科,涉及学科面广且发展十分迅速。VR在医学领域的应用前景非常广泛,Rosen认为,VR将构成最终实用的手术模拟器。随着医学成像可视化和虚拟现实技术的发展,科学家们已经有可能建立起一个具有部分人体特性的虚拟人体。由美国国家医学图书馆(NLM)发起的可视人计划(VisibleHumanProjects,VHP)正是基于这样的目的。虚拟人体可以提供模拟的诊断、治疗、计算机成像、内窥镜手术等等。例如在内窥镜手术中,外科医生通过观察电视屏幕来操作插入病人体内的手术器械。虚拟环境技术可大大改善这种手术过程。事实上,虚拟内窥镜系统(Virtualendoscopy)是目前发展比较快的一个方面。
三、网络化医学仪器人才的培养
生物医学工程专业的范畴很广,各高校的侧重点各不相同。我校本学科专业与其它高校相比具有明显的时代特色。我们一向以电子学、计算机科学为支撑平台,强调与生物医学、医疗仪器相结合,在医疗仪器的智能控制、管理方面有很强的优势。随着以上医学信息技术的发展,我们提出了依拓本校的优势专业如通信、计算机、自动控制、仪器测试等,在我校生物医学工程学科培养网络化、智能化医学仪器方向人才的设想。
(一)培养网络化医学仪器人才的依据
计算机及网络技术飞速发展,世界正进入一个数字化的时代。在医疗领域,数字诊断设备也逐渐成为一种新标准,被越来越多的医院和用户所接受。各大厂商相继推出数字X光机、CT、B超等,在一些发达国家,已经取代常规设备成为临床诊断的主流。医疗设备已经到了一个更新换代的时期。而DICOM标准的制订,则使医疗信息实现了网络模式的资源共享和远程传输。无疑,数字化、网络化将是21世纪医学发展的主流。而远程医疗系统则以其迅猛的发展势头为人们勾画出了一幅“让每一位医生都成为专家,让每一位患者都能请得到专家”的美好前景。社会的需求为高等院校的人才培养提出了新的要求,同时具有医学知识和网络技能的复合型人才将会受到社会的广泛青睐。“网络化医学仪器”作为本学科领域出现的新方向,在国内外没有现成的模式可以借鉴,为此我们提出了以下建设计划。
Design, Modeling and
Characterization of
Bio-Nanorobotic Systems
2011
Hardcover
ISBN 9789048131792
纳米机器人的研制属于分子仿生学的范畴,是根据分子水平的生物学原理为设计原型,在纳米尺度上应用生物学原理,研制可编程的分子机器人,是纳米机械装置与生物系统有机结合的产物。在生物医学上,科学家们利用纳米技术制造纳米机器人,让它在人的血管网络中漫游,进行巡逻和检查,尽早发现异常细胞,而且可以对人体内细胞组织进行修复。它不仅可以完成早期诊断工作,更重要的是可以充当微型医生而发挥治疗作用,解决传统医生难以解决的问题,如:杀死癌细胞、疏通血栓、清除动脉脂肪沉积物等。纳米机器人发展到现在大致分成三代:第一代,是把生物系统和机械系统有机结合的新系统;第二代,是由原子或者分子装配成的具有特定功能的纳米尺度的分子装置;第三代,可能是包含有纳米计算机的一种可以进行人机对话的装置。
