发布时间:2023-02-23 19:08:14
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的人工智能技术样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词:人工智能;智能化计算机辅助教学;专家系统;知识库
中图分类号:TP18文献标识码:A文章编号:1009-3044(2007)12-21667-02
The Application of Artificial Intelligence in Education
HU Ji-li,YIN Yun-xia
( Anhui University of Traditional Chinese Medicine, Hefei 230038,China)
Abstract:As a result of the interpenetration of older branches into each other, scientific theories and their application of Artificial Intelligence have expanded into nearly all the areas of human activity. This paper introduces the application of Artificial Intelligence in education, especially deals with Intelligence Computer Aided Instruction based on the artificial Intelligence.
Key words:Artificial Intelligence;CAI;expert system;knowledge base
1 引言
人工智能作为当今世界三大尖端技术(空间技术、能源技术和人工智能技术)之一,是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学、机器学习、计算机视觉等。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多的是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决定支持系统和人工神经网络。它总的来说是面向应用的,随着人工智能的诞生和发展, 人们开始把计算机用于教学领域。同时, 自七十年代以来, 有教学能力的专家系统得到研制。人工智能技术与专家系统的成就, 促使人们把问题求解、知识表示这些技术引入计算机辅助教学(CAI) , 这便是智能型计算机辅助教学(CAI)。
近几十年来, 随着人工智能技术的日渐成熟, 它的一些研究成果被陆续应用到教学领域, 推进了教育发展改革和教学现代化进程。人工智能在教学系统的重要性也已形成共识。
2 人工智能在教育中的作用
目前在教育技术中涉及到AI的主要有以下领域:
2.1 知识的表示与访问
基于人工智能的知识表示是以知识为对象,以计算机的软硬件和计算机科学及人工智能和专家系统技术为工具,以哲学、心理学和逻辑学等为方法和指导,将知识表达成计算机可以直接处理的“知识库”,使用“计算机的智能”来模拟人类专家或“人类智能”,对知识进行快速、精确、自动、科学的处理。它不属于通常的“数据管理或信息管理”的“数据”层次,而是属于“知识处理”或“知识”的智能化层次。其主要内容是对于知识进行形式化的表示、自动化的推理,智能化的教学或创造。计算机辅助教育是其中重要的组成部分。
2.2 符号计算
符号计算包括数值计算、符号计算和函数作图。其代表软件是Mathematica,当该软件在1988年第一次,对科技及很多其他领域的计算机使用方式产生了深刻的影响。Mathematica 1.0时,商业周报将其列入当年最重要的十大新产品名单。这标志着现代科技计算的开始。Mathematica也被大量地用于教育:有成百上千的课程,从高中课程到研究生课程用它作基础。随着各种学生版的,Mathematica也已成为全世界各种不同专业学生的重要工具。
2.3 对学生错误的自动诊断
采用人工智能技术,使得教学过程中系统可以自动诊断学生的学习水平,不仅能发现学生的错误,而且能指出学生错误的根源,从而做出有针对性的辅导或学习建议。而且根据学生的特点自动选择教学内容,自动调整教学进度,自动选择教学策略与方法。
2.4 实现智能性超媒体教学系统
超媒体系统有理想的教学环境,容易激发学生的学习兴趣和学习主动性,但不能保证达到预期的学习目的,而且由于不了解所要教的对象,所以不能做到有针对性的指导,不能因材施教。智能辅助教学系统正好与此相反。将二者结合起来,就可实现性能互补,从而研究制出新一代高性能的智能超媒体教学系统。
3 人工智能应用于教育的新方向:ICAI
3.1 传统CAI的不足
传统的CAI由于其集成性、交互性、多媒体性等特点,在教学中可以极大地激发学生的学习动机,提高教师的教学效率和学生的学习效率。但在使用过程中,CAI的一些弱点也逐渐暴露出来。主要表现有:
(1)缺乏人机交互能力
现有CAI 大多以光盘作为信息的载体, 将教材中的内容以多媒体的形式展现出来, 教学信息是按预置的教学流程机械式地提供给学生的, 学生接受起来很被动。而且在课堂教学中, 一般也只能通过教师按预定的课件流程进行操作, 无论学生还是教师都不能很好地参与教与学的过程, 因此人机交互没有很好地实现。
(2)缺乏教师与学生的互动
现有的CAI 课件在学生自学、进行操作使用时,如何学习都是学生自己的事。教师不能完全了解学生的情况,学生在碰到问题时,也不能向教师求助,师生之间是互相封闭的,软件所起的积极效果大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI 课件是在单机环境下运行的,它们无法利用网络的优势使知识内容快速更新,也更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。
(3)缺乏智能性
要想面对不同情况的学生进行不同程度的教学过程, 使学生的学习变为主动, 并能由系统自动地提供助学信息而有选择地学习,要想使教师的教学能积极地参与进去并根据系统提供的信息按照学生的认知模型为其准备最适合的学习内容, 给予不同方式的教学模式与方法, 没有智能性的CAI 课件系统, 是很难实现以上目的并达到良好教学效果的。由此可见,现有的CAI 随着人们要求的提高, 已经不能尽如人意。因此以智能CAI 为代表的新的计算机辅助教学系统将是教师在教育技术上需要不断探求、努力实现的发展方向索。
3.2 ICAI-人工智能与多媒体技术的结合
为了克服传统CAI的缺点,需要在知识表示、推理方法和自然语言理解等方面应用人工智能原理。因此很多专家提出了智能计算机辅助教学(ICAI),智能计算机辅助教学(Intelligence Computer Assisted Instruction-ICAI)以认知学为理论基础。将人工智能技术应用于CAI,是智能化的CAI。在ICAI系统中,允许学生与计算机进行较自由的对话,学生的应答不限于数字或简单的短语。系统能够判定学生应答的正确程度,并给予适当的反馈,而不是简单地说“对”或“错”。ICAI的宗旨在于利用现有计算机技术实现较好的人工智能,模仿人类的交互方式、思维习惯及情绪流动,修饰和掩盖计算机的缺陷。
3.3 ICAI的优点
(1)将教学内容与教学策略分开,根据学生的认知模型提供的信息,通过智能系统的搜索与推理,动态生成适合于个别化教学的内容与策略。
