发布时间:2024-01-04 15:14:37
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的重金属污染现状及其治理样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
[关键词] 重金属污染 土壤 水 防治
[中图分类号] X52 [文献标识码] A [文章编号] 1003-1650 (2013)08-0230-01
重金属对水体及土壤的污染形势是很严峻的,据资料显示,每年我国有1200万吨粮食收到不同程度的不同重金属的污染,直接经济损失超过200亿元,每年能多养活4000万人,并且这一数字还在逐年增长,这些污染大都是由于土壤或灌溉用水受重金属污染而造成,重金属污染有着较强的不可预见性,因此对其防治有很大的困难,而预防才是王道。
一、重金属的来源及其种类
1.重金属的来源
重金属的主要来源还是工业污染,当然,或多或少也有来自交通以及我们生活垃圾的污染,在工业污染中,来自化工行业的污染占了相当大的比例,其次就是发电厂、钢铁厂,最常见的就是工业中的三废:废水、废弃、废渣,三废当中含有大量的重金属及其化合物,不经处理便直接排放,直接导致水资源和土壤污染,当人们用了这种被污染的水去灌溉庄稼,在被污染的土地上种庄稼,就会严重影响庄稼的收成,重金属也就随植物链传到人类,对人们的健康造成了严重的影响[1]。近几年,有环保学者提出:中国的化工企业的工艺、设备、技术研发较落后,是造成污染严重的主要原因,而人为的环保意识以及地方保护环保意识的淡薄,加剧了污染,强化治理迫在眉睫。生产企业应放眼未来,倡导环保,化工生产过程尽量使用少污染和无污染的原材料。
2.重金属的分类
2.1汞污染
汞是一种唯一的在常温下为液态的金属,在自然界中普遍存在,一般动物植物中都含有微量的汞,因此我们的食物中,都有微量的汞存在,可以通过排泄、毛发等代谢,不影响健康。
但是,随着工农业的迅速发展,目前国内对汞的需求量还是很高的,问题在于这些重金属用完之后生成的其氧化物或杂质如何处理,过量的汞如何处理,这些都是问题的关键之处,据调查,每年因汞中毒而死亡的人数并不在少数,如何防范含汞废水进入农业用水系统,已经迫在眉睫,是我们不得不去面对的问题。
2.3铅污染
铅是一种柔软的白色金属,是我国最早发现的元素之一,很容易生锈,但不失光泽,铅在工业中最重要的用途就是制造蓄电池,因此,水资源和土壤中铅污染的主要来源就是人们对废弃蓄电池的随意丢弃,而铅的化合物,常被用于合成五彩缤纷的颜料,在铅的众多化合物中,最重要的就是四乙基铅,常用于汽油防爆剂,铅的毒性随量而增大,其主要是通过人的皮肤接触,或者是消化道、呼吸道等进入人体器官,铅含量多者可引起器官病变,铅的主要毒性表现在贫血,神经受到损伤或者造成肾功能不全,生活中的铅给我们带来了无限的色彩和快乐,但是食物中的铅却能给人带来痛苦。
二、重金属对水体及土壤污染现状
1.重金属对水体污染现状
水体中重金属污染物的来源十分广泛,最主要的是工矿企业排放的废物和污水。由于这些工厂排放的污染物数量大,分布范围广,因而受污染的区域很大,较难控制,危害严重[2]。重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害。在我国,最近的一起重金属污染事件是2011年3月中旬,浙江台州市路桥区峰江街道,一座建在居民区中央的“台州市速起蓄电池有限公司” 引起168名居民血铅超标,是近几年来浙江发生的最严重的一次重金属污染事件,其原因就是电池公司将含有大量铅的废水排入河渠,渗入地下,居民喝了地下水之后铅严重超标,而作为最大的洋垃圾市场,台州市每年从垃圾中拆解的价值高达200亿人民币,但是拆解之后的剩余物却随意丢弃,丢弃的重金属垃圾对空气和水资源造成了严重的污染。目前,我国的重金属对水体的污染正在逐年加剧,如若不采取措施,不过十几年的时间,我们将生活在一个被重金属污染的世界,想治理都治理不完。
二、重金属对水体污染的防治措施
1.加快含重金属废水废气治理
废水和废气是化工行业最普遍的污染物,也是和人类息息相关的一些污染,针对这些废水和废气,怎么处理成为了一个棘手的问题,对于废水的处理,目前,有三种最为让人接受的方法,物理处理法,即利用污染物的物化性质来除掉废水中的污染物,化学处理法,是指利用化学反应原理处理或回收废水中的溶解物或胶体中的物质,包括中和,氧化,还原絮凝法。最后一种方法是生化处理法,这种方法是指利用微生物在废水中对有机物进行氧化分解的新陈代谢过程,包括活性污泥法,生物滤池,氧化塘等方法。
2.强化含重金属固体废物污染防治
固体废弃物是化工三废中种类最多数量最大的一种污染物,其每年排出的数量有数亿吨,破坏了植被,排入水源,对农业用水造成了严重的污染,进一步转化就会进入大气,化工废渣的种类繁多,成分复杂,处理方法并不像废水废气那样有成套的系统和装置。而是根据其化学组成选用不同的方法,对于有机化工废物的处理,目前,采用较多的方法有热分解法,焚烧法和再生利用法,近几年发展最受欢迎的是再生利用法,将废物经过多次的回收利用,将其中有用成分提取出来,加工成其他产品。其次就是对无极废物的处理,其主要方法有3种,分别是可以作为二次原料资源,或者是提取其中的有用成分用于农业生产,对那些没有什么利用价值或者已经提取有用成分的部分废物,可以再加工为建筑材料。
三、结论
目前,我国重金属对水体污染已经相当严重了,尤其是化工行业,是最主要的重金属污染源中,如若不及时治理,将对国民经济造成严重损失,对人们的身心健康造成巨大的伤害,因此,解决重金属污染问题已经迫在眉睫。
参考文献
[1] 李然. 水环境中重金属污染研究概述. 四川环境, 1997(16): 18-22.
[2] 李振. 浅谈重金属水污染现状及监测进展. 企业论道.
关键词:土壤;镉污染;来源;危害;治理
中图分类号 X53 文献标识码 A 文章编号 1007-7731(2015)24-104-04
Abstract:As the development of industry,soil cadmium pollution have caused more and more concern.In this thesis,the pollution actualities,source,damage and management of soil cadmium pollution were briefly introducted,and the development direction of soil cadmium pollution management was discussed.
Key words:Soil;Cadmium pollution;Source;Damage;Managment
据2014年《全国土壤污染状况调查公报》显示,我国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧。其中,镉污染物点位超标率达到7.0%,呈现从西北到东南、从东北到西南方向逐渐升高的态势,是耕地、林地、草地和未利用地的主要污染物之一[1]。镉是众所周知的重金属“五毒”元素之一,具有分解周期长(半衰期超过20a)、移动性大、毒性高、难降解等特点,在生产活动中容易被作物吸收富集,不仅严重影响作物的产量和品质,而且可以通过食物链在人体的积累危害人体健康[2],例如,20世纪60年代在日本富山县神通川流域出现的“骨痛病”事件。针对我国镉污染现状,本文将从镉污染的来源、危害、修复治理等方面进行了论述,详细介绍镉污染这一环境污染问题,以期为我国农业的健康发展和镉污染土壤的治理提供科学依据,为后续研究提供参考。
1 我国土壤镉污染现状
我国于20世纪70年代中后期才开展有关农田土壤镉污染调查的工作,1980年中国农业环境报告显示,我国农田土壤中镉污染面积为9 333hm2,到2003年我国镉污染耕地面积为1.33×104 hm2,并有11处污灌区土壤镉含量达到了生产“镉米”的程度[3-4]。近年来,随着我国工业的发展,由于化肥、农药的大量施用,工业废水和污泥的农业利用,以及重金属大气沉降的日益增加,土壤中镉的含量明显增加,土壤镉污染状况越发严重,目前,我国镉污染土壤的面积已达2×105km2,占总耕地面积的1/6[5]。
从近年的有关研究来看,我国各地均存在着不同程度的镉污染问题。目前,我国土壤镉污染涉及11个省市的25个地区。比如,上海蚂蚁浜地区污染土壤镉的平均含量达21.48mg/kg,广州郊区老污灌区土壤镉的含量高达228.0mg/kg[6-7]。我国农田土壤的镉污染多数是由于进行工业废水污灌造成的。据统计,我国工业每年大约排放300亿~400亿t未经处理的污水,引用工业废水污灌农田的面积占污灌总面积的45%[8],至20世纪90年代初,我国污灌农田中有1.3×104hm2的农田遭受不同程度的镉污染,污染土壤的镉含量为2.5~23.0mg/kg,重污染区表层土壤的镉含量高出底层土壤几十甚至1 000多倍[9]。在大田作物中,镉是我国农产品主要的重金属污染物[10]。据报道,我国污灌区生产的大米镉含量严重超标,例如,成都东郊污灌区生产的大米中镉含量高达1.65mg/kg,超过WHO/FAO标准约7倍[11]。2000年农业部环境监测系统检测了我国14个省会城市共2 110个样品,检测数据显示,蔬菜中镉等重金属含量超标率高达23.5%;南京郊区18个检测点的青菜叶检测表明,镉含量全部超过食品卫生标准,最多超过17倍[6]。潘根兴研究团队于对2007年对全国6个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购的91个大米样品检测后,发现约有10%左右的市售大米存在重金属镉含量超标问题[12]。据报道,广西某矿区生产的稻米中镉浓度严重超标,当地居民因长期食用“镉米”已经出现了“骨痛病”的症状,严重威胁当地居民的身体健康[3]。以上研究结果表明,我国土壤受镉污染的程度已相当严重,土壤镉污染造成水稻、蔬菜等农产品的质量下降、产量降低,并且严重威胁到当地居民的身心健康,影响我国农业的可持续发展。
2 土壤镉污染的来源
土壤中镉的主要有2种来源,分别为自然界的成土母质和人为活动,前者为自然界中岩石和土壤镉含量的本底值,一般来讲世界范围内土壤镉平均值为0.35mg/kg,我国土壤镉背景值为0.097mg/kg,远低于世界均值[13-14]。而后者主要指通过工农业生产活动直接或间接地将镉排放到环境的人为活动,并且是造成土壤镉污染的主要途径,归纳起来污染途径主要有如下4个方面:
2.1 大气镉沉降 电镀、油漆着色剂、塑料稳定剂、电池生产以及光敏元件的制备等工业废气中存在一定量的镉,它们会和粉尘一起随风扩散到工厂周围,一般在工业区周围的大气中镉的浓度较高[15],较高浓度的镉可以通过降雨或沉降进入土壤。进入土壤中的镉,一部分被植物吸收,剩余的部分则在土壤大量积累,而当土壤中镉累积超过一定范围时,就造成了土壤的镉污染[16]。
2.2 施肥不当 在农业生产过程中为了获得高产,一般都加大农药化肥的投入,长期施用含有镉的农药化肥必然导致土壤的镉污染。据统计分析,磷肥中含有较多的镉,氮肥和钾肥含量较少,因此含镉磷肥的施用影响最为严重。我国磷肥生产所需磷矿石的镉含量虽然较低,在世界上属于较低水平,但我国磷矿石含磷量同样不高,因此需要从国外进口大量的磷肥[4]。据西方国家估算,全球磷肥平均含镉量7.0mg/kg,可给全球土壤带来约6.6×104kg镉[17]。韩晓日等[18]研究也发现,长期施用磷肥和高量有机肥能够增加土壤镉含量。由此可见,长期施用含镉的化肥会增加土壤的镉含量,给土壤带来严重的重金属污染问题。