纳米机器人代表了一种纳米级器件。在这个器件中诸如DNA的蛋白质和碳纳米管可以充当马达、机械接头、传动元件或传感器。当这些不同的组件组合在一起时,它们可以形成多度自由的纳米机器人,能够在纳米世界中对对象施加力以及进行操纵。本书重点讲述了两种纳米机器人的研究方法。第一种方法:结合虚拟现实的先进技术的多尺度建模工具(量子力学,分子动力学,连续介质力学)。为了设计和评估分子机器人的特点,本书提出了互动基于纳米物理的仿真。这种仿真允许在分子动力学模拟时带有实时力反馈和图形显示的操纵分子、蛋白质和工程材料。第二种方法:使用一种新的协同原型方法,具体表现为纳米机器人的多尺度模型与实验测量的耦合。本书通过5章来说明上述两种方法,1.纳米机器人组件与设计发展现状,主要介绍了纳米机器人设备结构、生物纳米技术设计的虚拟现实技术、建模和表征方法;2.生物纳米器件和纳米机器人设计和表征方法,主要讲述了生物纳米器件的设计和表征方法、纳米机器人结构的协同原型;3.生物纳米机器人结构的设计和计算分析,主要讲述了基于蛋白质的纳米弹簧的表征,基于蛋白质的纳米机械的多尺度设计和建模、DNA纳米机器人、用DNA激励的线性纳米管马达的设计和计算分析、药物输送中应用的多尺度平台的表征;4.纳米结构的表征与原型,基于直线轴承的NEMS表征,基于主管到主管碳纳米管梭旋转马达的设计, 通过碳纳米管的阿克物质传输和汽化;5.结论和展望,对本书的内容进行了总结,对纳米机器人的发展进行了展望。
本书以实现在纳米机器人系统内的最优纳米级运动为目标,研究了生物和人造分子结构的设计、组装、仿真以及原型,提出了一个新的基于DNA的纳米机器人、生物纳米执行器和基于碳纳米管的旋转纳米器件的概念,所提出的平台有助于表征新型药物输送系统和细胞膜之间的相互作用,是从事纳米机器人学研究的相关科研人员与工程师的很好的参考书。
作者Mustapha Hamdi和 Antoine Ferreira在法国布尔日国立高等工程师学校工作,主要从事机器人及医学成像技术研究。
杜利东,助理研究员
(中国科学院电子学研究所)
关键词:医学仪器;课程改革;虚拟仪器
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)15-0164-02
一、课程特点分析
生物医学工程是一门跨学科的相对较新的专业,它综合性强,在十几年的发展过程中,生物医学工程在生物、医学、工程各个领域都有了长足的发展,所涉及的领域也越来越广。但在国内外高校中,对于生物医学工程专业本科生的培养方式则一直秉持着用工程角度来审视生物/医学问题的理念。所以在生物医学工程专业的基础课程中,既有细胞生物学、人体解剖与生物学等生物医学课程,也有数字信号处理、单片机原理及应用等工程类课程。旨在用技术科学的概念和方法来解释和描述人体各层次的成分、结构和功能,以及人体各种正常生理功能与病理状态之间的差异,同时探索防病、诊断、治疗及功能辅助的具体技术和设备[1],因此《医学仪器原理及设计》课程一直是生物医学工程专业重要的特色专业课之一。
作为生物医学工程系的专业必修课,《医学仪器原理及设计》课程的教学体系的建立对于本专业学生专业知识的学习起着至关重要的作用。它涉及到生物医学工程与电子信息技术及仪器两个专业的知识交叉与融合,所以该课程的特色化建设对于一个学校生物医学工程的发展尤为重要。现代医学仪器在生物医学工程学科发展和现代临床的诊断、治疗中所发挥的作用是不可或缺的。从简易的数字血压计到大型CT(X射线电子计算机断层扫描)的结构,都是与现代医学电子技术密不可分的。因此,了解并掌握它们的工作原理、电路组成和设计原则,对促进学科、教学发展,保障学生的培养质量和提高自身的市场竞争力都具有重要意义。