(2)通过智能诊断机制判断学生的学习水平,分析学生产生错误的原因,同时向学生提出更改建议、以及进一步学习内容的建议。
(3)通过对全体学生出现的错误分布统计,智能诊断机制将向教师提供教学重点、方式、测试重点、题型的建议。
(4)为教师提供友好的教学内容、测试内容维护界面,无需改变软件的结构即可调整教学策略。
(5)通过对学生认知模型、教学内容、测试结果的智能分析,向教学督导人员提供对任课教师教学业绩评价的参考意见。可以说,一个理想、完美的ICAI系统就是一个自主、优秀的“教师”。
3.4 ICAI的标准
以现有的科学技术水平而言,短时期内显然无法实现具备上述全部功能的ICAI系统。一般认为,只要具有下列一个或几个特征的CAI系统就可以称之为ICAI系统。
(1)能自动生成各种问题与练习。
(2)根据学生的学习水平与学习情况选择与调整学习内容和进度。
(3)在了解教学内容的基础上自动解决问题,生成解答。
(4)具有自然语言生成与理解能力,以便实现比较自由的教学问答系统,提高人机交互的主动性。
(5)对教学内容有解释咨询能力。
(6)能诊断学生错误,分析原因并采取纠正措施。
(7)能评价学生的学习行为。
(8)能评价教师的教学行为。
不难看出,ICAI与传统的CAI相比,更加符合教育教学的规律,切合学生的认知习惯,具有明显的优越性。
3.5 ICAI的结构
ICAI主要由三个模块组成:专家系统模块、教师模块和学生模块。
(1)知识库
知识库是实现知识推理与专家系统的基础,而建造知识库的前提则是要解决知识的形式化,人工智能技术在教育中的应用表示以及知识的访问与调用问题。因此,知识的表示与访问是人工智能的核心技术之一,也是将AI引入教育领域必须首先解决的一个难题。
ICAI中的资源库应该包括以下一些内容:
①多媒体素材库:包括所要呈现的知识的一些素材,包括:文本、图像、声音、动画及数字影象等多媒体教学资源。这些用于多媒体数据库管理,便于分类、增删、修改及查询等操作。
②教学内容库:教学内容库用于存放教学内容,包括领域知识库(含辅助知识库、提示帮助库、练习题库,和测试题库)。这些教学内容,包括习题和试题分章、节、课及知识点等有序存贮。供专家决策系统调用。
(2)学生模块
学生模块主要包括以下三个模块:学生登陆模块、学生水平评价模块和学生监督模块。
①学生登陆模块:利用该模块主要用于学生使用ICAI时登录,第一次登录时学生输人姓名、性别、年龄、学历等相关信息,然后对学生进行询问,选择合适的测验题对学生进行初测推荐学习计划。当再次登录时,系统根据保存的信息安排合适的学习内容。
②学生水平评价模块:学生水平测试模块用于评价某一教学单元学习完后测试成绩。通过测试等因素分析,可以比较确切地了解学生的具体情况,从而制定出合理的教学策略和教学过程
③学习监测模块:学习检侧模块用于监测记录学生的日常学习情况,记录学生学习某教学单元时的参数值,并记录在学生档案中。包括:学生目前学习单元号;学习方式;正常学习、练习、提前浏览、学后复习;学习时间;学生提示问题的类型和次数;学生本次练习出错次数。
(3)专家决策模块
CAI中的专家决策系统可以看作专家系统中的推理机。专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过入类专家的水平。计算机中存有人类专家的知识并具有推理能力,从而可解决诊断、规划、调度、预报、决策等要靠人类专家才能完成的任务。
成功的例子如:① DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用;②MYCIN系统可以对血液传染病的诊断治疗方案提供咨询意见经正式鉴定结果,对患有细菌血液病、脑膜炎方而的诊断和提供治疗方案已超过了这方面的专家。
ICAI根据学生模块提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,还可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因,进而有针对地提出合理的教学建议、学习建议以及改进方法,既提高了学生学习的满意度,激发了学生的学习热情,也对教师教学提供了客观的依据和科学的方法。
4 结束语
由此可见人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。人工智能技术的发展也必将会对ICAI 的发展起到巨大推动作用。近几年来,人工智能的研究者们尝试着使学生脱离“辅导学习”的过程来接受新知识,而采用“通过活动进行学习”的方式。在教学的其他方面,人工智能技术还可以建立人类推理模型学习工具等诸多的运用, 展示出越来越好的实用性。随着Internet 的发展,虚拟现实技术的广泛应用, ICAI 也将得到进一步的完善。21 世纪的教育教学手段将是以智能化CAI 为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,使人类扩展了自己的能力,促进了教育领域方方面面的改革。
参考文献:
[1]王万森.人工智能原理及其应用[M].北京:电子工业出版社,2000.
关键词:电气 自动化 人工智能
全面应用人工智能技术的最新成就,充分推动电气设备自动化的进一步深化发展,提高其系统运行趋于智能化的同时,人工智能技术的应用还利于强化系统工作的安全性、稳定性,有利于企业生产效率的提升以及市场竞争力的增强。
一、人工智能技术研究与应用的现实情况
近年来,大量科研单位以及专业院校都在人工智能技术的创新与研究以及其电气设备控制系统中的应用上开展了大量工作,人工智能用于电气设备系统的结构设计、故障诊断、预警、监控以及自动保护等方面都达到了一定的水平。
以结构设计方面为例,因电气设备系统结构设计复杂性高,涉及到诸如电路、电磁、电机电器应用等等大量的学科专业知识,更要求工作人员有丰富的实践经验。目前,在数字技术空前创新发展的背景下,电气产品及其控制系统的设计工作业已转向了CAD,使得新产品新系统的构建周期显著缩短。在此基础上加入人工智能技术,系统设计的质量以及速度都可得到全面提升。
此外,人工智能技术在进行电气设备系统故障控制与预警方面也有非常独特的优势。电气控制系统出现故障之前征兆呈非线性,因此人工智能技术中的模糊逻辑、神经网络等等部分可以充分发挥其优势。
最后是人工智能技术在电气自动化控制系统中的运用,主要的技术方法有、神经网络、专家系统以及模糊控制三种,其中以最后一种控制技术最为简便,可应用性最强。人工智能技术在电气自动化控制系统中以AI控制器为主,其可以视为非线性函数近似器。与一般的函数估计设备相比较,AI控制系统在进行设计时不一定必须工作对象的具体模型,这就避免在设计时需要考虑控制对象模型本身的参数变等不确定性。此外,其性能提升的空间比较大,而且易于调节,一致性强,对于新的数据信息适应性良好;配置成本低而且更新简便、抗干扰能力强。
二、电气自动化控制系统中人工智能技术的具体应用
电气自动化控制系统当中,人工智能技术的应用有两种,一是直流传动控制;另一种是效流传动控制。
在直流传动控制中,人工智能技术的应用有模糊逻辑控制技术为主,有Mamdani与两种可用于调速控制系统。它们均具备规则库部分,规则库实质上是一个if-them的模糊规则集合。以后者为例,它最主要的规则就是“if x=A,且y=B,则z=f(x,y)z则z”。其中的都是模糊集。模糊控制设备以推理机为核心部分,它负责模仿人脑的智能化决策以及模糊控制命令的推理。除此以外还有模糊化部分、知识库部分以及反模糊化部分,第一个部分是通过多种不同形式的函数对所输入的变量做出测量,并将其量化、模糊化;第二部分就是由数据规则以及语言控制库构成所构成的知识库,本库设计时就是应用专家的知识与经验对电气设备进行控制,在建立设备模型时,模型操作设备依据人工神经网络系统的推理机制进行模型建设;最后是以模型参数量化与中间平均技术等模糊化技术的应用。
