发布时间:2024-04-03 10:56:13
序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的生物医学工程学进展样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。
关键词: 聚乙烯醇水凝胶;制备;改性;应用
中图分类号:R318.08文献标识码:A文章编号:1671-7597(2012)0410005-02
0 前言
聚乙烯醇(PVA)是由醋酸乙烯酯经过醇解,水解或氨解而得到的水溶性高聚物。PVA水凝胶是线性高分子通过交联形成三维网状结构,再经过大量溶剂溶胀形成的一种胶态物质。PVA水凝胶由于具有低毒性,吸水量高,机械性能优良(高弹性模量和高机械强度)以及生物相容性[1]好等优点,在生物医药,食品工业,渔林业等方面备受瞩目。本文简述了PVA水凝胶的制备方法、改性研究及应用,同时详细介绍了PVA水凝胶“反复冷冻解冻法”的机制、特点,与生物大分子明胶的共混改性及在生物医药方面的应用[2-7]。
1 PVA水凝胶的制备
PVA水凝胶的合成根据交联机制可以分为物理交联法,化学交联法和辐射交联法三种。物理交联目前报导中使用最多的是“反复冷冻解冻法”[8-9]和“冻结部分脱水法”[10-11]通过物理交联得到的水凝胶物理机械性能有很大的改善,交联过程可逆,但是透光性不好。可通过改变溶剂类型或使用混合溶剂等方法来改善。日本Hyon[12]等人用水和DMSO有机溶剂,通过冷冻处理得到透光率高的PVA水凝胶。化学交联主要采用化学交联剂,通过共价键或配位键的作用使PVA分子链之间形成凝胶。通过化学交联制得的水凝胶,保水性和某些力学强度有一定提高,但是透明性不好且含水量不高。辐射交联主要是利用γ射线、电子束、X光及紫外线等直接辐射PVA水溶液,或辐射用物理交联法制成的PVA水凝胶。经辐射制得的水凝胶因不需要添加任何添加剂,所以PVA纯度高,光学透明性好,但力学强度不高,抗蠕变性差,同时强烈的反应条件常常造成某些优异性能的损失。将辐射交联制得的PVA水凝胶经一定的物理处理过程可以使凝胶部分结晶化,从而提高了机械强度[13]。
2 “反复冷冻解冻法”PVA水凝胶成胶机制及性能特点
2.1 “反复冷冻解冻法”PVA水凝胶成胶机制
此法是将一定浓度的PVA水溶液浇铸于模具中,在-10℃~-40℃的条件下冷冻成型。时间为一天左右。然后将试样在室温下放置1~2小时融化,上述冷冻,解冻过程反复数次(一般为三到五次),可以得到弹性好,具有一定的机械强度、不透明的水凝胶。
此法的成胶机制目前比较成熟的有以下两点[14]:1)凝胶化是网络形成的结果且在凝胶化初始阶段形成高分子聚集区和非聚集区。2)凝胶在水溶液中形成首先是高分子氢键的作用。
这种物理交联所制备的水凝胶是分子链间通过氢键和微晶区等物理交联点形成的三维网络结构。当PVA溶液冷冻处理时,分子链运动减弱,链之间的接触时间变长,链之间的距离缩短,有利于分子链上的羟基间形成氢键缔合,同时PVA在低温下结晶作用,促使了物理网络交联点的形成,使形成了完善程度不一的结晶结构。柳明珠等认为当在室温下解冻时,由于交联点仍然稳定,所以该凝胶不会溶解。当反复冷冻处理后,少量可以活动的链段及未交联的分子链进一步交联,使得结晶结构不断完善,进而形成不溶于水的凝胶。Willcox研究表明:链段中微晶的形成,多数由第一次的冷冻解冻中决定。编排链段成3~8纳米的间距,被分隔与平均距离为30纳米的不规则的网格中。
2.2 “反复冷冻解冻法”PVA水凝胶成型条件及特点
“反复冷冻解冻”法制备的水凝胶具有高强度高弹性,含水率也较高。凝胶的成型条件取决于PVA的分子量,浓度,冷冻条件、解冻条件及循环次数。潘育松等人研究表明:此方法制备的PVA水凝胶的拉伸强度和拉伸模量随凝胶的浓度和冷冻解冻次数的增加而增大。最高拉伸强度可达2.27MPa。但当浓度大于20%时,溶液粘度较大,分子量较大时影响微晶的形成显著。所以常用浓度在7%~15%之间。冷冻温度不仅影响冷冻动力学而且影响界面间相平衡。冷冻温度一般在低于-10℃下进行。我们实验发现,15%的PVA溶液在-20℃下具有好的物理及力学性能,所以-20℃是常用的冷冻温度。此方法制备的PVA水凝胶不使用有毒性的有机交联剂,保持了良好的生物相容性,属于可逆性水凝胶,随着环境参数的变化,可以使物理交联点改变,还可以被溶解。因为方法简单,所制水凝胶与化学交联无明显差别,因此近年来备受亲睐,在许多领域,极具开发潜力。