同时,现代医学仪器又是现代工程技术的结晶。随着微电子技术和计算机技术的飞速发展,现代医学仪器的设计无论是内容、方法还是成本都发生了根本的变化。计算机与传统的医学仪器仪表的结合已成为一种趋势,这项技术来自于虚拟仪器的概念[2]。现代医学仪器系统应该是一个开放式的系统,在这个系统中,可以根据当前生物医学测量技术、生物医学信息处理技术、计算机技术和集成制造技术等的发展,随时改善其系统构成,从而使其永远是一个先进的系统。而借助于近几年发展起来的虚拟仪器技术,可以方便地实现这一目标。虚拟仪器强大的功能是传统仪器所无法比拟的:虚拟仪器是在通用计算机平台上,用户根据自己的需求来定义和设计测试功能的仪器系统。也就是说虚拟仪器是由用户利用一些基本硬件及软件编程技术组成的各种各样的仪器系统[3]。现代医学仪器的设计过程必将和虚拟仪器产生交集,所以医学仪器相关课程的传统内容已经远远不够,我们必须教会学生在虚拟仪器的平台上进行医学仪器的设计,这样,培养出来的大学生才能紧跟时展的脚步,掌握最新的科学技术。
杭州电子科技大学近年来在《医学仪器原理及设计》课程上做了一系列的探讨,在培养目标和课程设置上基本上有了一定的科学依据。然而在实际的教学过程中,我们还是发现了一些问题:《医学仪器原理及设计》课程知识点多,而且课程内容比较抽象,学生不易理解透彻;并且实践性强,需要进行理论与实践相结合的课程训练。同时,随着计算机技术的迅猛发展,传统的医学仪器设计方法也已经跟不上发展形式。因此,改变以往单一方式的该课程教学模式,建立一个由医学仪器基本原理介绍、不同种类医学仪器简介及设计原则、医学虚拟仪器设计构成的新的教学体系,是顺应现代仪器技术发展的趋势,可以最大程度地实现教学相长。因此我们对《医学仪器原理及设计》课程教学模式进行了如下的改革,通过改革,使医学仪器系统的发展不再拘泥于传统的医学仪器系统的框架,最大限度地满足现代生物医学工程发展的要求,使学生毕业以后能够在医学仪器的设计应用上有一个质的飞跃,更能适应社会需要。
二、课程改革的主要内容
1.教学内容的优化。医学仪器的概念非常宽泛,涉及到的内容也十分繁复。要在短短的48课时内讲授完所有的医学仪器相关知识是不现实的[4]。所以对于课程内容的选择就显得尤为重要。在研究了多个高校类似课程的内容设计之后,我们结合本学院专业交叉的特点,对课程的内容进行了优化。《医学仪器原理及设计》要在内容上做到点和面的结合,既要保证知识面广,同时又要重点突出,要有体现较宽专业综合理论和较强实践特点的课程内容。在目前高校常用的教材基础上[5][6],我们将课程内容进行整合与优化。从基本原理知识出发,了解生物医学信号的特点,通过数学建模方法的讲解,深入医学仪器的设计原则,最后详细介绍各类典型医学仪器,包括:基础生理信号(血压、心电)的检测仪器,临床监护仪器,治疗及恢复设备,医学成像设备,临床检测仪器等。此外,还涵盖了国际和国内关于医学仪器的认证和监管,电器安全评估以及现在医学仪器发展的方向等内容。
2.教学方式和教学手段的多样化。单一的教学方式无法满足这类专业特色课程的需求,所以我们在教学过程中采用以多媒体为主,板书为辅的教学方式。由于课程内容丰富,信息量大,需要借助多媒体的方式形象地展示各种图片与视频文件,充分调动学生的学习兴趣,提高学习效果[7]。而板书的融入可以提高学生对知识的理解和掌握能力,使其学懂学透,起到事半功倍的效果。
此外,为了充分调动学生的积极性,培养学生自主学习、归纳整理以及表达的能力,将学生分为5~6人一组,课外通过对任何一种医疗仪器的学习,在课堂上做一个10分钟左右的presentation,内容涉及该种医疗仪器的原理方法、使用过程、行业前景等内容。这种互动方式可以提升学生学习的积极性,同时直观地了解教学安排是否合理,效果是否明显,为教学改革提供依据。