除了模糊逻辑控制技术以外,还有人工神经网络控制技术。这种技术主要用于不同模式的识别以及各种信号的处理,可以在电气传动控制工作中发挥有效作用。这种技术以并行结构为主,适用范围比较广,可以大大提升条件监控、诊断系统的准确性;该控制技术最常用的学习策略是误差反向传播,也就是说在网络具备充足的隐藏层、结点和恰当的激励函数的情况下,多层人工神经网络只要利用反向传播就可以计算出对应的非线性函数近似参数,大大提高网络运行速度。
在交流传动控制中,人工智能技术的应用也同样有模糊逻辑与神经网络两种具体运用。
就模糊逻辑而言,到目前为止均以模糊控制器直接代替原有的普通速度控制设备为主,不过西方某大学研发了一种高性能的带有多个模糊控制器的全数字化传动控制体系,该体系所带有的模糊控制器即可以用来代替普通的速度控制设备,又可以用于执行它控制任务。
就人工神经网络控制技术而言,实践研究中以其对交流电气设备及其驱动环境参数监测及诊断为主。人工神经网络用作步进电动机控制时,可采用一般的反向转波计算方法,就是通过实验数据的应用,通过电机负载转矩以及电机的初始速度最终确定智能监控系统可监测的最大速度增加值。这种设计方案的实现,要求神经网络具备识别三维图形映射的能力,以便达到比常规梯形控制计算模式强的控制成效。在此模式下,人工神经网络可以大大缩减电气自动化系统定位所需要的时间,并且强化对于负载转矩以及非初始速度变化范围的控制工作。人工神经网络的结构以多层前馈型为主,具体可分为两个系统:系统一是在辨识电气动态参数的基础上对通过定子的电流进行自动调节与控制,系统二是在辨识机电系统的运行参数基础上对转子速度进行自动调节与控制。
近年来人工智能高速发展,计算机视觉、自然语言处理、机器人技术、语音识别等人工智能技术逐渐走入我们的视野,这些技术在改变人类生活方式的同时也极大的影响了当前的金融行业,本文将简要介绍人工智能技术,并分析和探讨人工智能技术在金融行业的一些应用状况。
【关键词】人工智能 金融
人工智能作为计算机科学的一个重要分支,近年来得到了广泛的社会关注。计算机视觉、自然语言处理、机器人、语音识别等人工智能技术为逐渐走入我们的视野,例如前不久Alphago与李世石的人机大战,此外还有近年来兴起的智能聊天机器人(如微软小冰、Siri等)、无人驾驶技术等,这些技术在一定程度上提高了人们生活的便捷度,为人们略显单调的生活增添了乐趣,同时也给各个行业带来巨大的变革。在这个过程中,作为与人们生活息息相关的金融行业也开始步入了智能时代,随着互联网金融平台和金融科技公司的兴起,人工智能技术被广泛应用在银行、保险、投资理财等金融行业中,如智能投资顾问、股票交易预测、金融支付验证、投资理财推荐、贷款审批等等。
1 人工智能技术概述
1.1 什么是人工智能
人工智能是指使计算机拥有人类智能系统,令其具备一定的自主计算、思考、学习能力,从而高效地完成一些复杂的任务。由于人工智能是基于计算机系统运作,与人相比其受环境的影响也大大降低。同时人工智能技术使得计算机拥有人类难以企及的大数据分析功能,其处理海量、非结构化数据以及推断和演绎问题的能力,使人工智能被广泛启用在图像、视频、语音、文本等数据处理中。
1.2 人工智能主要研究领域介绍
1.2.1 机器视觉
机器视觉是指利用成像系统代替人类的视觉器官,通过计算机程序对各类图像进行分析、处理和解释。借助设定的算法,计算机能够对图像中所蕴含的视觉信息,如物体的形状、位置、姿态、运动数据进行快速地分析评估,例如拍照相机中的人脸检测、自然场景图像中的文字定位和识别等。近年来机器视觉已经在公共安全监控、金融支付验证以及医疗图像诊断等领域有着重要的应用。
1.2.2 自然语言处理
自然语言处理是研究在人与人交际中以及在人与计算机交际中的语言问题的一门学科,它通过算法或规则对庞多复杂的语言、文字信息来进行各类分析、处理或理解。该领域研究的问题主要有机器翻译、信息检索、自动文摘、文档分类、问答系统等,如通过机器翻译实现从一种语言到另一种语言的自动翻译;通过文档分类实现垃圾邮件的自动过滤,此外,百度、谷歌等搜索引擎通过信息检索技术使得知识通过问答的方式得到普及。
1.2.3 语音识别技术
语音处理是指运用特定程序使得机器具备识别人的语音的功能,从而完成人类所的各项任务。这三个研究领域作为人工智能最主要的分支,近年来吸引了许多的学者来进行研究,并且各大互联网公司也基于这些领域做出了很多应用产品。除此之外,人工智能还有专家系统、神经网络等重要的研究领域。
2 人工智能在金融业的一些应用
2.1 金融支付验证
首先是金融支付方面,相比于比较常见的密码输入验证的方法,生物特征识别技术可以使得密码验证的安全性大大提高。目前基于生物特征验证的金融支付方式主要有三类:指纹验证、人脸验证和虹膜验证。
第一类是指纹验证,它是通过将采集的指纹图像与备份指纹图像来进行对比验证,近年来许多智能手机开始支持指纹验证支付,该验证方式相比于传统的密码支付更为安全快捷;第二类是人脸验证,其通过提取人脸图像的特征,形成一个描述该面像的特征向量,将之与原先采集的人脸属性进行比对验证,在今年的CeBIT上马云演示了蚂蚁金服的人脸验证支付功能。第三类便是虹膜验证,也称视网膜图像验证,一个虹膜图像中约有266个单位的读取点,其复杂程度远远超过了其他生物特征,是目前公认的安全性和保险性最高的身份验证方法,目前一些发达国家已开始把这种身份验证技术用于银行提款机。
2.2 智能客服
在银行服务方面,可以通过语音识别技术、自动问答技术来构建金融领域专用的自动问答机器人来实现远程客户服务、业务咨询和业务办理等,这样不仅可以使得用户能够及时得到满意的答复,提升用户的满意度,而且可以减轻人工服务的压力,降低企业的运营成本。在2015年双十一期间,蚂蚁金服95%客户服务已经由智能问答机器人完成,并且实现了自动语音识别。
此外,在银行网点安放可交互型的机器人来替代大堂经理,对客户进行语音交流、业务咨询和办理等,这样在一定程度上可以增强银行服务的科技感、提升客户体验,并且减轻工作人员压力。例如交通银行推出的机器人“娇娇”、民生银行退出的机器人“ONE”、农业银行推出的机器人“智慧小达人”等。
2.3 智能投资顾问
智能投资顾问是指根据理财客户的一些指标如年龄、经济实力、消费行为、理财需求、风险偏好等,通过机器学习算法以及现代资产组合优化理论来构建标准化的数据模型,并利用网络平台和人工智能技术对客户提供个性化的理财顾问服务。这种智能推荐服务类似于目前电商网站的个性化产品推荐服务,相比于传统的个人投资顾问,智能投Y顾问更加的可信、客观和可靠。近年来,国内外从事智能投顾的企业也越来越多,如:德意志银行推出的机器人投顾“Anlage Finder”、京东金融推出的智投、小金所的机器人投资顾问等。随着这些历史数据的不断增大以及算法模型的不断完善,智能投顾将会个性化和智能化。
3 结论
随着互联网金融平台和金融科技公司的兴起,现如今的金融行业已经广泛的与人工智能技术相结合,除了上述介绍的三种应用外,人工智能技术还可以用于算法交易、银行贷款风险分析、客户分析和聚类、行业景气程度分析等等。我们有理由相信随着人工智能技术的不断提高,必定会给金融行业带来广泛而深刻的变革。
参考文献
[1]杨皓东,江凌,李国俊.国内自然语言处理研究热点分析―基于共词分析[J].图书情报工作,2011,55(10):112-117.