2.3 污水灌溉 镀锌厂以及与塑料稳定剂、染料及油漆等生产有关工厂产生的工业污水中含有多种重金属,其中就有大量的镉,这些废水如不经处理或者处理不达标,废水中的镉就会随着污灌进入土壤,因此,在工矿和城郊区的污灌农田均存在着土壤镉污染问题。据统计,目前我国工业、企业每年要排放约300亿~400亿t未经处理的污水,利用这些工业污水进行灌溉造成了严重的重金属污染,污水灌溉已经是我国农田土壤镉污染的主要原因[8]。何电源等[19]在1987-1990年间对湖南省的农田污染状况调查也表明,农田土壤镉污染的主要来源是工矿企业排放的废气和废水。此外,大量堆积的工业固体废弃物和农田施用的污泥,也会造成土壤的镉污染[16]。
2.4 金属矿山酸性废水污染 金属矿山的开采、冶炼以及重金属尾矿、冶炼废渣和矿渣堆等,存在着大量的酸性废水,这些酸性废水溶出的多种重金属离子能够随着矿山排水和降雨进入水环境或土壤,可以间接或直接地造成土壤重金属污染。据报道,1989年我国有色冶金工业向环境中排放重金属镉多达88t[20]。
3 土壤镉污染的危害
镉是一种具有毒性的重金属微量元素,是人体、动物和植物的非必需元素,但它在冶金、塑料、电子等行业非常重要,通常通过“工业三废”等途径进入土壤。土壤中镉的形态有水溶态、可交换态、碳酸盐态、有机结合态、铁锰氧化态和硅酸态等,水溶性和交换态镉可以被植物吸收,并通过食物链进入人体富集,达到一定程度时会引发各种疾病,严重危害植物和人体的健康,且具有长期性、隐蔽性和不可逆性等特点。
3.1 镉对植物健康的危害 镉是植物生长的非必需元素,当镉在植物组织中含量达到1.0mg/kg时,会通过阻碍植物根系生长、抑制水分和养分的吸收等引起一系列生理代谢紊乱,如蛋白质、糖和叶绿素的合成受阻,光合强度下降和酶活性改变等,使植物表现出叶色减褪、植物矮化、物候期延迟等症状,最终导致作物品质下降和减产,甚至死亡[6,21-22]。张义贤等[23]研究表明,大麦种子在镉胁迫下,种子的萌芽率、根生长率均呈下降趋势,当镉浓度达到0.01mol/L时,种子萌芽率小于45%,且根不再生长。刘国胜等[24]研究表明,当土壤含有0.43mg/kg可溶态镉时,水稻减产10%,当含量为8.1mg/kg时,水稻减产达25%,并且,稻米的氨基酸、支链淀粉和直链淀粉比例发生改变,使水稻品质变差[4]。
3.2 镉对人体健康的危害 镉是人体非必需的微量元素,具有较强的致癌、致畸及致突变作用,对人体会产生较大的危害,镉一般通过呼吸系统和消化系统进入人体,在人体内半衰期长达20~30a。镉对人体的毒害分为急性毒害和慢性毒害2种,镉的急性毒害主要表现为肺损害、胃肠刺激反应、全身疲乏、肌肉酸痛和虚脱等;慢性毒害主要表现为对骨骼、肝脏、肾脏、免疫系统、遗传等的系列损伤,并诱发多种癌症[25-27]。例如,20世纪60年生在日本神通川流域的“骨痛病”,原因就是当地居民食用镉米造成的。因此,联合国环境规划署(UNEP)将其列为具有全球性意义的危险化学物质[28]。
4 土壤镉污染的治理方法
为了有效利用现有的土地资源,减少镉等重金属人体造成的危害,需要采取有效措施治理和恢复受污染的土壤。目前,有关镉污染土壤的治理方法有很多,主要有物理方法、化学方法和生物方法等。
4.1 物理方法 镉污染土壤的物理修复方法主要有排土、客土、深耕翻土等传统物理方法以及电修复技术、洗土法等。客土法就是将污染土壤铲除,换入未污染的土壤,去表土法就是将污染的表土移去等。传统的物理修复方法治理镉污染效果非常明显,如吴燕玉等[29]在张士灌区调查时发现去除表层土可使稻米中镉含量降低50%。然而,这种方法需要耗费大量资金、人力物力,且移除的污染土壤又容易引起二次污染,因此难以在大面积治理上推广。电修复技术,是指在土壤外加一个直流电场,土壤重金属在电解、扩散、电渗、电泳等作用下流向土壤中的某个电极处,并通过工程收集系统收集起来进行处理的治理方法。胡宏韬等[30]研究发现,当试验电压为0.5W/cm时,阳极附近土壤中镉的去除效率达到75.1%;淋滤法和洗土法是运用特定试剂与土壤重金属离子作用,然后从提取液中回收重金属,并循环利用提取液。据报道,美国曾应用淋滤法和洗土法成功地治理了包括镉在内的8种重金属,治理了2.0×104t污染的土壤,且重金属得到了回收和利用,而且整个治理过程中没有产生二次污染[20]。
4.2 化学方法 化学法是指通过在土壤中施用化学制剂、改良剂,增加土壤粘粒和有机质,改变土壤氧化还原电位和pH值等理化性质,使土壤镉发生氧化还原等作用,降低镉的生物有效性,以减轻对其它生物的危害[31-32]。目前,磷酸盐、石灰、硅酸盐等是化学法处理镉污染土壤中常用物质。Gworek[33]等在研究中发现利用沸石等硅铝酸盐钝化土壤重金属能显著降低污染土壤中镉的浓度。总体而言,化学方法具有操作简单、治理效果、费用适中等优点,缺点是容易再度活化重金属。因此,该方法适用于重金属污染不太严重的地区,对污染太严重的土壤不适用[4,20]。
4.3 生物方法 生物方法是指通过某些特定微生物、动物或植物的代谢活动,吸附降解土壤污染物质、降低土壤重金属生物活性的治理方法,具有土壤扰动小、原位性、不产生二次污染等优点,一般分为微生物修复、动物修复、植物修复3种。
4.3.1 微生物修复 微生物修复是指利用土壤微生物固定、迁移或转化土壤中的重金属,从而降低重金属毒性,主要包括生物富集和生物转化2种作用方式。生物富集作用指微生物的积累和吸附作用;生物转化作用指微生物对重金属的氧化和还原作用、重金属的溶解和有机络合配位等[34]。例如,吴海江[35]利用分离获得的菌株对镉的去除率高达60%,吸附量达54mg/kg;张欣等[36]在模拟镉轻度污染试验中通过施入微生物菌剂使菠菜植株镉含量平均下降14.5%。
4.3.2 动物修复 动物修复是指利用土壤中某些低等动物的代谢活动来降低污染土壤中重金属比例的方法。例如,Ramseier等[37]研究发现蚯蚓具有强烈的镉富集能力,当土壤镉浓度为3mg/kg时,蚯蚓的镉富集量可以达到120mg/kg。但由于低等动物生长受环境等因素的严重制约,该项技术在实际应用中受到了一定限制[20,28]。
4.3.3 植物修复 植物修复是指利用超富集植物吸附清除土壤镉污染的原位治理方法,具有实施较简便、投资较少、破坏小、无二次污染等优点,是一种环境友好型修复技术[20,34]。目前,全世界已发现500多种富集重金属的植物,其中部分植物对土壤镉具有强烈的富集作用,表现出对镉的选择性吸收,如芜菁、菠菜、烟草、向日葵等[12]。近几年来,我国在利用植物修复镉污染土壤方面取得了不少成果,例如,蒋先军等[38]研究发现印度芥菜、刘威等[39]发现宝山堇菜等属于镉超积累植物,这些发现都可以应用于镉污染土壤的治理与恢复工作。
5 展望
2014年《全国土壤污染状况调查公报》显示,我国土壤镉污染物点位超标率达到7.0%,镉是我国耕地、林地、草地和未利用地的主要污染物之一,土壤镉污染日趋严重。因此,要积极开展切实有效的管理控制、污染防治综合治理等,首先,从源头上控制镉对土壤的污染,采取清洁生产与资源循环利用措施,减少甚至避免各类镉污染物进入土壤环境;其次,加强镉污染土壤修复技术的研究,特别是植物修复技术和微生物技术;再次,发展联合修复技术,将生物修复与物理化学法、工程措施和农艺措施有效结合起来,开展多学科联合的生态修复。只有这样,才有可能修复已经被镉等重金属污染的土地,保护未被污染的土地资源,实现自然与社会的健康、可持续发展。
参考文献
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014-04-17.
[2]张兴梅,杨清伟,李扬.土壤镉污染现状及修复研究进展河北农业科学,2010,14(3):79-81.
[3]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,11S(11):184-185.
[4]柳絮,范仲学,张斌,等.我国土壤镉污染及其修复研究[J].山东农业科学,2007,6(6):94-97.
[5]李玉浸.集约化农业的环境问题与对策[M].北京:中国农业出版社,2001:57-82.
[6]冉烈,李会合.土壤镉污染现状及危害研究进展[J].重庆文理学院学报:自然科学版,2011,30(4):69-73.
[7]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178.
[8]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学,2007(2):67-69.
[9]王凯荣,张格丽.农田土壤镉污染及其治理研究进展[J].作物研究,2006(4):359-374.
[10]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1343-1353.
[11]利锋.镉污染土壤的植物修复[J].广东微量元素科学,2004,11(8):22-26.
[12]李薇.农田镉污染的危害及其修复治理方法[J].粮油加工:电子版,2015(9):62-64.
[13]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
[14]孟凡乔,史雅娟,吴文良.我国无污染农产品重金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359.
[15]张金彪,黄维南.镉对植物的生理生态的研究进展[J].生态学报,2000,20(3):514-523.
[16]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策[J].云南农业大学学报,2005,20(3):360-365.
[17]高志岭,刘建玲,廖文华.磷肥使用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-99.
[18]韩晓日,王颖,杨劲峰,等.长期定位施肥对土壤中镉含量的影响及其时空变异研究[J].水土保持学报,2009,23(1):107-110.
[19]何电源,王凯荣,廖先苓,等.农田土壤污染对作物生长和品质量的影响[J].农业现代化研究,1991,12增刊:128.
[20]马彩云,蔡定建,严宏.土壤镉污染及其治理技术研究进展[J].河南化工,2013,30(17):17-22.
[21]毕淑芹,谢建治,刘树庆,等.土壤重金属污染对植物产量及品质的影响研究[J].河北农业科学,2006,10(2):107-110.
[22]Seregin I V,Ivanov V B.Physiological aspects of cadmium and lead toxic effects on higher plants [J].Russian Journal of Plant Physiology,2001,48(4):523-544.
[23]张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205.
[24]刘国胜,童潜明,何长顺,等.土壤镉污染调查研究[J].四川环境,2004,23(5):8-13.
[25]Johannes G,Franziska S,Christian G S,et al.The toxicity of cadmium and resulting hazards for human health [J].Journal of Occupational Medicine and Toxicology,2006,1(22):1186.
[26]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.
[27]MariselaM'endez-Armenta,CamiloR'ios.Cadmium neurotoxicity [J].Environmental Toxicology and Pharmacology,2007,23:350-358.