3.实践环节的设计和加强。《医学仪器原理及设计》是一门理论性和实践性都很强的课程,单一的课堂讲授远远不够,为此,本课程采取理论教学与实验教学相结合的方式。具体来说,实践环节包括课堂实验和上机课程设计两个环节。课堂实验旨在让学生最直观地接触市场上的医疗仪器,在使用过程中体会学习过的原理知识,感受不同厂家的产品在细节处的差别,以及不同检测原理在测量同一生理参数时结果的区别。主要实验仪器包括:水银血压计,电子血压计,红外体温计,血糖仪,电子刺激器等。上机课程设计环节主要为虚拟医学仪器的设计。基于虚拟仪器的软件开发平台Labview(美国NI公司),使用图形语言,让学生4人一组,共同设计一个能够实现基本功能的医学仪器,并在全班同学前进行演示和讲解。通过这种课程设计,让学生切身体会一下虚拟仪器平台在医学仪器发展中的重要作用,同时在设计医疗仪器的时候,又把在课堂上学习的内容进行了综合运用,既扎实了知识,又锻炼了能力,为今后走向工作岗位奠定了坚实的基础。
4.建立合理全面的考核方式。以往单一的仅用期末考试成绩反映学生课程水平的方法已经不适用于《医学仪器原理及设计》这类综合性专业课。我们建立了一套多形式、多层面的教学评价方法,既检测学生对课程内容的掌握程度,又可以衡量学生的独创性、探索性和分析应用知识的能力。平时课堂表现、小组presentation的质量、课程设计程序的优劣以及期末考试成绩,均成为新考核体系中的一部分。
课程的考核方式和考核结果并不是我们追求的最终目标,在新考核体系的指导下,最大程度调动学生的积极性、巩固学习到的专业知识、锻炼学生的专业综合能力、公平评价每个学生的学习态度才是课程考核体系的不断完善的目标方向。考核不是最终的结果,但却是必不可少的一个重要手段。
三、总结
通过一个学期课程实践,我们发现,改革后的《医学仪器原理及设计》课程在多个方面都有了明显的进步与提高。新的课程安排在内容上体现了生物医学工程专业的多学科交叉,课堂内容的讲解和学生自主学习有效融合,实验课程让专业知识不仅仅局限于课本演示,虚拟仪器设计的训练紧跟现代医学仪器发展的脚步,全面提升了学生的专业知识和行业竞争力,为他们今后进入社会,从事相关行业打下坚实的基础。同时,学生对于这种新的教学模式十分喜欢,接受度很高,在实验报告上,经常可以看到他们这样写道:“喜欢这样的课程,很开心也挺有收获”;“第一次接触血压计,比课堂上讲解更直观”;“尝试了很多新东西,很有趣”,“既兴奋又倍感收获”……学生喜爱,教学效果良好,紧贴行业发展步伐,培养行业需要的人才,这正是我们高校课程改革的最终目的。
参考文献:
[1]赵佐民,周克元,冯天亮.我院生物医学工程专业设置《生物医学仪器》课程的意义和建设[J].广东医学院学报,2005,(23).
[2]俞铁岳,林建欢,黄宜坚.虚拟仪器和LabVIEW简介[J].福建电脑,2004,(2).
[3]季忠,秦树人.基于虚拟仪器技术的生物医学仪器系统[J].中国机械工程,2004,(15).
[4]王芳群,和卫星,李天博.生物医学工程专业“医学仪器”课程教学方法分析[J].课程教材建设,2010,(33).
[5]王成.医疗仪器原理[M].上海:上海交通大学出版社,2008.
[6]邓亲恺.现代医学仪器设计原理[M].北京:科学出版社,2004.
[7]吴水才,白燕萍,杨春兰.生物医学工程专业信息类课程教学内容与方法探讨[J].中国电力教育,2010,(10).