[2]姚华.支付宝如何利用大数据分析进行交易风险管控[J]. 计算机与网络,2015,41(19):49-49.
[3]樊GG,曲双石.金融产业升级: 从互联网到人工智能[J].当代金融家,2016(06):46-48.
[4]张雪飞,李洁清.浅谈我国商业银行的个人理财业务[J].活力,2009(04):44-44.
关键词:继电保护;人工智能技术;应用;解析
中图分类号: TM58 文献标识码: A 文章编号:
人工智能技术是通过模拟人类分析问题的思维模式,采用智能手段处理问题的技术。这种技术在实际应用中,能够有助于人们处理一些较为复杂的、并且难以通过数学模型进行求解的问题,提高问题的处理效率。在电力系统中,采用人工智能技术对系统中存在的故障进行检测和处理,为电力系统继电保护工作的研究与发展提供了新方法。
一、继电保护中的人工智能技术
(一)专家系统
专家系统也简称为ES系统,它是发展最早的、起到继电保护作用的智能系统。同时,它也是在人工智能系统中应用最广泛、研究最深入的课题之一,这项智能系统与整个知识工程的研究是紧密相连的。专家系统的构造,主要涉及了它对知识的表达形式、知识的运用、知识的处理等方面的研究方法以及理论知识。这个系统不单单结合理论知识来解决一些定性的问题,同时,还通过一种启发式的知识,例如,专家经验等解决问题。这样一来,通过这一系统的使用,就可以在解决问题时缩小知识的搜索的范围,进而提高解决问题的效率。除此之外,专家系统当中的解释模块,可以对一些在推理过程中使用到的知识、推理过程、推理结论进行进一步的解释说明。
在电力系统中的继电保护专家系统当中,通常所使用的表达知识的方式主要有以下几种:生产模式下的规则表示方法、框架模式下的表示方法、过程模式下的知识表示方法、面向对象的表示方法、知识模型的表示方法。其中,面向对象的表示方法和知识模型的表示方法是在智能技术、语言技术以及计算机技术发展的基础上形成的。专家系统在继电保护的管理以及整定工作当中得到了广泛的使用。一旦电力系统的运行模式发生改变、引进新的设备或者设备进行检修,面对这些现象,专家系统的定值以及相应的保护配置都会发生改变。另外,专家系统还可以依据其自身的运行规程、电网结构以及专家经验等功能,来对协助系统的应用人员做出保护对策。在人工智能系统中的专家系统虽然可以模拟专家来对继电保护工作做出相应的决策,但是,这种智能系统在实际使用的过程中还存在一些不足之处。例如,该系统在建立知识库以及维护知识库的方面还不是很完善,并且容错能力差,特别是在对一些难度较大、复杂程度较高的故障进行推理时,系统的反应速度较慢。以上种种不足,都会在一定程度上影响专家系统对继电保护的精准程度。
(二)人工智能系统中的模糊理论
模糊理论简称为FST理论,这个理论通过模糊隶属度这一概念来表述一些不确定、不精准的现象和事件。同时,在模糊理论当中引进了近似推理以及语言变量等模糊逻辑,通过这样的形式,来表达一些经验知识。通过对这一理论多年的探索和研究,如今,它终于成为能够具备一套完整推理体系的继电保护智能技术,并且被广泛的运用到电力系统当中。人们在对一件事物进行了解和认识时,过程往往都是在一定层面上来对失误进行辨别和划分,在这期间,并不需要精准的、复杂的计算。然而,模糊理论在解决问题时正是采用了模糊模式,为事物的识别工作提供了便捷、有效的途径。在整个电力系统当中,会存在很多电气量,通过微机保护能够在这方面对人类辨别失误的能力进行模仿,并且可以区分和辨别不同对象的特征,最后,利用智能化系统来实现对事物更高的辨别性能。
在进行电力系统中的继电保护工作时,智能模糊理论已经被广泛的应用,并且在一些领域上有了更新的进展。例如,发动机的保护工作、主变保护以及线路保护等等。但是,在模糊理论的应用过程中也会存在一些问题,例如,它在针对复杂的系统进行模辨识、建立、修改,以及对隶属度方面的获取都还没有得到进一步的完善。因此,这个系统在实际应用中并不具备一定的学习能力,自然,在使用的过程中会受到一些条件的制约,进而导致其功能不能很好的发挥出来。
(三)人工神经网络
人工神经网络这一系统的工作原理是最大限度上模拟人类的认知过程和人脑内部的组织结构,通过这样的形式来对相关信息进行处理。人工神经网路系统自身具备很多优势,例如,它具备联想记忆功能、适应能力强,可以进行并行分布处理等等。因此,这项系统凭借自身的优势在继电保护工作中得到了重视,并且广泛应用。在使用人工神经网络对电力系统中的故障进行检查时,它的诊断方法会与专家系统存在一定的差异性。人工神经系统更加注重于通过对标准样本的训练与学习,进而对系统内部的阈值和连接权进行调整,这样一来,就可以让知识分布在网络上,形成人工神经网络的记忆模式。由此可见,人工神经网络系统在获取知识方面的能力十分强大,同时,它能够有效的对含噪声的数据进行处理,这在一定程度上弥补了专家系统在对故障检测时存在的不足。人工神经网由于本身属于非线性的反射,所以,它可以通过这一方法来解决一些较为复杂的、并且难以求解的非线性问题,这也是它能够在继电保护工作中得到广泛应用的原因之一。最近几年以来,在电力系统的继电保护方面渐渐出现通过利用人工神经网络系统来对故障的距离、类型进行判断,进而有针对性的保护电力设备。
通过使用神经网络系统来完成继电保护工作,这不仅可以对故障进行准确的判断,同时,也提高了解决电力系统中电力故障问题的效率。但是,这种方法在性能上也存在一些不足,例如,对于一些具有启发性的知识在处理上还不是很擅长、性能的发挥主要依靠样本的完备程度决定等等。
二、人工智能技术在继电保护中的应用
对于每一种人工智能技术来说,在对其进行控制和应用的过程中都会存在一定的局限性,并且由于这个局限性而导致在处理电力系统当中的一些复杂问题时,技术不能充分的发挥出它的功能,达不到预期的效果。怎样把每一种人工智能技术在解决问题时的优势结合起来,最终形成一个具有强大功能的综合性人工智能控制技术,那将会在很大程度上提高处理电力系统当中故障的能力。因此,我们在人工智能技术的实际应用当中,要尽量规避每个系统当中的不足,综合利用人工神经网络、专家系统、模糊理论的优势,更好的完成电力系统保护工作。在实际应用中,可以结合人工神经网络系统和专家系统,对变电站进行分层分布的故障诊断;可以结合神经网络和模糊理论,依据经过改良之后的IEC三比值法,以此建立可以为电力系统中的变压器进行故障诊断的模糊神经网络模型。通过这个模型能够有效的对系统中一些不固定的故障因素进行处理,并且它具备了较强的获取知识的能力。从人类思维的发展模式角度来看,将各种人工智能技术进行融合,分析影响人工智能诊断准确率的因素,进而提高检测故障的准确率。
总结:
综上所述,针对目前现有的人工智能技术进行重新整合,让它们可以充分的发挥出自身的优势,扬长避短。深入的分析人工智能技术的理论知识和应用方法,研究完善继电保护的手段,提高人工智能技术对故障的处理能力,确保电力系统能够健康、稳定运行。
参考文献:
[1]张沛超,胡炎,郁惟镛.继电保护专家系统中知识的面向对象表示法[J].继电器,2010(09).