[28]彭少邦,蔡乐,李泗清.土壤镉污染修复方法及生物修复研究进展[J].环境与发展,2014,3(3):86-90.
[29]吴燕玉,周启星,田均良.制定我国环境标准(汞镉铅和砷)的探讨[J].应用生态学报,1991,2(4):334-349.
[30]胡宏韬,程金平.土壤铜镉污染的电动力学修复实验[J].生态环境学报,2009,18(2):511-514.
[31]余贵芬.重金属污染土壤治理研究现状[J].农业环境与发展,1998,15(4):22-24.
[32]吴双桃.镉污染土壤治理的研究进展[J].广东化工,2005(4):40-41.
[33]Gworek B,肖辉林.利用合成沸石钝化污染土壤的镉[J].热带亚热带土壤科学,1992,1(1):58-60
[34]卢红玲,肖光辉,,等.土壤镉污染现状及其治理措施研究进展[J].南方农业学报,2014,45(11):1986-1993.
[35]吴海江.耐Cd细菌的筛选及抗性机理研究[D].成都:西南交通大学,2009.
[36]张欣,范仲学,郭笃发,等.3种微生物制剂对轻度镉污染土壤中菠菜生长的影响[J].天津农业科学,2011,17(1):81-83.
[37]Ramseier S,Martin M,Haerdi W,et a1.Bioaccumultion of cadmium by Lumbficusterrestris [J].Toxicological &Environmental Chemistry,1989,22 (1-4):189-196.
[38]蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究Ⅲ.印度芥菜对锌镉的吸收和积累[J].土壤学报,2002,39(5):664-670.
关键词:水污染;重金属污染 ;防治
1.重金属污染已成为我国的重大环境问题
1.1污染的分类和现状,流域水环境重金属污染成了重点
在环境污染中,按照不同的方式分类,大体可以分类为以下几种:首先按照环境要素分类 :大气污染、土壤污染、水体污染;然后按属性分:显性污染、隐性污染。再次按人类活动范围分为:工业环境、城市环境、农业环境的污染。最后按造环境污染的性质来源分类为:化学、生物、物理污染(噪声、放射性、电磁波污染等)固体废物、液体废物、能源等污染。
很多区域影响水质的重金属较多,区域性水质根据文化和地质条件的不同,从而导致了水质酸碱、水体氧化特点和特征的不同。然而不同区域的经济不同,工业废水排放量也就不同等等,因此,重金属污染也就不相同。由于区域性水环境直接关系到生产、生活、生态用水等问题,所以流域水环境重金属污染成了我国重大的环境问题。
1.2流域水环境重金属污染造成的影响
根据相关报告显示,流域性水环境重金属污染使得饮用水安全问题堪比担忧,更是直接导致流域水环境质量严重下降。就拿湘江流域的重金偎污染为例,到2010年底,湘江污染已对流域4000万人口的饮用水安全构成严重威胁,以长沙市为中心, 2007年饮用水源地水质达标率仅6.09% ,并且上游的人口密集,很多地段饮水安全问题并不乐观,污染也十分严重,重金属污染直接导致了水生态流域和其他系统环境的生态平衡;不仅如此,很多名贵的鱼类品种也已经不再常见;包括土壤、农田及其作物也造成了不可逆转的后果。众所周知,很多重金属危害物质都是不可分解的,日积月累通过各种途径的化学性反应,最终危害的都是自身的安全和健康。近几年,癌症的病发率大幅度上升,我们也已经不在是“绿色食品”。
由上可见 ,当前流域性水环境重金属污染问题成了现代凸显的环境问题。对于我们而言这些并不是一朝一夕可以解决的,是一个长期需要大家共同维护的问题。针对每一个流域进行点线面的源头控制,用正确的路线和程序进行技术性指导并严格的监管,这样在长期的日积月累中,才能得到有效的控制。
2 流域水环境金属污染来源与原因分析
以上也提到由于区域、土壤、水质酸碱、水体氧化、工业废水排放不同,流域水环境污染的重金属的成分也会不同。污染的后果已经一目了然,针对不同的流域水环境污染来源,给出相应的防治方法和对策。
比如:处于中国中部的最大的淡水湖西都阳湖,受到西德兴铜矿开采的影响,比正常的土壤明显的增高了很多Pb、Zn、Hg、er等,这些水域的重金属可伴随着水体的活跃而稀释出来,最终变成了重金属含量较高的湖水。以Z n 、 P b 、 C u 、 C r 这些有害物质最为严重。[1]
还有很多区域笔者在这里就不一一列举了,总结以上,现行的地血水环境质量标准是以总Zn、总Cd、总Pb的浓度(:ng /)L来进行分类的,然而造成水体污染的重金属形态多种多样,还有重金属的总量转化和重金属的迁移转化,一些捡了“芝麻”丢“西瓜”的规划做出了总结。可见 ,纠正观念、端正技术路线是何等迫切![2]
3.流域水环境重金属污染综合防治方案分析
3.1改善生态环境。
很多地方可以相对的进行生态恢复,对已经破坏的土地进行重建等。从而减少了地质对流域的影响,也减少了水土流失。大力推广和支持多种树、植被,并对沉淀固体漂浮物进去处理。
3.2对“重点”重金属流域实施加强源头预防,推进末端治理
首先我们已经对生态重建进行有效的分析,因此我们现在要从源头寻找原因,不仅需要治标还需要治本。运用物质之间的相互转化作用,把有害物质转化成无公害可用物质,从源头上减少污染。长期以来,流域内很多工业技术相对落后,资源的利用率也比较的低下,大量的废气、废水、废渣造成了无法处置的现象。对于这些堆积如山的垃圾,我们要解决生产时造成的有害物质,就需要引进先进的技术设备,对其污染成分有效的分解并提高清洁水平。
再次就是提高污泥的PH值,达到无公害为目的,实现污泥的资源性的转化。地下水的的整治处理是进一步处理重金属污染的进一步延伸。原位处理法是地下水污染治理技术研究的热点,它既可以降低费用,也可以在最大程度上减少重金属对环境的骚扰,并不断的升级改造,最后达到成熟的技术,对水进行再生利用。
3.3加强监管力度及时发现萌芽隐患。
落实环境保护问题是大家共同的责任,对那些为了个人利益,改革不到到位的企业,要严惩不贷;对于行为恶劣的企业甚至要进行关闭。不能为了短期的利益,放弃对区域水环境的保护。尤其是对水源产业工厂,要及时发现隐患并上报有关监管部门。同时政府也应该加强对产业工厂的环保评定,并验收企业,争取在萌芽时期就发现问题;尤其是要对重金属污染进行一次大检查,对那些集中的重点区域和重点的行业要给明确的条文规定。
3.4有次序推进重金属在线检测,建立一个完整的网络预警体系。
很多时候随着则地壳的运动,河流位置也会变动,进而河流水质也会醉着时间的推移和地点的不同不停的发生变化;目前我国建立了许多水质自行检测站,自此经检测水污染,可是效果并不是很显著。所以这更需要对重金属自动检测系统进行改革和升级,需要专业技术人员和有关部门对河流域的质量进行进一步了解和研究;对安全警报过了警戒线的情况,能够更直观的看到超标有害物质,做到及时发现,及时预告和,及时请求相关的部门对其进行处理和预防。
3.5建立和完善开发环境管理体系
要坚持轻开发、重保护、少开发、多治理的原则。比如矿业需要有关六个系统体系才能联系起来,(首先是矿业开发环境管理目标规划系统,然后是环境计划子系统,再次是矿业开发环境影响评价子系统,接着是矿业开发环境审核评议系统,在接着是矿业开发环境监测和环境模拟仿真预测系统、矿业开发环境治理恢复系统,最后一个是矿业开发环境信息系统;这一系列系统是密不可分的,相互监督的[3]。所以我国也有必要借鉴和完善这一系列完善监管体系。
总结:流域性水环境重金属污染在我国是一个需要策划和探讨的重点;笔者认为,这是一个艰巨而长远的任务,要想让流域性水环境污染得到有效的控制和解决;就必须加大对相关产业和工厂的控制和管理;用源头抓起的理念防患于未然;区分属性污染,成立严格的政府体系系统,合理开采;做到早发现,早解决早预防。
参考文献:
[1]李彩霞, 李彩亭, 翟云波, 等. 湘江衡阳段水质污染现状及对策分析1J2. 环境保护科学, 2007, 33(6) : 31- 34.
关键词:襄汾溃坝区;土壤;农作物;重金属污染;生态风险
中图分类号:X825 文献标识码:A 文章编号:0439-8114(2014)20-4821-05
DOI:10.14088/ki.issn0439-8114.2014.20.013
Pollution Characteristics and Risk Assessment of Heavy Metals in Soil and Crops in Dam-breaking Areas of Xiangfen
YAN Jiao, ZHANG Yong-qing, SONG Zhi-ping, HE Xiao-qin, LI Yu-peng
(College of Urban and Environmental Science, Shanxi Normal University, Linfen 041004, Shanxi, China)
Abstract: The contents of eight heavy metals(Cu、Zn、Cr、Cd、Pb、Ni、As、Hg) in soil and crops in dam-breaking areas of Xiangfen were analyzed. Tailing contained Cu and Zn was found. The contents of Cu and Zn in soil of the covered areas were higher than those in soil of the non-covered areas. The levels of other six elements in soil of the covered areas were lower than those in soil of the non-covered areas. The contents of Cu and Zn in crops of the covered areas were lower than those in crops of the non-covered areas. The levels of other six elements in crops of the covered areas were higher than those in crops of the non-covered areas. The correlation analysis showed that Cu and Zn in the coverage areas were from tailing. The other six heavy metals were homologous or associated in the coverage areas and non-covered areas. The single pollution index, Nemerow's synthetical pollution index and the potential ecological risk index showed that soil in the coverage areas was polluted slightly by heavy metals. Enrichment coefficients showed that the uptake capacity of the other six heavy metals by wheat was higher in the coverage areas than that in non-covered areas with the exception of Cu and Zn.