关键词:医学图像分析;实践教学;教学改革
一、课程背景
医学图像分析是一门医学影像与信息学图像处理相结合的课程。主要学习如何采用图像处理方法对医学图像数据进行增强、勾画、分割、识别等操作[1]。主要授课对象为医工结合专业如生物医学工程、医学信息工程等的本科生或研究生。其主要教学目标是让学生掌握医学图像的采集原理,各种不同类型的医学图像的特点,不同医学图像主要面临的问题,不同医学图像遇到的问题的传统解决方法,并启发学生思考新的解决思路[2]。近几年,由于计算机运算速度的进步以及机器学习算法的快速发展,医学图像分析发展迅速,在医学临床上应用越来越广,例如肺结节的识别、脑灰质白质的分割以及辅助诊断等。总之,医学图像分析在临床上扮演着越来越重要的角色。目前医学图像分析在产业界的发展迅速,相关企业不断涌现,国内目前相关企业超过100家,融资上亿的企业近20家。因此,该课程的重要性也逐渐突显。医工结合是医学与工科学科结合而产生的未来医学的重要发展方向。近几年,综合类大学纷纷创办医学院,其中医工结合是这些综合类大学医学院的重要方面,而医学图像分析又是目前医工结合的优秀范例[3]。然而,目前医学图像分析课程的教学存在重视理论讲述,忽略实践操作的现象。同时医学图像与传统自然图像存在着较大差异,例如信噪比低、图像维度更高、与自然图像纹理显著不一致等问题。因此,医学图像分析与传统图像处理课程存在较大差异。笔者在教学过程发现,学生在学习该门课程后,存在理论与实际脱节的情况。大部分学生反馈在进行课程学习之后,尝试将学会的图像处理方法用于实际医学图像分析时,遇到各种问题,例如:由于数据维度不一,传统二维自然图像处理方法无法用于三维或者四维的医学图像中;由于信噪比的问题,传统自然图像处理方法运用到医学图像上后效果不佳。因此,医学图像分析的教学应该与传统自然图像的处理课程有所区分,需要针对医学图像进行分析与教学。
二、现存教学问题分析
在教学完成后,通过学生反馈,获得的教学反馈问题如下:(1)课程中讲授的图像处理方法多基于二维图像,但医学影像中存在大量其他维度影像,如脑电信号为一维图像,CT、磁共振为三维图像,PET、功能磁共振为四维图像,不知如何处理;(2)课程讲授中出现的自然图像大多分辨率较高,而医学图像分辨率较低,将算法运用于图像分析后效果不佳;(3)构建辅助诊断模型时,自然图像样本量较大,而医学影像样本量相对较小,同时数据维度更高,构建出的模型效果较差。如图1所示,笔者分析与总结现存教学问题之后,认为主要是以下三个原因导致出现了上述教学问题。
(一)自然图像与医学图像存在差异
如表1所示,传统自然图像与医学图像存在较大差异,目前医学图像分析课程讲授的大部分课程内容与传统图像处理一致,涉及的医学图像多为与自然图像性质相近的二维X光图像或单层CT图像。这种差异导致课程所学算法难以直接用于医学图像的分析与处理。
(二)学生缺乏对医学图像特性的了解
学生在学习课程的时候对医学图像的采集过程以及图像特性不了解,导致难以对现有图像处理方法进行改进或者提出新的图像处理方法以适用医学图像。图2所示为一个典型的三维大脑MRI医学图像,该图像具有分辨率低、维度高等特点。
(三)缺乏与临床影像科医生的交流
本门课程的教学主要由图像处理相关老师完成,临床医生没有参与教学。这种缺失进一步导致学生对医学图像以及医学图像在临床上遇到的实际问题缺乏了解,难以提出真正解决临床实际问题的医学图像处理方法。
三、教学改革方案
鉴于目前医学图像分析课程教学存在的问题,笔者结合综合类大学医学院基础条件,提出以下五方面的教学改革措施,并设计了一套医学图像分析教学流程。
(一)增加医学成像原理教学
医学成像原理是一门讲解各种医学影像的采集原理、采集方法的课程。该课程可帮助学生深入理解医学图像的由来,从图像成像原理的部分深入理解各种医学图像的特性,例如脑电信号的位置坐标系统、磁共振图像的无标度特性、PET图像如何从四维图像转变为三维图像等。学生通过该部分理论的学习,了解不同医学图像的特点。