[2]王威,郁惟镛,张沛超.面向对象的继电保护整定计算专家系统的研究[J].电力系统及其自动化学报,2010(02).
【关键词】人工智能;电力系统;应用
人工智能技术简称AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,与基因工程、纳米技术并称为21世纪三大尖端技术。由于它是利用计算机来模拟人类的智能活动,因此完全摆脱了传统方法的束缚,能解决传统方法难以解决甚至根本无法解决的问题,当前,随着国家电网建设“坚强的智能电网”进程的不断深入,电力系统规模不断增加,数据量增多,管理上越发复杂,因此,将人工智能应用于电力自动化控制系统,能有效减少运行成本,提高工作效率,现就该问题进行粗浅探讨,以供参考。
一、人工智能技术概述
人工智能技术自上世纪50年展至今,在理论研究方面已取得突破性进展,在具体应用方面,主要如下:(1)专家系统(ES)。所谓专家系统,即一个计算机程序集,该程序利用当前的输入信息、知识库及一系列推理规则来完成由某一领域专家才能完成的工作。专家系统的特点在于其符号表达、逻辑推理及渐进式搜索能力。家系统在电力系统运行控制中的应用领域包括报警信号处理、电压控制、故障诊断、恢复控制、运行规划等。(2)人工神经网络(ANN)。人工神经网络是模拟的生物激励系统,由大量的神经元以一定的方式连接而成的,单个神经元的作用是实现输入到输出的一个非线性函数关系,它们之间广泛的连接组合就使得整个神经网络有了复杂的非线性特性,神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。神经网络具有良好的快速并行处理能力及分类能力,因此被广泛地应用于电力系统的实时控制、检测与诊断、短期和长期负荷预测、状态评估等诸多领域。(3)模糊集理论(FL)。FL发展于上世纪60年代中期,它是多值逻辑的扩展,能够完成传统数学方法难以做到的近似推理。其具体应用为:应用多目标模糊决策方法,进行故障测距和故障类型识别;给出模糊集理论的配电系统潮流与状态估计方法;采用模糊推理估计配电系统负荷水平,归纳各类用户随不同因素的变化;用模糊集方法构造变压器保护原理,区别内部故障、涌流、过激以及电流互感器饱和情况下的外部故障;寻求维持电力系统安全运行和充分利用输电容量之间的折衷解;运用于配电系统损耗模糊计算模型,提高计算精确度等。(4)启发式搜索(HS)。启发式搜索主要有遗传算法(GA)和模拟退火(SA)算法两种,启发式搜索通过随机产生新的解并保留其中较好的结果,并避免陷入局部最小,以求得全局最优解或近似最优解。以上两种方法,都可用来求解任意目标函数和约束的优化问题。
二、人工智能技术的在电力自动化的应用
(1)在电源规划中的应用。电源规划是电力系统中电源布局的战略规划,当前,人们对高质量电能的需求越发突出,因此,加强电力建设,扩充新电源势在必行。电源规划问题之所以复杂,其中一个重要原因即是每个规划时期备选机组状态的数目庞大,而对于每个具体的规划项目,这些状态大多是不可行的,而利用专家系统,可以根据实际规划工作时的具体约束条件对方案进行裁减,尽早删除大量不可行的方案,从而减少优化计算的工作量,提高规划效率。同时,利用遗传算法,可以实现站址和站容的优化。(2)在电能质量分析中的应用。20世纪80年代末以来,随着微电子技术和电力电子技术的发展,基电能质量越来越被人们所关注。为提高电能质量,建立电能质量检测和分析识别系统,对其进行正确的检测、评估和分类就显得十分必要。传统的电能质量检测手段主要是以人工方式和便携式电能质量测量仪器为主,对线路和变电站进行现场数据采集,工作量大,采集的数据不系统也不全面,时间延续性短,误差较大,效率低。而采用人工智能技术能有效克服传统方法的缺陷。如电力系统中谐波诊断的任务是对一组电流或电压的采样信号确定出各次谐波的含量或感兴趣的谐波成分含量,采用人工神经网络,可以在避免噪声和间谐波的情况下分析谐波问题。又如,电力系统电源侧电压及负荷变化将引起用户侧电压波动,长时间的电压偏移将使得供电电压质量得不到保证,因此,保持电压偏移在允许范围内是衡量电能质量标准的一项重要内容。而基于专家系统而设计的变电站无功控制装置,能将已有的无功电压控制经验或知识用规则表示出来,形成专家系统的知识库。并能像有经验的调度员那样,在面临不同运行工况时,根据上述的规则由无功电压实时变化值有效地作出合理的电压调节决策。此外,人工智能技术在电能质量分析中的应用,还包括电能质量的扰动分析、电能质量的数据管理和数据挖掘,等等。(3)在故障诊断中的应用。电力系统可能出现的故障种类繁多,具有复杂性、不确定性及非线性等特点,从一次系统的故障看,可分为线路和元件故障两大类;从二次系统的故障看,则可粗略地分为保护系统、信号系统、测量系统、控制系统及电源系统五类故障,若采用传统的方法诊断效率低,准确率不高,而采用人工智能技术,能大大提高故障诊断的准确率。专家系统、神经网络、模糊逻辑是人工智能技术用于故障诊断的方法,例如人工智能故障诊断技术运用于发电机及电动机进行的故障诊断时,将模糊理论与神经网络相结合,不仅保留了故障诊断知识的模糊性,还结合了神经网络学习能力强的优点,共同实现对电机故障的诊断,大大提高了故障诊断的准确率。(4)在电力系统无功优化中的应用。谓电力系统无功优化,就是指当电力系统的结构参数及负荷情况给定时,通过对某些控制变量的优化,在满足所有指定约束条件的前提下,使系统的一个或多个性能指标达到最优的无功调节手段,它是保证电力系统安全,提高运行经济性的手段之一。将人工智能技术应用于电力系统无功优化中,主要有如下几方面:如,针对传统方法在处理配电网无功优化时不能处理多元约束问题的缺陷,模糊优化法通过引入模糊集理论,能使一些不确定的问题得到解决,使用模糊优化法,可优化配电网的电容器投切,减少了配电网的网损并提高了其电压质量。使用禁忌算法,能有效地处理不可微的目标函数,解决配电网补偿电容器优化投切0-1组合优化问题,并可以处理补偿电容器分档投切的组合优化问题。而使用人工神经网络,可以将网损最小作为优化目标,用人工神经网络模型对多抽头的配电网电容器进行实时控制,等等。(5)在电力系统继电保护中的应用。通过专家系统,能把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,进而根据报警信息对知识库进行推理,获得故障诊断的结论。输电网络中保护的动作逻辑一级保护与断路器之间的关系易于用直观的、模块化的规则表示出来能够在一定程度上解决不确定性问题,能够给出符合人类语言习惯的结论并具有相应的解释能力等。此外框架法专家系统善于表达具有分类结构的知识,能够比较清楚的表达事物之间的相关性,可以简化继承性知识的表述和存储,在输电网络报警信息处理和故障诊断中也有少量应用。(6)在抑制电力系统低频振荡中的应用。大规模电网互联易产生低频振荡,对电力系统的安全造成严重威胁。低频振荡产生的原因,源于系统缺乏阻尼,目前,低频振荡抑制措施中研究较多的是电力系统稳定器FACTS和PSS阻尼控制器,以上两种办法均存在一定缺陷,即存在鲁棒性差的问题,而人工智能技术能模拟人类处理问题的过程、容易计及人的经验和具有一定的学习能力,将神经网络、模糊理论、GA等人工智能技术应用于FACTS控制器和自适PSS的研究,能解决阻尼控制器参数的鲁棒最优整定,有效抑制电力系统低频振荡问题。