Key words: dam-breaking areas of Xiangfen; soil; crop; heavy metal pollution; ecological risk
重金属毒害是矿区普遍存在且最为严重的问题之一[1,2]。由于尾矿渣含有多种重金属,这些重金属随尾矿渣进入土壤环境发生积累、迁移,不仅对区域生态安全构成潜在危害,可能影响动植物的生长发育,甚至通过食物链进入人体,危害人体健康,导致一些慢性病、畸形、癌症等的发生[3]。矿山尾砂库垮坝导致的污染物迁移和扩散,不仅威胁人体健康和生命安全,而且会导致大面积的土地污染,使下游土地的重金属含量升高,土壤酸化,有机质含量降低和土壤板结[4]。例如,西班牙南部的Aznalcollar硫铁矿尾砂坝坍塌导致Agrio和Guadiamar流域55 km2范围内的土壤受到重金属污染,土壤Pb、Zn、As、Cd和Cu的含量分别增加到1 786、1 449、589、5.9、420 mg/kg[4],受污染土壤的pH最低可以下降到2[5, 6];1985年,湖南郴州市竹园矿区尾砂坝坍塌,致使尾砂冲入东河两岸农田,即使农田中的尾砂已被清理,该地区农田土壤的As和Cd含量仍然高达709、7.6 mg/kg[7,8]。
目前,关于矿业的开采活动对矿区周围环境的影响有很多研究。曲蛟等[9]对钼矿尾矿周围蔬菜地的土壤的分析表明,重金属含量从大到小的顺序为残余态、有机结合态、氧化结合态和酸可提取态,由于尾矿石中可能释放重金属,当地的重金属污染很严重,预警类型为重警;李祥平等[10]对粤西黄铁矿区的土壤做了详细的研究,证实铁矿开采和尾渣堆放给矿区环境带来严重的危害,土壤重金属含量已超过中国土壤背景值的30余倍,Cd、Zn等已达到中度甚至重度污染,且污染物已渗透到土壤深层;王素娟等[11]对广西德保几个矿区尾矿的研究发现,土壤中Cd和Pb含量都超出了广西土壤环境质量标准的背景值,且Cd含量随pH的升高显著增加,Pb含量随pH的升高而减少。而矿山尾砂坝坍塌是一种较常见的事故,但对其导致下游土壤污染问题的研究至今仍较少。2008年9月8日,襄汾县云合村塔儿山的尾矿坝坍塌,尾砂冲入下游地区的居民区和农田,不仅造成了巨大的人员伤害和经济损失,而且造成下游农田土壤被大量的尾砂所覆盖,可能导致土壤和农作物的重金属污染。正确评价该区土壤的污染状况及潜在生态风险具有重要的理论和现实意义。为此,本研究采用单项污染指数法、内梅罗综合污染指数法和潜在生态风险指数法对研究区内土壤及农作物重金属污染状况和潜在生态风险进行评价,以期为土壤污染控制和污染农田修复提供科学依据。
1 材料与方法
1.1 研究区概况
溃坝区位于山西省临汾市襄汾县云合村塔儿山,E 111°3′,N 35°53′,海拔679~769 m,属温带大陆性季风气候,年均气温11.5 ℃,1月年均气温4.5 ℃,7月年均气温26 ℃,年均降水量454 mm,年均日照数2 522 h,无霜期185 d。塔儿山富含磁铁矿,溃坝发生后,进行了紧急治理,利用大型机械开挖泥石流,对土壤物理性状造成了较严重的破坏,在原有土壤上覆盖了大量尾砂。
1.2 样品采集与检测
在溃坝物覆盖区,沿溃坝物流向,采用S型取样法,取0~20 cm的耕层土壤,5个点混成一个土样,同时在同一块农田的未覆盖区采集对照样品,覆盖区和未覆盖区各18个土样,装袋、编号、扎口,带回实验室。把土样置于室内自然风干,剔除大石块、植物根系等杂质,磨细后过孔径为0.15 mm的尼龙筛,装袋密封用于测定土壤重金属含量。在秋季,研究区主要的农作物是小麦,在土壤点位上采集相应的麦苗样品,带回实验室,用自来水冲洗干净,再用纯水洗3遍,风干,80 ℃烘干至恒重,用研钵研碎,装袋。
取备用土壤0.1 g放入聚四氟乙烯坩埚,加入5 mL HNO3和1 mL HF,HNO3和HF试剂均为优级纯,加盖,放在电热板上消解,得到样品消解液,用火焰原子吸收法检测消解液中铜(Cu)、锌(Zn)、铬(Cr)和镍(Ni)等重金属的含量, 用石墨炉原子吸收法检测消解液中镉(Cd)和铅(Pb)的含量,用双道原子荧光光度计检测消解液中砷(As)和汞(Hg)的含量。测定过程中用10%的平行样品和加标回收样进行质量控制,以保证数据的准确度和精度。植物样品中的重金属检测方法同上。
1.3 土壤重金属污染评价方法及标准
1.3.1 单项污染指数法
Pi=Ci/Si
式中:Pi为样品中某污染物的单项污染指数;Ci为样品中某污染物的实测浓度;Si为某污染物的评价标准。
1.3.2 内梅罗综合污染指数法
Pn=■
式中:Pi=Ci/Si,Pn是内梅罗综合污染指数,Pi是样品中某污染物的单项污染指数,MaxPi是样品污染物中污染物指数最大值。
依据单因子污染指数法和内梅罗综合污染指数法将土壤重金属污染划分为5个等级,见表1。
1.3.3 潜在生态风险指数法 该方法是瑞典学者 Hakanson根据重金属的性质及环境行为特点,从沉积学角度提出的一种对沉积物或土壤中重金属污染进行评价的方法[12]。它将重金属的含量、生态效应、环境效应与毒理学联系在一起,采用具有可比的等价属性指数分级法进行评价,可以定量地评价单一元素的风险等级,也可以评价多个元素的总体风险等级[13]。公式如下:
C■■=C■■/C■■;E■■=T■■×C■■;
RI=■E■■=■T■■×C■■=■T■■×C■■
式中:C■■为某一重金属的污染参数;C■■为土壤中重金属的实测含量;C■■为计算所需的参比值;E■■为潜在生态风险系数;T■■为某一重金属的毒性系数。参比值的选择,各地学者差异较大,大都以全球沉积物重金属的平均背景值为参比值[14],或以当地土壤背景值为参比[15],或以背景采样点值为参比[16],为了更真实反映评价区域的重金属污染状况,本研究以未覆盖区土壤中重金属含量为参比值。不同重金属元素毒性水平不同,生物对重金属污染的敏感程度也不尽相同,用重金属元素毒性系数反映该特点[17]。根据“元素丰度原则”和“元素稀释度”,Hakanson认为某一重金属的潜在毒性与其丰度成反比,或者说与其稀少度成正比[17],因此他指定的标准化重金属毒性系数为Zn(1)
1.3.4 富集系数 富集系数是植物中重金属的含量与土壤中重金属含量的比值,表示植物对重金属的富集能力[1]。富集系数越大,其富集能力就越强。
1.4 数据处理与统计分析
重金属含量用EXCEL 2003计算,重金属含量的最大值、最小值、平均值、变异系数、正态分布检验等描述性统计分析采用SPSS 19.0计算。
2 结果与分析
2.1 溃坝区下游土壤重金属分析
2.1.1 土壤重金属含量 溃坝区下游土壤重金属含量见表3。覆盖区和未覆盖区8种重金属的平均值和最大值均没有超过国家土壤环境质量标准的二级标准,两区域的Zn、Cr、Ni和As等4种重金属的平均浓度没有超过山西省土壤元素背景值,其他4种元素的平均浓度均超过山西省土壤元素背景值。覆盖区和未覆盖区相比,覆盖区Cu和Zn的平均浓度高于未覆盖区,其他6种元素的平均浓度均低于未覆盖区。这可能是因为尾矿砂中含有Cu和Zn覆盖在农田上,虽然经过清理,但还有残留,导致覆盖区的土壤中Cu和Zn的含量偏高;而Cr、Cd、Pb、Ni、As和Hg的情况正好相反,尾矿砂中可能没有这些元素,或者含量极少,进入土壤后反而降低了土壤中Cr、Cd、Pb、Ni、As和Hg的浓度,造成未覆盖区土壤中的含量偏高。
变异系数(CV)是衡量研究区各样品间的变异程度,CV大则说明土壤受外界干扰显著,空间分异明显,也说明土壤的污染是以复合污染的形式存在[19]。CV≤10%为弱变异,10%100%为强变异。覆盖区和未覆盖区8种重金属的变异都为中等变异,说明研究区内重金属的来源不相同,并不全部来自溃坝物。覆盖区内Hg的变异系数最高,说明不同采样点Hg的分布差异性很大,覆盖区内各重金属的变异系数从高到低依次为Hg、Pb、Cr、Ni、Cd、Zn、Cu、As。未覆盖区内也是Hg的变异系数最高,各重金属的变异系数从高到低依次为Hg、Pb、Cu、Cr、Cd、Ni、As、Zn。
研究土壤中重金属含量的相关性可以推测其来源是否相同。覆盖区和未覆盖区土壤重金属的相关系数分别见表4和表5。覆盖区内,Cu和Zn呈显著正相关,与其他6种元素(Cr、Cd、Pb、Ni、As和Hg)呈负相关,说明Cu和Zn来源相同,与其他6种重金属元素是异源关系;Ni与Cr显著相关;Cd与Pb、As、Hg显著相关,Pb与As、Hg显著相关,As与Hg显著相关,说明Cd、Pb、As和Hg为同一来源或者伴生关系。未覆盖区内,Ni和Cr、Pb、Hg,Cd和As、Hg,Pb和As、Hg,As和Hg,都呈显著正相关;而Cu和Zn相关性不显著,这与覆盖区完全不同。在覆盖区和未覆盖区内,Cr、Cd、Pb、Ni、As和Hg之间都具有很高的相关性,这些重金属可能是伴生关系或者来自同一污染源。
2.1.2 土壤重金属污染状况 以未覆盖区为背景值,计算出覆盖区土壤重金属单项污染指数和综合污染指数(表6)。Cr和Ni的污染指数在安全域内,Cd、As和Hg的污染指数在警戒线上,Cu、Zn和Pb的污染指数处于轻度污染级别。8种重金属的污染程度从高到低的依次为Pb>Cu>Zn>Cd>As=Hg>Ni>Cr。覆盖区的综合污染指数为1.3,处于轻度污染级别,这与Cu、Zn、Pb单项污染指数偏高有关。
2.1.3 土壤重金属生态风险评价 以未覆盖区为背景值,覆盖区土壤单个重金属的潜在生态危害指数(E■■)和多种重金属潜在生态危害指数(RI)见表7。8种重金属的潜在生态危害指数都处于轻微级别,它们的潜在生态风险趋势为E■■(Hg)>E■■(Cd)>E■■(Pb)>E■■(Cu)=E■■(As)>E■■(Ni)>E■■(Zn)>E■■(Cr)。多种重金属潜在生态危害指数RI也处于轻微级别。从重金属污染指数和潜在生态风险指数二者结合来看,溃坝物覆盖区土壤重金属污染比较轻微。
2.2 溃坝区麦苗体内重金属分析
2.2.1 麦苗体内重金属含量 为了进一步探索土壤对植物重金属污染的影响,采集了覆盖区与未覆盖区的麦苗,并对其重金属含量进行测定,结果见表8。覆盖区和未覆盖区的麦苗重金属含量差异较大,同种植物中不同重金属含量差异明显。与未覆盖区相比,覆盖区麦苗体内的Cr、Cd、Pb、Ni、As、Hg含量相对较高,Cu和Zn的含量相对较低,这与土壤中重金属含量规律相反,很可能与当地的铁矿开采活动有很大的关系。
2.2.2 麦苗体内重金属富集系数 覆盖区和未覆盖区的麦苗体内重金属富集系数见表9。从表9可以看出,相同植物对不同重金属的吸收能力存在差异。除Cu和Zn外,覆盖区麦苗对其他6种重金属的吸收能力高于未覆盖区。覆盖区的麦苗吸收重金属的能力依次为Cr>Cd>Hg>Zn>Ni>Pb>As>Cu;未覆盖区的麦苗吸收重金属的能力依次为Zn>Hg>Cr>Cu=Cd>Pb>Ni>As。覆盖区和未覆盖区的麦苗吸收重金属的能力不同可能与土壤中重金属含量、形态等有关。
3 小结
由于尾矿砂中含有Cu和Zn,造成覆盖区土壤中Cu和Zn的含量高于未覆盖区,其他6种元素的含量均低于未覆盖区。覆盖区和未覆盖区8种重金属的变异都为中等变异,各金属元素在土壤中的含量还是比较稳定的。
通过相关分析可以推断出覆盖区内Cu和Zn来源于尾矿砂,其他6种重金属在覆盖区与未覆盖区都具有同源或者伴生关系。
以未覆盖区为背景值,从重金属污染指数和潜在生态风险指数二者结合来看,溃坝物覆盖区土壤重金属污染比较轻微。
覆盖区和未覆盖区对比,麦苗体内重金属含量规律与土壤中重金属含量规律相反,这很可能与当地的采矿活动有关。覆盖区和未覆盖区的麦苗吸收重金属的能力不相同可能与土壤重金属含量、形态有关系。
参考文献:
[1] 杨胜香, 李明顺, 李 艺, 等. 广西平乐锰矿区土壤、植物重金属污染状况与生态恢复研究[J]. 矿业安全与环保, 2006, 33(1):21-23.