(二)图像处理老师与临床影像科医生携手教学
综合类大学医学院教学相对于其他学院的一大重要优势在于学院具有大批一线临床工作者。相对于学校教师而言,一线临床工作者对于目前医学影像在临床实践中需要解决的问题更为熟悉。临床医生参与教学,可进一步让学生了解自己所学知识可用于解决哪些临床实际问题。在了解到这些的基础上,学生能够理清今后工作中的实际问题,对实际问题有了进一步的了解后才能思考如何对所学理论方法进行融会贯通,并在此基础上进行创新改进。
(三)增加医学影像采集教学环节
在完成医学成像原理的理论教学之后,为进一步让学生理解医学影像采集原理及其特点,结合医学院条件,可安排学生进行各种医学影像采集的实践操作。在影像采集实践操作过程中,学生不仅能深入理解各种医学影像的成像原理,还能进一步了解到各种图像常见噪声的来源与特点,例如磁共振图像的运动伪影的由来及其特点。学生在进行图像处理算法学习之后,能够针对性地对各种不同噪声进行处理分析,或者在了解噪声特点的情况下,能够针对性地提出图像处理算法降低噪声的影响。
(四)结合
Octave进行实践算法教学传统图像处理是一门理论性较强的课程,近些年,该门课程的教学更多地提倡理论与实践融合。Octave是一个类似MATLAB的数学计算软件,其语法模仿了MATLAB。MATLAB是目前世界上最常用的数学分析软件之一,其具有强大的图像处理能力,是目前科研界常用的图像处理平台。Octave在继承MATLAB语法的同时,还具有免费开源的优点。在讲授完图像算法理论之后,将要求学生基于医学影像采集环节得到的医学影像数据,基于Octave进行编程实践,在实践过程中学生将切实感受到各种图像处理算法的作用,以及在医学影像数据上与自然图像不一致的效果,从而激发学生继续探索,对算法进行改进以适用医学影像数据。
(五)改变课程考核方式
基于实践教学的医学图像分析课程在考核环节应该更加注重考核实践操作[4]。笔者在教学过程中,最终考核环节题目设置为:基于课程讲授以及实践教学,提出一个医学图像问题,并给出解决方法。答题模板如表2。学生通过回顾与总结本门课程中的医学图像实践采集环节与后续图像处理算法理论,思考一个现实生活中会遇到的医学图像问题,最后选用合适的图像处理方法或者对现有的图像处理方法进行改进来解决该问题。上述考核方式注重考核学生“提出问题”与“解决问题”的能力。
(六)医学图像分析的实践教学流程总结
前面笔者提出了不同的医学图像分析课程的实践教学环节,最后对全部环节进行一个总结,提出一套医学图像分析的实践教学流程,如图3所示。希望上述教学模式能给具备相应条件的综合类大学医学院的医学图像分析课程教学提供一定的帮助与启示。
结语
通过总结与分析医学图像分析课程教学中遇到的问题与学生反馈,结合本单位的实际情况与优势,本文提出在医学图像分析课程教学中增加诸多实践环节,以提升学生对本门课程的认识,增强对医学影像原理及问题的深入理解,在此基础上培养与提高学生“提出问题”的能力。在图像处理教学环节,提出基于Octave的实践教学环节,在图像处理理论学习的同时,增强学生理论结合实践的能力。最终通过实践考核,考核学生“提出问题”与“解决问题”的能力,通过提出并解决医学图像相关问题达到对本门课程教学内容的深入理解,从而培养出能够学以致用,并能解决实际临床医学影像问题的学生。
参考文献:
[1]汤敏,张士兵,沈晓燕.医学图像处理与分析课程的实践教学改革研究[J].中国教育技术装备,2014(2):90-91.
[2]陈跃,杨建茹.医学图像分析实验教学改革的研究与实践[J].中华医学教育杂志,2004(03):45-46.
[3]黄忠江,姜增誉,陈文青,张智星.基于人工智能的医学图像分析在脑肿瘤中的应用进展[J].中国医学影像学杂志,2021(6):626-630.