总之,随着人工智能技术的不断进步,新的方法将不断涌现,其在电力系统中的应用也将越来越广,如何综合已有技术,扬长避短,并探索新的技术和理论方法,将其应用于解决未来电力系统的各种问题,是我们今后探索研究的主要方向。
参 考 文 献
[1]蔡自兴,徐光祐.人工智能技术及应用[M].北京:清华大学出版社,2000
关键词:机械电子工程;人工智能技术;应用
中图分类号:TP18 文献标识码:A
在现代经济社会发展速度不嗉涌斓谋尘跋拢社会生产力水平明显提高。对于我国而言,在工业机械工程发展过程中,现代电子技术的应用促进传统机械工程逐步过渡至现代电子机械工程,而随着计算机技术以及信息技术的蓬勃发展,机械工程开始呈现出智能化、自动化的发展方向。特别是人工智能技术发展以来,此项技术在机械电子工程领域中的应用日益广泛,对提高生产力水平的意义同样非常确切。本文即围绕机械电子工程领域中人工智能技术的相关应用问题进行分析与探讨,望能够引起各方重视与关注。
一、人工智能的概述
人工智能是研究、开发用于模拟、延伸以及扩展人的智能的理论、方法、技术以及应用系统的全新学科。作为计算机科学的重要分支之一,人工智能技术所追求的是了解智能的本质,并研发出一种与人类智能高度相似的智能机器。从人工智能诞生以来,相关理论与应用技术不断成熟,人工智能技术的应用范围也明显扩大。可以预见的是,未来人工智能技术下所带来的一系列科技产品将成为人类智慧的“容器”。
二、人工智能技术的作用分析
人工智能技术的应用对意识结构的变化有非常重要的影响,使意识论研究领域明显扩大。人工智能终端作为一种全新形态的机器设备进入人意识器官范畴中。人工智能技术下,除了能够完成人脑的一部分意识活动以外,甚至在部分功能上较人脑有着更为明显的优势,如对信息进行处理,以及采取行动的速度,以及对动作和记忆的准确性等方面。除此以外,通过对人工智能技术的应用与发展,还为未来ICT等网络技术的发展提供了方向与指导,包括云计算、深度学习、以及智能算法等在内的大规模网络应用成为ICT产业重要的发展方向之一,深度学习作为人工智能研究领域中的重点关注对象之一,可通过构建模拟人脑进行分析学习的神经网络的方式,促进互联网领域的飞跃式发展。
三、机械电子工程及人工智能分析
1.机械电子工程特点
机械电子工程是将电子工程、机械工程以及自动化工程结合起来的综合性学科,在机械电工工程中占据非常重要的地位。现阶段机械电子工程主要具有以下几个方面的特点:(1)机械电子产品结构相对简单。机械电子产品构造复杂程度不高,产品占地面积有限,能够改变传统意义上机械电子产品占地面积大且外观笨拙复杂的特点,对优化机械电子产品工作性能也有重要意义;(2)机械电子工程设计方案合理性高。在电子工程、机械工程以及自动化工程相互融合的背景下,设计人员能够更为全面的决策设计方案,促进机械电子工程的不断进步与发展。如,将机械电子工程技术与管理技术相结合,一来能够促进机械电子工程在管理体制层面的发展革新,二来能够促进机械电子技术在管理层面的发展进步,综合价值突出。
2.人工智能特点
人工智能是研究、开发用于模拟、延伸以及扩展人的智能的理论、方法、技术以及应用系统的全新学科。作为计算机科学的重要分支之一,人工智能技术所追求的是了解智能的本质,并研发出一种与人类智能高度相似的智能机器,研究对象包括图像识别、语言识别、机器人、自然语言处理以及专家系统等多个部分。人工智能技术的应用具有以下几个方面的特点:(1)人工智能技术使人与人之间的沟通交流更加密切。人工智能技术作为高新科学技术,为大众间的沟通交流提供了极大便利,实现与不同群体的沟通,在促进人类社会进步的同时还对人工智能技术的改革创新提供动力;(2)人工智能技术对促进经济增长有重要意义。应用人工智能技术能够促进社会消费,扩大国内市场需求,对实现经济平稳健康发展有积极价值;(3)人工智能技术的应用有助于企业经济目标的快速实现。人工智能技术大量应用会促进行业市场的扩大,吸引投资,提高企业经济效益。
四、机械电子工程中人工智能应用
1.机械电子工程与人工智能的关系
不稳定性是机械电子工程普遍面临的问题之一,该特点的存在导致机械电子工程系统信息输入与信息输出之间的关系难以准确地描述出来。由于建设规则库方法、学习并生成知识描述法以及数学方式推导法这3种传统机械电子工程系统描述方法在严密性与精确度方面存在一定的局限,因此往往难以满足机械电子工程系统日益复杂的描述需求。但从信息处理的角度上来说,人工智能技术的应用及其与机械电子工程系统的融合对于解决系统不稳定性、不确定性以及复杂性问题有非常确切的优势。从这一角度上来说,将人工智能技术与机械电子工程相结合已成为机械电子工程领域发展的必然方向与趋势之一。
2.模糊系统及神经网络系统
模糊系统的理论基础与模糊集合,设计工具为模糊理论。模糊推理系统具有模糊信息的处理功能,在自动化控制、数字处理等诸多领域中得到了大量的应用,所取得的效果非常显著。模糊推理系统创建模拟人脑的相关功能,并分析语言信号,在网络结构的依托下无限接近连续函数,并遵循域至域的映射规则对信息进行储存。但模糊推理系统在应用中具有连接性不固定的特点,计算量偏小,因此应用范围存在一定的限制。
神经网络系统是人工智能技术领域中的关键分支之一,神经网络将信息分布于网络上的主要模式是神经元的兴奋模式。在神经网络系统干预下,可实现对信息的分布储存以及对动态信息的协同处理。神经网络系统可在确保行为丰富的前提下最大限度地精简结构,利用神经网络系统功能直接模拟大脑结构,并分析数字信号,在各个神经元间构成点对点的映射关系,进而达到提高信息数据输入、输出精度,并提高计算量的目的。
结语
综上所述,人工智能技术的应用与人工智能系统的构建、发展在很大程度上促进了现代机械电子工程的快速发展与进步。现代机械电子工程设计必须以人工智能技术的合理应用为依托,达成双赢的理想局面。在这一过程中,相关人员必须充分关注机械电子工程与人工智能技术的融合,不断开拓全新的人工智能技术,把握两者发展中的相通点与共同点,以促进两者的共同发展与进步。
参考文献
[1]梁国强.试论人工智能技术在供水设备机械电气自动化控制中的应用[J].中小企业管理与科技,2015(27):252.