[2] 夏汉平, 蔡锡安. 采矿地的生态恢复技术[J]. 应用生态学报, 2002, 13(11):1471-1477.
[3] 李 岚, 李耀初, 周劲风, 等. 紫金矿业尾矿库溃坝事故后黄华河流域土壤环境重金属污染影响后评估[J]. 资源与环境, 2013, (28):131-132.
[4] SIMON M, ORTIZ I, GARCIA I, et al. Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain) [J]. The Science of the Total Environment, 1999, 242(1-3):105-115.
[5] CLEMENTE R, WALKER D J, ROIJ A, et al. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain)[J]. Biodegradation, 2003, 14(3):199-205.
[6] AGUILAR J, DORRONSORO C, FEMA′NDEZ E, et al. Soil pollution by a pyrite mine spill in Spain Evolution in time [J]. Environmental Pollution, 2004, 132(3):395-401.
[7] LIU H Y, PROBST A, LIAO B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan,China)[J]. The Science of the Total Environment, 2005, 339(1-3):153-166.
[8] 翟丽梅, 陈同斌, 廖晓勇, 等. 广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J]. 环境科学学报, 2008, 28(6): 1206-1211.
[9] 曲 蛟, 王红雨, 袁 星, 等. 钼矿尾矿区蔬菜地土壤中重金属含量分析与生态风险预警评估[J]. 安全与环境学报, 2008, 8(2): 76-79.
[10] 李祥平, 齐剑英, 王春霖, 等. 粤西黄铁矿区铊―铅污染土壤的环境质量研究[J]. 农业环境科学学报, 2009, 28(3): 496-501.
[11] 王素娟, 李正文, 廖秋佳, 等. 广西矿区土壤镉、铅污染状况研究[J]. 生态科学, 2008, 27(1):50-54.
[12] 刘 晶, 滕彦国, 崔艳芳, 等. 土壤重金属污染生态风险评价方法综述[J]. 环境监测管理与技术, 2007, 19(3):6-11.
[13] 尹仁湛, 罗亚平, 李金城, 等. 泗顶铅锌矿周边土壤重金属污染潜在生态风险评价及优势植物对重金属累计特征[J]. 农业环境科学学报,2008,27(6):2158-2165.
[14] 王胜强, 孙津生, 丁 辉. 海河沉积物重金属污染及潜在生态风险评价[J]. 环境工程, 2005, 23(2):62-64.
[15] 武永锋, 刘丛强, 涂成龙. 贵阳市土壤重金属污染及其生态风险评价[J]. 矿物岩石地球化学通报, 2007,26(3):254-257.
[16] 刘文新, 栾兆坤, 汤鸿霄, 等. 乐安江沉积物中金属污染的潜在生态风险评价[J]. 生态学报, 1999, 19(2):206-211.
[17] 刘衍君, 马春玲, 曹建荣, 等. 聊城市土壤重金属污染现状及其潜在风险评价[J]. 聊城大学学报(自然科学版), 2013, 26(2):73-77,94.
摘要:
矿区周边土壤重金属污染对区域农产品和人体健康危害极大,为对个旧市大屯镇稻田土壤重金属的潜在生态风险进行定量评价及预警分析,计算了6种重金属元素(Pb、Cd、砷、Zn、Cu和Cr)的综合生态风险指数(RI)、地累积指数(Igeo)和生态风险预警指数(IER)。结果表明:研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,Cd和砷元素的生态风险指数平均值>40,94.4%的土壤样品处于中等风险以上水平;重金属元素的Igeo顺序为Cd>砷>Pb>Cr>Cu>Zn,Cd和砷元素有超过94.4%的土壤样品处于中等污染以上水平。生态风险预警评价结果显示,66.7%采样点处于生态风险无警级别,33.3%采样点处于生态风险重警级别。综合分析认为,该区域主要是以Cd和砷为主的土壤重金属复合污染,对已经达到生态风险重警级别的区域应该采取相应的土壤修复措施,对无警区域应该加强监控防止污染。
关键词:
重金属;生态风险;风险预警;个旧
云南省个旧市素以“锡都”著称,是我国最大的锡矿所在地,长期的土法采矿炼矿不仅导致矿产资源有效利用率低,而且破坏了当地自然环境,给当地居民的生产生活带来了严重的影响。黄玉等[1]对个旧锡矿区的不同辐射范围进行土壤污染调查研究,发现个旧市矿业活动区Pb、Cd、砷给当地造成极高风险。肖青青等[2]对个旧市鸡街镇的土壤重金属污染调查评价发现土壤中Pb、Cd、Zn和Cu含量均超出《土壤环境质量标准》二级标准。土壤中的重金属长期停留和积累在环境中,对生态环境和人体健康存在诸多现实和潜在风险,选用一种或几种正确的评价方式评价土壤中的重金属污染程度对于环境和健康问题有着重要意义。前人对个旧矿区重金属污染分布和风险评价采用的主要方法有:Hakanson指数法[3]、单因子指数法[4]、内梅罗综合污染指数法[5]和地积累指数[6]。这些方法各有其适用条件和优点,但也存在一定的局限[7-8]。生态风险预警评价源于生态风险评价,既具有Hakanson指数法、地积累指数法、脸谱图法、综合指数法、尼梅罗综合指数法和污染负荷指数法等评价方法定量评价的特点,也能通过定量评价值与警度内涵之间的关联,实现定性评价分析[9]。前期关于区域土壤污染评价的研究多采用单一的分析方法进行重金属风险评价,针对个旧市大屯镇水稻土的污染评价也仅局限于单因子指数、内梅罗综合污染指数法的污染分级评价,采用重金属生态风险评价和风险预警的研究鲜见报道。本研究以云南省个旧市大屯镇稻田土壤为研究对象,采用Ha-kanson指数法和地积累指数法对6种重金属(Pb、Cd、砷、Zn、Cu、Cr)的含量进行分析计算,评估其污染程度,定量评价生态风险并作出风险预警,以期为个旧市水稻土生态风险预警和农产品安全生产提供科学依据。
1材料与方法
1.1土壤样品的采集
个旧地区水稻生产区域主要集中在大屯镇,本试验地点位于云南省个旧市矿区周边大屯镇稻田种植区。采样点集中在23°2'56″~24°2'56″N和103°14'11″~104°22'55″E的研究稻田。2015年3月12日,参照《NY/T395-2000农田土壤环境质量监测技术规范》的相关要求,分别按照不同的取样地块采集0~20cm土壤样品,每个样品由5个五点法取样的子样品混合而成,共采集54个样品。土壤样品自然风干,去除杂物,磨碎后过100目尼龙筛,用自封袋保存待测。
1.2样品的测定
土壤pH值用酸度计(STARTER3100,奥豪斯仪器(上海)有限公司)测定,固液比值为1∶2.5[10];重金属总量测定采用HF-HClO4-HNO3消解法[11]。所用试剂为优级纯,试验用水为去离子水。样品溶液中重金属元素铅、镉、砷、锌、铜和铬采用ICP-MS(ELANDRC-e型,美国PerkinElmer公司)进行分析测定。
1.3评价方法
1.3.1潜在生态风险指数法
评价潜在生态风险指数法是1980年由瑞典科学家Hakanson[12]提出的评价方法。该方法综合考虑了重金属含量、环境效应、生态效应和重金属毒性等因素而被广泛用于土壤中重金属污染风险分析[13-14]。其计算公式如下:Cri=Ci/Cni(1)Eri=Tri×Cri(2)RI=∑ni=1(Eri)=∑ni=1(Tir×Cir)(3)式中:Cri为土壤中重金属i的富集系数;Ci为重金属i的实测数据;Cni为计算所需的参比值,本文采用云南省土壤质量背景值作为参比值;Eri为土壤中重金属i的潜在生态风险系数;Tri为沉积物中重金属i的毒性系数,本研究中Pb、Cd、砷、Zn、Cu和Cr6种元素的毒性系数分别为5、30、10、1、5和2;RI为土壤中多种重金属的综合潜在生态风险指数。潜在生态风险分级标准见表1。
1.3.2地累积指数法
地积累指数法是在1969年由Muller[15]提出的用于评价水环境沉积物中重金属的方法。该方法考虑了自然成岩作用对背景值的影响,也考虑了人为活动对环境的影响,近年来,被国内外学者用于评价土壤重金属的污染程度[16-17]。计算公式为:Igeo=log2[Ci/(K×Cin)](4)式中:Ci是土壤中元素n的实测值;Cni为普通页岩中元素i的地球化学背景值,本文采用云南省土壤质量背景值作为参比值;K为消除各地岩石差异可能引起背景值的差异(一般取值为1.5)。其污染等级分为0~6级,见表2。
1.3.3重金属生态风险预警
对于个旧市大屯镇稻田土壤重金属生态风险预警,采用Rapant等[18]提出的生态风险预警指数法进行预警评估,预警分级标准见表3。公式为:IER=∑ni=1IERi=∑ni=1(CAi/CRi-1)(5)式中:CAi表示重金属i的实测数据;CRi表示重金属i的背景参比值,本文的背景参比值采用《GB15618-95国家土壤二级标准进行评估》(表4);IERi为重金属i的生态风险预警指数;IER表示各采样点土壤样品的生态风险预警指数。
2结果与分析
2.1水稻土重金属基本参数统计特征分析
土壤重金属基本参数统计描述如表4所示。结果表明,土壤样品中Pb、Cd、砷、Zn、Cu和Cr含量的平均值分别为180.57、1.96、136.55、133.44、84.09和145.71mg/kg。研究地土壤pH值为7.03±0.44,按照《GB15618-1995土壤环境质量标准》二级标准,重金属超标的元素有Cd和砷,超标倍数分别为2.27、4.46。与乔鹏炜等[19]2014年调查研究云南个旧锡矿区大屯盆地农田土壤重金属平均值相比,本研究中Pb和Zn元素明显较低,Cr元素明显较高,其他元素含量平均值相差不大。6种重金属元素的变异系数在12.17%~74.54%,属于中等变异程度,其中Pb、Cd和砷3种元素变异程度相对较大,说明其易受外源因子干扰。土壤重金属元素和pH值相关分析结果见表5。大屯镇矿区周边水稻土多数重金属元素之间存在相关性,Pb与Cd、砷和Zn的相关性达到极显著水平(P<0.01)。Cd与砷和Zn的相关性达到极显著水平(P<0.01)。Cu与Cr的相关系数为0.757,相关性达到极显著水平(P<0.01)。这表明,该区域水稻土Pb、Cd、砷和Zn可能具有相似的来源,呈现相互伴随的复合污染现象,而Cu和Cr的来源途径也具有相似性。土壤pH与Pb呈极显著正相关,与Cd和砷呈显著正相关,而与Zn、Cu和Cr相关性不显著。