[2]韩斌.机械电子工程与人工智能的关系分析[J].数字技术与应用,2013(6):254-254.
[3]孙伟.电气自动化控制中人工智能技术的应用研究[J].科技创新与应用,2014(7):70-70.
的有关内容。
关键词电气;控制;智能;技术;理论;应用;自动化;
中图分类号:F407.6文献标识码:A 文章编号:
引言
人类智能的特殊性在于它拥有感知能力,思维能力和行为能力三种能力,因此发展潜力巨大。而人工智能是指由人类制造出来的“机器”所表现出来的智能。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。电气自动化是电气信息领域的一门新兴学科,它主要运用运动控制、工业过程控制、电力电子技术、检测与自动化仪表、电子与计算机技术、信息处理、管理与决策等领域。人工智能技术的运用极大地促进了电气自动化学科特别是自动控制领域的发展,提高了电气设备运行的智能化,增强了控制系统的稳定性,是对生产技术的又一次巨大革新。
一、人工智能应用理论分析
人工智能(Artificial Intelligence),英文缩写为 AI。人工智能也称机器智能,是一门边沿学科,属于自然科学和社会科学的交叉。自从1956 年“人工智能”一词在 Dartmouth 学会上提出以后,人工智能研究得到了飞速发展。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是包括十分广泛的科学,它由不同的领域组成,它是哲学,认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学等多种学科互相渗透而发展起来的一门综合性学科。主要应用于智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能不是人的智能,更不会超过人的智能。
目前,随着科技的进步和计算机技术的广泛使用,传统的劳动密集型生产也不能满足社会生产的需要,效率更高的技术密集型生产也扮演着越来越重要的角色,目前,劳动密集型产业仍是我国产业经营的主要形式,与西方发达国家相比生产力还比较落后,生产线的自动化水平还比较低,生产效率不高。随着社会经济发展水平的不断提高,劳动密集型产业逐步向技术密集型产业转变已是经济发展的客观要求,生产自动化已成为大势所趋。人工智能应用于电气自动化控制领域,能模拟人脑的机能对信息进行收集、分析、交换、处理、回馈,拥有对生产判断、处理的能力,能大大提高生产效率,实现生产的自动化,调整和优化产业结构。
二、人工智能控制器的优势
不同的人工智能控制通常用完全不同的方法去讨论。 但AI 控制器例如:神经 、模糊 、模糊神经以及遗传算法都可看成一类非线性函数近似器。 这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。 这些 AI 函数近似器比常规的函数估计器具有更多的优势,这些优势如下。
2.1 它们的设计不需要控制对象的模型 (在许多场合 ,很难得到实际控制对象的精确动态方程, 实际控制对象的模型在控制器设计时往往有很多不确实性因素。 例如:参数变化,非线性时,往往不知道。
2.2 通过适当调整(根据响应时间 、下降时间 、鲁棒性能等)它们能提高性能。 例如: 模糊逻辑控制器的上升时间比最优PID 控制器快 1.5 倍,下降时间快 3.5 倍。
2.3 它们比古典控制器的调节容易。
2.4 在没有必须专家知识时 , 通过响应数据也能设计它们。
2.5 运用语言和响应信息可能设计它们。
2.6 它们有相当好的一致性 (当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。 现在没有使用人工智能的控制算法对特定对象控制效果非常好, 但对其他控制对象效果就不会一致性地好, 因此对具体对象必须具体设计。
三、人工智能的应用
随着人工智能技术的发展。人工智能控制的应用领域也越来越广阔,包括人工智能用于电气产品优化设计、故障预测及诊断、控制与保护等。
3.1优化设计。电气产品的优化设计是一项复杂的工作,集中了理论学科知识和经验知识两方面的内容。在传统的电气产品设计中,主要采用的方法是设计经验结合大量的实验手段验证,缺乏足够的技术支持,工作量庞大,效率低下,难以得到合理最优的设计方案。随着计算机技术的突飞猛进,加上人工智能技术的运用,电器产品的设计从手工逐渐转向计算机辅助设计,极大地减少了产品从构思到设计到生产的时间,设计越来越优质化、高效化、智能化。遗传算法和专家系统是人工智能技术用于优化设计的两种主要的方法。遗传算法的特点是直接对结构对象进行操作,具有内在的隐并行性和更好的全局寻优能力;能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质非常适合于产品优化设计,因此广泛应用于电气产品的人工智能优化设计。专家系统应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。它也是产品优化设计的一个重要手段,目前仍处于研究阶段,实际运用较少,未来具有很大的发展前景。
3.2故障诊断。电气设备的故障具有非线性、不确定性和复杂性等特点,采用传统的方法诊断效率低、准确率不高。人工智能方法的引进大大提高了故障诊断的准确率。模糊逻辑、专家系统、神经网络是人工智能技术用于故障诊断的方法。例如人工智能故障诊断技术运用于发电机及电动机进行的故障诊断时,将模糊理论与神经网络相结合,不仅保留了故障诊断知识的模糊性,还结合了神经网络学习能力强的优点,共同实现对电机故障的诊断,大大提高了故障诊断的准确率。
3.3智能控制。人工智能控制技术是未来生产发展的一个趋势,在电气自动化上也已经得到了广泛的应用。控制方法主要是专家系统控制、模糊控制、神经网络控制。目前主要应用于以下方面:对所有开关量、模拟量的实时数据进行采集与处理;对各主要设备和系统的运行状态进行实时智能监视;通过键盘或鼠标实现对系统的控制;记录故障并进行在线分析。
四、恒压供水案例分析
恒压供水在工业和民用供水系统中已普遍使用, 由于系统的负荷变化的不确定性, 采用传统的 PID 算法实现压力控制的动态特性指标很难收到理想的效果。 在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器, 系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。 在实施过程中选用了 AI 一 808 人工智能调节器作为主控制器,结合 FXIN PLC 逻辑控制功能很好地实现了水厂的全自动化恒压供水。 对于单独采用 PLC 实现压力和逻辑控制方案, 由于PLC 的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。
结束语
人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作, 电气自动化是研究与电气工程有关的系统运行。 人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。 而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题, 即提高机械的人类意识能力, 强化控制自动化。 因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。
参考文献
[1]叶干洲.人工智能技术在电气自动化控制中的应用[J].科技咨询,2010(15).
[2]陈洪峰.国内电气自动化发展状况与趋势[J].科技创新导报,2009.
[3]张培铭,缪希仁等.展望21世纪电器发展方向———人工智能电器[J].电工技术杂志,2006(4).
关键词:智能技术;电气自动化;应用
中图分类号:TM76;TP18 文献标识码:A 文章编号:1674-7712 (2014) 12-0000-01
人工智能技术是一种融合了多种学科的先进技术,在人工智能技术进入工业生产的很长时间内,使得我国的工业生产自动化水平得到了跨越式的提高。通过将人工智能技术应用于电气自动化控制的各个方面,最终实现了电气设备的“智能”操作,通过为电气设备赋予了如同大脑一般的逻辑思维,提高了电气控制的精确性和可靠性。因此,人工智能的出现,不仅可以帮助企业提高生产效率,更重要的是可以为未来电气自动化、智能化的发展趋势提供了新的思路。
一、人工智能技术的发展与特点
(一)人工智能技术的发展
人工智能技术是伴随着计算机技术发展而兴起来的一门综合性科学。“人工智能”的概念最早起源于1956年Dartmouth学会上,一批具有超前眼光的科学家,对于如何利用机器来模拟智能进行了广泛的讨论,使得“人工智能”作为一门新兴学科进入了人们的视野。随着时代的发展,人工智能技术越来越成熟和完善,在国内外众多科技企业和高校联合研究的努力之下,已经出现了智能语音、智能图像、语义理解等先进的人工智能技术,它不仅可以改变了人们的生产生活方式,更重要的是为人工智能技术的不断地创新和融合发展,逐渐形成一体化的人工智能技术链奠定基础。
(二)人工智能技术的特点
人工智能技术作为当前世界三大主流技术之一,不仅在应用范围上占据优势,还以其自身丰富的研究领域、跨学科的研究方法等特点,成为最具有挑战性的前沿科学,整体来说,智能技术在自动化控制方面的特点具体表现为:一是随着人工智能技术的完善,将工业生产的控制精度、效率都提高了一个新的层次,实现了工业生产控制的各种信息得到及时处理和调整,使得自动化生产流程变的更加柔性化;二是伴随着工业自动化生产的同步性和综合性趋势越来越显著,人工智能技术与自动化生产集成技术相互融合,以各种可操作、可编程的智能控制器,最终实现了电气自动化生产的多功能和稳定生产目的。
二、电气自动化中的人工智能技术探悉
工业自动化生产的顺利进行,要从自动化生产的目标入手,通过一定的控制程序完成每个生产流程的任务,因此,将人工智能技术运用到电气自动化生产时,能够自动、高速的处理来自于生产过程中的各类数据,从输入设备到存储运算器,再至智能控制器,人工职能技术的每个环节,都可以对工业自动化生产“了如指掌”,保证了生产的完整性,又提高了产品的质量,为电气自动化生产带来丰厚的收益,其具体应用可以从以下几个方面进行分析:
(一)保证了电气自动化设计的先进性
对于自动化控制来说,一套成熟的电气自动化控制从设计到正式投入使用的周期较长,而且在这个复杂而漫长的过程中,其设计电路的繁琐性、细致性都是令人难以想象的。由于在传统设计过程中,大部分设计工作都是依靠设计师的经验,以人工绘图布线的方式完成,这就拉长了自动控制的设计周期的同时,也使得电气设计不一定是最好的方案,由此可见,传统方式下的电气自动化控制的设计难度主要集中于此。而人工智能技术的出现,大大改变了电气自动化控制的设计过程,将设计变的更加高效和简单,从人工智能的技术层面分析,人工智能技术主要通过强大的计算机设计功能,将控制设计在人工智能技术的启发之下,充分显示出人工智能技术的透明性和灵活性,特别是人工智能技术的扩展性是一大特色,它可以将很多新知识纳入自己的存储系统中,将自动化控制设计的现在与未来需求结合在一起。从一定程度上可以认为,人工智能技术已经在几十年的发展中,将设计过程从理论变为实践,最终保证设计出来的电气自动化过程或产品能保持高质、高效的优良品质。
(二)将电气自动化控制能力提升到新的高度
电气自动化的控制过程充满了大量的数据和运算,人工智能技术的应用,可以通过模糊算法、遗传算法和专家系统对非线性函数进行计算,使得自动化控制变的更加精准,与以往控制理论相比,智能技术具有便于调节、一致性好、抗干扰能力强等优点。比如以人工智能技术中的模糊控制举例,这种结构简单、性能稳定的控制方式,让自动化控制的多维化变为现实,对控制模式识别和信号处理有着不可缺少的重要作用,比如在全自动轮胎钢丝圈的生产过程中,对不同产品的生产牵引速度采用模糊控制,不仅有利于生产速度的有效控制,还可以充分发挥人工智能技术中专家系统的优势,实现生产控制的简单、快速,使得工业自动化生产取得了良好的成效。
(三)满足了电气自动化故障的诊断需求
故障诊断也是电气自动化控制所不能忽略的重要环节,故障诊断的目的是为了确保自动化设备的安全性和准确性,随着我国工业自动化程度的不断提高,故障诊断对于自动化控制的重要性也将不言而喻,常见的人工智能诊断技术有专家系统、神经网络、分行几何等,每个故障检测技术都有自己独特的适用范围,它们都具备对故障信息的完全处理能力,包括对故障进行有效诊断并给出相应的解决措施,所以,智能诊断技术对推进我国电气自动化控制的发展意义重大,应该不断加强人工智能诊断技术的探索和研究。
三、结束语
综上所述,人工智能技术已经为电气自动化生产带来了创新的发展的灵感,特别是随着越来越多的理论和知识研究的深入,使得这项技术变的更为“智能化”,以最终满足日益复杂的现代工业的自动化生产的需求。
参考文献:
[1]纪.人工智能技术在电气自动化控制中的应用思路分析[J].电子测试,2014(03).
[2]周超.人工智能技术在电气自动化控制中的运用[J].硅谷,2012(08).
[3]刘冰.解析电气自动化控制中人工智能技术的运用[J].科技创业家,2014(08).