2.2土壤重金属潜在生态风险评价
经计算,研究区域稻田土壤重金属元素的潜在生态风险系数(Ei)和综合生态风险指数(Ri)如表6所示。从单个重金属潜在生态风险系数可以看出,研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,Pb、Zn、Cu、Cr这4种元素的风险指数平均值<40,均属于轻度生态危害,对该区域土壤生态污染的贡献率较低;其中Cd平均潜在生态风险指数为267.33,达到很强生态危害程度,砷平均潜在生态风险指数为74.21,达到中度生态危害程度,其余元素均未达到轻度生态危害的上限标准。根据土壤重金属潜在危害系数所对应的潜在危害程度频数的统计(表7),按照污染程度分级,Cd元素潜在生态风险系数达到强度、很强和极强生态危害的比例分别为11.1%、61.1%和22.2%;砷元素潜在生态风险系数达到中等、强度和很强生态危害的比例分别为77.8%、5.6%和11.1%。这表明Cd和砷元素对该区域土壤生态污染的贡献率较高。土壤重金属综合生态风险指数(RI)平均值为1114.98,属于很强生态危害水平;轻度、很强和极强生态危害的比例分别为16.7%、50.0%和33.3%。
2.3土壤重金属地积累指数
以土壤环境背景值作为地球化学背景值,计算稻田土壤中重金属的Igeo并进行分级,结果如表8。从表中可以看出,除Zn外,其余5种重金属元素的地积累指数平均值均>0。Pb、Cd、砷和Cu元素的最大值都>1,达到中等污染程度以上。从土壤样品污染分级比例可以看出,Cd元素污染比例最大,达94.4%,其中有11.1%的土壤样品属于中等污染,66.7%属于中等-强污染,11.1%属于强污染,5.6%土壤样品到达强-极严重污染。砷元素的污染比例也达到94.4%,其中有22.2%的土壤样品属于中等污染,61.1%属于中等-强污染,有11.1%达到强污染水平。Zn元素的污染比例最低,仅有44.4%的土壤样品属于轻度污染。整体统计分析各元素可知,Pb、Cd和砷元素的地积累指数标准差较大,表明土壤样品中这3种元素地积累指数值离散程度较大,即变异程度较大。
2.4重金属生态风险预警
采用生态风险预警评估法分别计算了研究区域稻田土壤中重金属Pb、Cd、砷、Zn、Cu和Cr的生态风险预警指数,评估了土壤重金属生态风险预警级别,结果见表9。从IER分级比例可以看出,该研究区域稻田土壤中主要重金属污染为砷、Cd。按照生态风险分级,砷元素生态风险指数达到轻警、中警和重警的比例分别为11.1%、66.7%和16.7%;Cd元素生态风险指数达到轻警、中警和重警的比例分别为61.1%、16.7%和5.6%。从综合指数来看,该区域有66.7%样点处在无警级别,属于最低生态风险,有33.3%样点处于重警级风险状态,属于高生态风险。
3讨论
李江燕等[20]对个旧市大屯镇蔬菜地土壤进行健康风险评价,发现Zn、Cu、Cd质量比严重超标,分别达到412.73mg/kg、132.86mg/kg、1.60mg/kg。乔鹏伟等[19]采用潜在生态危害指数法对大屯盆地农田土壤进行生态风险评价发现,Cd和砷两种元素对危害的贡献率高达87%。本研究结果也表明,个旧市大屯镇稻田土壤重金属污染特征主要表现为以Cd和砷为主的重金属复合污染,Cd和砷分别超出《GB15618-1995土壤环境质量标准》二级标准2.27、4.46倍。因此,研究区域稻田土壤Cd和砷具有较大的潜在生态危害,应作为该区域主要的修复和防控目标。本研究所采用的两种土壤重金属生态风险评估方法的评价结果存在一定的差异。土壤重金属潜在生态风险指数评价结果表明,6种重金属元素,有83.3%的土壤样点超过很强污染程度。研究区域重金属平均风险指数的从大到小排序为:Cd>砷>Cu>Cr>Pb>Zn,Cd和砷元素达到中等生态危害及以上的比例为94.4%,其余元素均处于轻度生态危害程度。土壤重金属地积累指数评价结果表明,除Zn和Cr元素其余元素都有不同比例处于中等污染程度,按照每种元素的地积累指数平均值,从大到小的顺序为:Cd>砷>Pb>Cr>Cu>Zn。两种评价方法的结果都表明Cd和砷对土壤重金属污染的贡献率最大,其他元素贡献率大小的差异可能在于生态风险指数评价法对不同重金属赋予了相应的毒性系数,而地积累指数法为消除各地岩石差异而引入系数K(一般取值为1.5),重金属元素之间没有差别[20-21]。采用生态风险预警指数(IER)进行预警分析认为,研究区域稻田土壤受到Cd和砷元素的污染,Pb和Cu有一部分预警级别是预警,Zn和Cr元素的预警级别是无警。总体评估研究区域IER有33.3%预警类型为重警,说明该研究区域有1/3的稻田土壤生态系统服务功能严重退化,生态环境受到较大破坏,且受外界干扰后恢复困难,生态问题较大,生态灾害较多[23]。土壤中Cd和砷对水稻安全质量影响较大,建议调整种植结构,引导种植较好的高梁抗性品种[24],或采取种植低累积重金属水稻品种[25],使用降低土壤重金属有效性的钝化剂和施用技术[26-27]、稻田水分管理技术[28]、钝化剂与农艺联合调控技术[29-30]等措施对区域农田进行修复和安全利用。
4结论
(1)研究地稻田土壤中的Cd、砷、Cu质量比均超出《GB15618-1995土壤环境质量标准》二级标准,水稻土Pb、Cd、砷和Zn可能具有相似的来源,呈现相互伴随的复合污染现象。
(2)根据土壤重金属潜在生态风险指数的评价结果,研究区域6种重金属平均风险指数的大小顺序为:Cd>砷>Cu>Cr>Pb>Zn,其中Cd和砷元素对该区域土壤生态污染的贡献率较高,有超过94.4%的土壤样品处于中等生态风险以上水平。土壤重金属综合生态风险指数(RI)仅有83.3%处于很强生态风险以上水平。
(3)土壤重金属地积累指数的评价结果表明,6种重金属元素含量的平均值只有Zn元素尚处于无污染水平,Cd、砷元素有超过72.2%的土壤样品处于中等污染以上水平,需要严格控制人为活动引入这几种元素,避免重金属的累积对土壤生态环境的危害。
(4)从土壤重金属生态风险预警的评价结果可知,研究区域33.3%属于重警区,应该采取相应的土壤修复措施,在农耕区改种非食用作物,必要时可以进行土壤污染治理,提高当地居民的环境保护意识。对无警区应该监控可能引起土壤污染来源,防止土壤污染。
参考文献:
[1]黄玉,蔡保新,王宇,等.云南个旧锡矿区矿业活动对土壤重金属的累积贡献[J].地质通报,2014,33(8):1167-1174.
[2]肖青青,王宏斌,赵宾,等.云南个旧市郊农作物重金属污染现状及健康风险[J].农业环境科学学报,2011,30(2):271-281.
[3]叶玉瑶,张虹鸥,谈树成.个旧城区土壤中重金属潜在生态危害评价[J].热带地理,2004,24(1):14-17.
[4]张德刚,刘艳红,全舒舟.云南个旧锡矿山山地土壤及作物中重金属污染分析[J].西南农业学报,2014,27(5):2045-2049.
[5]宋雁辉,钟正燕,李红梅,等.云南个旧多金属矿区农田土壤-作物系统重金属污染现状--以乍甸镇为例[J].安全与环境学报,2012,12(1):138-146.
[6]郑国强,方向京,张洪江,等.云南省个旧锡矿区重金属污染评价及植被恢复初探[J].水土保持通报,2009,29(6):208-213.
[7]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.
[8]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
[9]王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,8(3):647-653.
[10]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:30-35.
[11]张霖琳,梁宵,加那尔别克.西里甫汗,等.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学,2013(32)2:302-306.
[13]陈明,杨涛,李登宇.赣南某钨矿区稻田土壤中重金属污染特征及生态风险评价[J].有色金属工程,2016,6(2):89-95.
[16]王斐,黄益宗,王小玲,等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学,2015,34(2):225-233.
[19]乔鹏炜,周小勇,杨军,等.云南个旧锡矿区大屯盆地土壤重金属污染与生态风险评价[J].地质通报,2014,33(8):1253-1259.
[20]李江燕,杨永珠,李志林,等.云南个旧大屯镇蔬菜重金属污染现状及健康风险评价[J].安全与环境学报,2013,13(2):91-96.
[21]何东明,王晓飞,陈丽君,等.基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J].农业资源与环境学报,2014,31(2):126-131.
[22]韩平,王纪华,冯晓元,等.北京顺义区土壤重金属污染生态风险评估研究[J].农业环境科学学报,2015,34(1):103-109.
[23]罗艳,何锦林,许锡娟,等.遵义东南部地区农业土壤重金属污染生态风险预警研究[J].贵州科学,2013,31(6):75-79.
[24]米艳华,雷梅,黎其万,等.滇南矿区重金属污染耕地的植物修复及其健康风险[J].生态环境学报,2016,25(5):864-871.
[29]陈喆,张淼,叶长城,等.富硅肥料和水分管理对稻米镉污染阻控效果研究[J].环境科学学报,2015,35(12):4003-4011.
关键词:土壤环境质量;环境监测;风险点位
中图分类号:X833
文献标识码:A文章编号:16749944(2017)8010702
1引言
土壤环境监测质量调查监测工作,是推动土壤环境风险管控、促进土壤资源持续利用、维护公众健康的重大民生工程,对保障农产品质量和人居环境安全具有重要意义。为贯彻落实国务院办公厅《近期土壤环境保护和综合治理工作安排》文件精神,完善土壤环境质量监测网络,深入推进土壤环境质量监测工作,环保部在全国范围内开展重点区域土壤环境质量监测风险点位布设工作。
2点位布设原则
湖南省重点区域土壤环境质量监测风险点位布设遵循针对性、全面性、前瞻指导性原则,重点关注已经污染或可能存在污染的重点区域,以污染土壤和存在污染风险的土壤为监测重点,以重点防控重金属污染为主线,力争清楚湖南省重点区域土壤污染空间分布、风险状态和变化趋势。主要选取污染行业企业周边、工业园区周边、油田采矿区周边地区、固废集中处置场周边地区、历史污染区域及周边、规模化畜禽养殖场及周边、集中式饮用水源地保护区、果蔬菜种植基地等需要重点关注的风险区域。
3点位布设情况
湖南省重点区域土壤环境质量监测风险点位共布设954个:其中污染行业企业(含工业园)周边320个,固废集中处理处置场周边116个,采矿区周边88个,规模化畜禽养殖场周边90个,历史污染区域及周边129个,集中式饮用水源地保护区96个,果蔬菜种植基地115个,形成了较为完善的土壤环境质量风险点位监测网络,以重点防控重金属污染为主线,基本代表了湖南省重点区域土壤污染空间分布、风险状态和变化趋势的要求。
3.1污染行业企业(含工业园区)及周边
共监测污染行业企业(含工业园区)80家,布设监测点位320个,主要根据湖南省行业特点、企业规模、污染物排放量以及对土壤环境的影响程度等因数综合确定,主要涉及有色金属、铅蓄电池、电镀、皮革、石化、医药等重点行业。
针对企业的不同污染类型,采样不同的布点方法。其中,废气污染企业在主导风向的下风向,距离企业75 m、200 m、400 m处各设置一个监测点;废水污染企业沿废水排放水道,距离企业75 m、200 m、400 m处各设置一个监测点;同时,在企业场界2000 m以外(风向上风向或水流向上游)布设1个对照监测点。
3.2固废集中处理处置场周边
共监测17个固废集中处理处置场地,布设监测点116个, 重点选择使用时间在3年以上的填埋、堆放、焚烧处理处置场地。
针对固废集中处理处置场地主要在其废水排放方向75 m、200 m、400 m处各设置一个监测点,在其他三个方向上200 m处各设置一个监测点。若某方向土地利用类型无法取土,则在可取土方向1 km内适当位置布设监测点。
3.3采矿区周边
共选取18个采矿区,布设监测点88个,主要考虑对周边生态环境影响和破坏程度较大的开发规模级别为大中型以上的矿山。
监测点位主要布设在以矿口为端点,往非山体一侧做90°扇形,在扇形两条边上距离端点100 m、500 m、1000 m位置处。
3.4规模化畜禽养殖场周边
选取22个规模化畜禽养殖场,布设监测点90个,重点选择500头以上的猪、3万羽以上的鸡和100头以上的牛等规模化畜禽养殖场。同时在养殖场500 m范围内采用网格法进行随机布点,网格大小为100 m×100 m,每个养殖场布设3~5个监测点和1个对照点。
3.5历史污染区域及周边
共选取20个历史污染区域,布设监测点129个,主要选取由于企业搬迁后的遗留或遗弃场地及历史上因污水灌溉造成的污染区域。布点原则为在污染区及500 m缓冲区范围内采用网格法进行随机布点,网格大小为100 m×100 m,随机布设5~7个监测点。
3.6饮用水源地
共选取30个饮用水源地,布设监测点96个,主要选取县级以上集中式饮用水源地、备用水源地,优先选取服务50万人口及以上的集中式饮用水源地。点位选取以各水源地保护区范围作为监测区域。每个水源地保护区布设3~5个监测点,同时在取水口附近监测一个点。
3.7果蔬菜种植基地
共选取23个果蔬菜种植基地,布设监测点115个,重点选择各市州当地最主要的果蔬菜种植基地(100亩以上),优先选择城乡结合部的果蔬菜种植基地。布点原则为在种植基地范围内采用网格法进行随机布点,网格大小为100 m×100 m,随机布设5~7个监测点。
4结论与思考
本次湖南省重点区域土壤环境质量监测风险点位共布设954个,基本代表了湖南省重点区域土壤污染空间分布、风险状态和变化趋势的要求。
重点区域土壤环境质量监测风险点位布设为下一步开展湖南省土壤详查打下了基础,为初步掌握湖南省重点区域土壤环境质量监测风险提供了支撑。
参考文献:
[1]
王业耀,赵晓军,何立环.我国土壤环境质量监测技术路线研究[J].中国环境监测,2012(3).
[2]陆泗进,王业耀,何立环.中国土壤环境调查、评价与监测[J].中国环境监测,2014(6).
[3]陈美军,段增强,林先贵.中国土壤质量标准研究现状及展望[J].土壤学报,2011(5).
[4]赵娟.云南省土壤环境质量监测国控点位布设[J].环境科学导刊,2016(35).
[5]王豹,余建新,黄标. 便携式X射线荧光光谱仪快速监测重金属土壤环境质量 [J]. 光谱学与光谱分析,2015(6):1735-1740.
[6]李锦. 土壤环境质量控制指标体系探讨[J]. 生物技术世界,2013(1):34-35.
[7]段改莲. 北京市昌平区农田土壤环境质量现状与评价[D].武汉:中国农业科学院,2011.
[8]王瑞,唐文浩,宋玉梅. 西沙群岛土壤环境质量状况及特征分析[J]. 安徽农业科学,2011(10):5837-5840.
[9]孟娟. 河北平原区无公害蔬菜基地土壤质量评价研究[D].保定:河北农业大学,2009.
[10]张伦,张德明,刘燕. 九阡李产地土壤环境质量及其鲜果中有机氯残留量和重金属含量的检测[J]. 西南农业学报,2009,(01):118-121.
关键词:底泥重金属 污染现状 变化趋势
The "eleventh five-year plan" period haimen main river of the sediment of heavy metal pollution survey
Zhang haifeng
(Environmental monitoring station haimen, Haimen Jiangsu226100)
Abstract:Based on the main river sediment heavy metals in haimen monitoring results, and points out that the analysis of the present situation and inland river sediment pollution change trend, to improve the production condition inland sediment quality mainly provides useful advice
Keywords: SedimentHeavy metalPollution situation Change trend
研究表明,受污染的水-沉积物系统中,液态和固态之间存在着非常复杂的物理、化学和生物学过程,它们的相关变化依赖于水环境条件和沉积物的来源和构成。由于水体中的重金属元素污染物不易降解,大部分会迅速地由液相转入固相中,即迅速的结合到悬浮物和沉积物中。结合于悬浮物中的重金属元素在被水流搬运的过程中,当负荷超过搬运能力时,最终转入沉积物中,导致沉积物中重金属元素的含量比相应液相中重金属元素的含量高出很多倍。累积在底泥中的重金属元素不是固定不变的,在一定条件下,重金属元素会再次进入水体中造成二次污染,是一个潜在的二次污染源。沉积物具有反映水系统状况的意义,是水体污染的指示剂,其环境质量在很大程度上反映着水体的污染状况。因此对底泥中重金属元素的调查与研究具有什么重要的意义。
1、 底泥监测概况
1.1概况
“十一五”期间,海门市对主要河流海门河、通启河、通吕河、圩角河开展了内河底质监测,共布设了5个监测断面,底泥监测断面与河流水质常规采样点位一致,分别为通启河常乐闸断面、通吕河货隆大桥断面、通启河海洪大桥断面、海门河东洲大桥断面、圩角河秀山大桥断面。监测频次为每年一次,主要监测项目为总砷、总汞、总铬、总镉、总铅、总铜6个项目。
1.2样品采集
底泥监测点采用GPS确定采样点具置,采用抓斗式采样器采集样品。
1.3样品预处理
采样后样品置于样品袋中密封保存,运至实验室。将样品中剔除杂物,采用自然风干的方法对底泥进行脱水处理,磨碎后再进行分筛制备,并测定底泥样品中的含水量。
1.4样品分析方法
样品分析方法见表1
表1底泥监测项目分析方法
监测项目 分析方法及标准
总砷 《土壤质量 总汞、总砷、总铅的测定原子荧光法 第2部分:土壤中总砷的测定》(GB/T22105.2-2008)
总汞 《土壤质量 总汞、总砷、总铅的测定原子荧光法 第1部分:土壤中总汞的测定》(GB/T22105.1-2008)
总铬 《土壤质量 总铬的测定火焰原子吸收分光光度法》HJ491-2009
总镉 《土壤质量 铅、镉的测定石墨炉原子吸收分光光度法》GB/T17141-1997
总铅 《土壤质量 铅、镉的测定石墨炉原子吸收分光光度法》GB/T17141-1997
总铜 《土壤质量 铜的测定火焰原子吸收分光光度法》GB/T17138-1997
2.评价方法与评价标准
2.1评价方法
底质中各污染物单项评价中污染指数计算公式:
式中: ――污染指数;――污染物实测值; ――污染物评价标准。
底质综合评价采用内梅罗综合污染指数:
式中:――底质综合污染指数; ――各单项指标中最高值;
――各单项指标的均值。
底质变化趋势定量分析采用spearman秩相关系数法,秩相关系数rs计算方法如下:
式中:di=Xi-Yi;
Xi-时间周期1到周期N按浓度值从小到大排列的序号;
Yi-按时间顺序排列的序号;
N-时间周期数(如5年、5月等)
当rs>Wp则表明变化趋势有显著意义,如果rs是负值,则表明在评价时段内有关统计量指标变化呈下降趋势或好转趋势;如果rs为正值,则表明在评价时段内有关统计量指标变化呈上升趋势或加重趋势;当rs≤Wp则表明变化趋势没有显著意义:说明在评价时段内底泥变化稳定或平稳。
2.2评价标准
由于国内没有统一明确的底泥评价标准,本文评价标准以南通市1987年农业土壤背景调查结果为参照值,标准见表2。分级标准见表3。
表2 农业土壤中部分元素评价标准单位:毫克/千克
元素 汞 砷 铅 镉 铬 铜
含量 0.113 5.86 25.3 0.557 57.1 27.5
表3 底质分级标准
污染等级 污染状况 综合污染指数
Ⅰ 安全 Ph≤1.0
Ⅱ 轻污染 1.0<Ph≤5.0
Ⅲ 中污染 5.0<Ph≤10
Ⅳ 重污染 10<Ph≤20
Ⅴ 严重污染 20<Ph
3、现状评价与趋势分析
3.1底泥现状
2010年全市主要内河底质均受到不同程度的污染,污染等级为Ⅱ级,属轻污染。全市内河底质的铬、铅、砷和铜全部超过标准,镉和汞的污染也较为普遍。各项监测结果见表4.
按综合污染指数由大到小排列,海门市内河底泥污染程度由重到轻依次为海门河>圩角河>通吕河>通启河>。
表42010年海门市内河底质监测评价结果表单位:毫克/千克
区域 项目 综合污染指数 污染等级 污染状况
汞 砷 铅 镉 铬 铜
通启河 0.080 8.95 28.8 0.11 68.2 21.6 1.26 Ⅱ 轻污染
通吕河 0.090 9.50 29.4 0.15 66.5 23.9 1.34 Ⅱ 轻污染
海门河 0.090 11.90 30.7 0.19 64.7 21.2 1.61 Ⅱ 轻污染
圩角河 0.090 10.90 30.6 0.10 74.3 21.5 1.50 Ⅱ 轻污染
3.2变化趋势
“十一五”期间,全市内河底泥监测评价结果见表5,采用秩相关系数法对内河底泥综合污染指数进行趋势分析(表6、图1),结果表明:
通启河底泥综合污染指数无变化,底泥质量无变化,砷、镉和铜浓度总体上呈下降趋势,其它污染物浓度基本呈震荡式变化趋势。
通吕河底泥综合污染指数呈不显著上升趋势,底泥质量无明显变化,底泥中各污染物浓度基本呈震荡式变化趋势。
海门河底泥综合污染指数不显著上升趋势, 底泥质量无明显变化,底泥中各污染物浓度基本呈震荡式变化趋势。
圩角河底泥综合污染指数呈不显著上升趋势,底泥质量无明显变化,铅和铬浓度总体上呈上升趋势,铜浓度呈下降趋势,其它污染物基本呈震荡式变化趋势。
表5 2006~2010年内河底质监测结果单位:毫克/千克
区域 年份 项目 综合污染指数 污染级别
汞 砷 铅 镉 铬 铜
通启河 2006 0.040 0.49 30.2 0.22 81.8 34.8 1.15 Ⅱ
2007 0.090 11.2 30.1 0.61 44.6 25.6 1.56 Ⅱ
2008 0.090 9.61 32.2 0.56 45.6 28.4 1.39 Ⅱ
2009 0.070 9.41 24.2 0.14 62.8 26.8 1.31 Ⅱ
2010 0.080 8.95 28.8 0.11 68.2 21.6 1.26 Ⅱ
通吕河 2006 0.020 0.82 32.4 0.23 72.6 33.4 1.05 Ⅱ
2007 0.100 7.71 39.9 0.71 35.6 23.0 1.35 Ⅱ
2008 0.100 9.97 31.0 0.42 39.2 28.8 1.41 Ⅱ
2009 0.080 9.35 28.6 0.13 66.7 25.6 1.32 Ⅱ
2010 0.090 9.50 29.4 0.15 66.5 23.9 1.34 Ⅱ
海门河 2006 0.080 0.41 31.6 0.27 72.7 34.7 1.08 Ⅱ
2007 0.110 9.92 20.7 0.53 43.4 25.0 1.39 Ⅱ
2008 0.100 8.85 34.5 0.58 43.2 30.4 1.32 Ⅱ
2009 0.080 8.94 26.8 0.17 57.0 24.7 1.25 Ⅱ
2010 0.090 11.90 30.7 0.19 64.7 21.2 1.61 Ⅱ
圩角河 2006 0.050 0.52 28.7 0.31 73.0 37.4 1.12 Ⅱ
2007 0.080 12.20 25.6 0.56 35.2 27.8 1.65 Ⅱ
2008 0.100 9.95 27.4 0.73 46.3 27.4 1.44 Ⅱ
2009 0.070 8.79 27.7 0.10 64.2 22.3 1.23 Ⅱ
2010 0.090 10.90 30.6 0.10 74.3 21.5 1.50 Ⅱ
表62006~2010年内河底质综合污染指数趋势分析
年份 通启河 通吕河 海门河 圩角河
2006 1.15 1.05 1.08 1.12
2007 1.56 1.35 1.39 1.65
2008 1.39 1.41 1.32 1.44
2009 1.31 1.32 1.25 1.23
2010 1.26 1.34 1.61 1.50
rs 0 0.2 0.6 0.3
趋势判断 无变化 上升 不显 上升 不显 上升 不显
图12006-2010年海门市主要河流底泥综合污染指数趋势图
4、结果分析
关键词 水环境;污染原因;治理对策;天津市
中图分类号 X52 文献标识码 A 文章编号 1007-5739(2014)03-0242-02
天津市位于海河流域下游,河流水系众多,流经该市的行洪河道19条,总长约1 100 km;排水河道109条,总长1 890 km。多年来,天津市不断加大河道治理力度,尤其通过3年水环境综合治理和清水工程的实施,全市河道水生态环境明显改善。随着天津市经济社会快速发展和人民生活水平不断提高,对河道防洪、供水、排涝和保障生态环境的要求也越来越高。目前,天津市部分河道水质仍然较差,主要原因是污染治理滞后以及入境水量减少,主要河道中其劣V类水体长度所占比例达76%。此外,河道、堤岸环境仍存在不同程度的脏乱现象,倾倒垃圾、围垦放养、违法占用等问题时有发生,主要原因是管理缺失、沿河村镇密集等,严重影响了河道水生态环境质量,亟需强化管理。现对天津市水污染的主要原因进行分析,并提出治理对策。
1 水环境污染的主要原因
1.1 环境保护意识差,投入不足
许多生产企业的经营管理者,片面追求经济效益,环境保护意识较差,忽视环境效益,未意识到保护河道水环境的重要性和紧迫性,不注重可持续发展。此外,在环境保护方面的投入较少,污染治理资金不足,影响污水处理进程,尤其是建设城市污水处理设施方面,经费难以到位。在法律、法规方面,虽然有一定执法依据,但是由于种种原因,执法力度一定程度上仍然不够。
1.2 工业污染与生活污染严重
污染排放总量增长速度快,主要污染物排放量远远超过水环境自净能力。沿河周边工厂每年排入河道废水量加上一些企业废水偷排、漏排、排污量更大。不少企业无力治理产生的废水,未经处理就直接排放。随着城镇化发展,污水收集管网建设滞后,而城镇污水排放量增加,不能满足污水处理厂的运营要求,沿河乡镇生活污水未经任何处理,直接排入河中。河床成为倾倒建筑垃圾和生活垃圾的场所,白色污染严重,造成堵塞。
1.3 生态破坏和农业污染加剧
公路建设造成的水土流失,由于历史原因,至今恢复缓慢,河床增高,河道堵塞,流域水量减少。生态环境的破坏加剧了河道水环境的污染。河流自净能力降低,环境容量不足。农民在农业生产过程中过量使用农药、化肥等,造成水环境污染[1-3];流域周边的规模化畜禽养殖业日渐发展,废水产生量大且浓度高,仅进行初级处理就直接排入河流中,引起污染。
2 治理对策
2.1 组织协调机制
一是成立市河道水生态环境管理领导小组,负责研究、部署、监督实施河道水生态环境治理和管理计划,审定河道水生态环境管理标准、制度、考核办法和考核结果,协调解决河道水生态环境的重大问题。领导小组下设办公室。二是各区县也要成立水生态环境管理领导小组,完善具体工作方案,细化工作分工,确定水生态环境管理的工作任务和目标,编制《水生态环境管理工作方案》,制定《水生态环境管理规划》,充分发挥组织协调和推动作用。各区县组建指挥部和相应工作机构,专题研究确定水生态环境管理具体措施,落实各项工作措施,保证水生态环境管理工作的顺利进行。与上级有关部门沟通协调,积极推动上游水源保护工作,加大上游水源保护推动力度。
2.2 严格落实“河长制”管理
一是完善“河长制”管理办法,治理一条、纳管一条,确保治理成效。二是完善考核评价制度,健全干部绩效考核机制;完善督查通报制度和问责制,落实责任追究制度;通过建章立制,取得实际效果。三是配备专业设备,培育社会化养护队伍,“河长制”考核实现精细化、常态化和长效化,要建立台账、完善措施,制定河道水环境巡视检查和管理养护制度,加强河道日常保洁管理,实现河道全方位“网格化”管理。四是创新思维,创新形式,加强培训,提升监督员队伍整体业务水平。就加强监督、规范流程、履行职责等内容展开培训,及时总结水环境治理和河长制社会监督工作情况。五是强化入河排污口门的治理。加强截污、治污和水资源保护,实施入河排污口截污治理,确保无污水直排;加强排水口门监管,确保污水处理达标排放;做好入河排污口门治理工程的核验工作,确保质量和治理成效。
2.3 加大宣传力度,严格依法行政
加强水资源宣传,开展多层次、多形式的水资源知识宣传教育,增强全社会的水资源节约保护意识。建立公众参与的管理监督机制,通过听证、召开征求意见会等多种形式,广泛听取社会意见,营造全民参与水环境保护的社会氛围。遵循环保法,结合地方实际,分门别类制定环保具体措施。在河道与道路交口处设置各类警示牌,制定具体措施,规范人们的行为。强化日常巡查管理,建立水政、公安、工程管理人员“三位一体”联合执法机制,并在沿线组建专业保洁队伍,加快推进精细化管理,使水域违章违法现象明显减少。
2.4 积极治理工业污染源和生活污染源
要进行综合治理,对河道产生污染源的企业实施关、停、并、转、改、治、迁等相应措施,制定相关配套政策,达标排放的污水要接入污水厂,实施深度治理,依法查处违法违规偷排“黑水”的企业,对实现废水“零排放”的企业,减征污水处理费。采取封堵、切改和强化监管等措施,强化入河排污口门治理,建设污水处理厂网,做到厂网同步投运,确保污水处理厂运行负荷率、进出厂水质达标。对工业企业实行污染物排放总量控制。推进中小企业废水治理设施建设,实现达标排放。加强对企业环保设施的监督管理,提高设施运行率,减少污染物排放。同时对于新建的建设项目,推行清洁生产,提高水的循环利用率,做到节水、降耗、节能、减污。
积极与有关部门沟通,治理生活污染。一是积极推进垃圾无害化处理场的建设,实现垃圾无害化。二是对于城区的生活污水进行集中处理,建设污水处理厂,污水达标排放。三是在城镇新建小区实行雨污分流,为污水集中处理做好前期准备,结合城镇道路、工业区改造,建设排污管网。四是促进各医疗单位完成医源性废水治理。五是各部门密切协作,做好禁磷和禁止“白色污染”工作。六是结合新农村建设,综合整治农村水环境。抓好城镇屠宰场的污水处理设施建设,加强村镇污水处理、坑塘整治、面源污染控制。
2.5 努力改善生态环境,加强农业污染管理
积极改善生态环境,一是加强河道绿化和景观建设,中心城区和区县建成区河道两岸,逐步建设沿河生态景观带,其他河道堤防建设林木绿化带;加大河道护岸林、堤岸林管护力度,对已有林木实施专业化管护。二是严格对新建水利工程编制水土保持方案,报经水保部门审批。三是提升建设项目的科技含量,做到既增加经济效益又不破坏生态环境和水土保持。四是建立河道生态补水长效机制,鼓励使用再生水、雨洪水向河湖、湿地补水。五是制定长远的治理措施,推进畜禽养殖场污染治理,抓好规模化养殖场污水治理设施建设,实现污水达标排放,畜禽粪便资源化和无害化。同时划定规模化畜禽养殖场的饲养区、禁养区,发展生态农业,改变养殖业与种植业脱节现状,以有机肥代替化肥,提高畜禽粪便利用率,减少畜禽粪便污染物对水体的污染。六是发展有机食品、绿色食品和无公害食品生产,积极推广生态农业技术,打造绿色品牌,降低农业污染[4-6]。
2.6 加强水质预警监测,完善水环境在线监测系统,提高在线监测预警能力
一是建立水质自动监测超级站,定期监测水库和来水水质。科学布局监测网点,采用先进的自动水质监测技术和仪器采用信息遥控和网络传递方法,改善整体环境监测系统,发挥水质自动监测系统的作用,掌握水情变化,严防水污染事故发生。二是建立水库视频监控及巡检数字化系统建设,在水库关键口门、坝区及河道入口处加装视频监控设备,实现对水库重点地区24 h监控,加快应急机动监测能力建设,全面提高监控、预警和管理能力。
2.7 充分发挥区县指挥部的作用,建立健全监督检查和快速反应机制
加强水资源管理能力建设,组织开展区县水资源管理规范化建设,完善装备、设施和人员配备,提高管理素质和管理水平。抓好经验总结、问题分析、情况通报、督促检查等各项工作,确保水环境治理工程顺利实施。加强河道日常巡视检查,创新形式,畅通渠道,主动接受社会监督,深入强化责任意识,切实规范工作流程,建立健全反应机制和管理机制,增强快速反应和监督处置能力,不断加大检查力度,对涉水事件做到快速反应、及时反馈、妥善处置[7-8]。
3 参考文献
[1] 刘善江,李国学.高碑店污泥农用肥效及重金属污染防治[J].华北农学报,1999,14(1):118-122.
[2] 孙志洁.棉田残膜污染调查及其危害[J].河南农业科学,2006(4):61-62.
[3] 吴文卫,杨逢乐.赵祥华污染水体生态修复的理论研究[J].江西农业学报,2008(9):138-140.
[4] 王景和.我国农村水环境污染现状及原因[J].现代农业科技,2010(11):279.
[5] 曾祥斌.农用残膜污染现状及治理措施[J].现代农业科技,2009(16):227,229.
[6] 周静,崔键,梁家妮.冶炼厂综合堆渣场周边水质和稻米重金属污染状况评价研究[J].华北农学报,2008(S2):349-352.