3 PVA水凝胶的改性方法及与明胶复合的研究
3.1 PVA水凝胶常用的改性方法
PVA水凝胶常用的改性方法有:1)化学改性法:通过接枝等化学方法,改变PVA分子链的化学结构,或把水凝胶接枝到具有一定强度的载体上。如将利用苯酐或琥珀酸酐与PVA酯化,可得到侧链含有羧基的PVA。这种PVA还可以与双官能团的化合物如芳香族二环氧甘油醚反应,得到交联的PVA。这种立体网络结构使PVA薄膜的化学稳定性和选择性提高[19]。2)物理共混法:利用高分子链间分子间作用力形成分子聚集体,从而制备出性能优良的复合体系。但复合的材料要有良好的互溶性。例如董彦博[20]等以丙三醇为增塑剂,加入一定量的淀粉,对PVA膜进行了改性,研究表明,加入淀粉后薄膜的水溶性得到很大改善。3)与无机填料或有机小分子复合:其中无机填料包括生物活性陶瓷颗粒,如磷酸三钙,生物活性玻璃等。不仅保持了生物活性,同时提高了力学性能。有机小分子经常用复合剂,来降低PVA水凝胶的摩擦系数,改善摩擦性能。4)与生物活性分子的复合:一般通过生物活性分子的水溶液或悬浮液同PVA溶液共混,制得成型凝胶或用生物活性分子的溶液淋洗水凝胶,让生物活性分子扩散进去。常用的生物活性分子有胶原质,透明质酸盐、纤维素、壳聚糖,海藻酸盐等。
3.2 PVA水凝胶与明胶复合研究
[关键词]本科教育 研究性教学 创新培育
[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2013)15-0006-02
我国医疗仪器市场潜力巨大,但国内医疗仪器产品总体技术含量较低,关键技术主要被美、日、德等国家的少数几个跨国大公司所垄断。国内生物医疗产业普遍存在技术研发人才匮乏、研发能力不足等问题,产品总体质量和技术水平落后于发达国家,缺乏市场竞争力。要解决目前生物医疗产业创新研发能力低下的难题,首先要从生物医学工程人才培养这一根本问题上着手。
一、本科生创新培育计划思路的形成
2004年12月教育部在北京召开了第二次全国普通高等学校本科教学工作会议,研究制订了《关于进一步加强高等学校本科教学工作的若干意见》。该文件要求“积极推动研究性教学,提高大学生的创新能力”;同时提出“要让大学生通过参与教师科学研究项目或自主确定选题开展研究等多种形式,进行初步的探索性研究工作”。中山大学的本科人才培养教育观念是“通识教育、大类教学、复合创新”。相对于其他学科,生物医学工程学科的特点是多学科交叉,教学过程所涉及的内容多且杂,如果强调“宽”基础,学生能够“精(专)”的领域就有限。通过借鉴国内外著名高校的相关经验和近几年的尝试和思考,我们初步形成的思路是:首先培养学生掌握较为广泛扎实的基础理论知识,然后以某个方向专业训练为载体,着重培养学生的自我学习能力和创新思维能力,以及解决具体问题的实践能力。基于这一思路,我们推出生物医学工程创新培育计划,探索中山大学生物医学工程专业研究性教学的道路。该计划的总体内容和目标是:中山大学工学院生物医学工程专业为研究性教学的开展提供硬件条件(设备、场地)与软件条件(师资、管理)的支持,建立并实行本科生学业导师制度,以本学科已有的广东省传感技术与生物医疗仪器重点实验室为依托、以教师们正在进行的纵向科研项目或横向开发项目为载体,引导本科学生参与项目调研、方案制订和项目研发的整个过程,培养学生主动获取知识的能力、思考创新的能力和实践能力,为将来更好更快地适应各自的工作岗位要求奠定坚实的基础。
二、国内外著名大学创新性培养方案分析
我们对国内外著名大学的本科生培养方案,尤其是对国内外著名工科院校的实习教学方案进行了广泛的调研和分析,逐渐形成了在“宽”基础的前提下,强调培养学生的自我学习能力和创新思维能力,以及动手能力的思路。例如美国麻省理工学院着重培养学生创造性思维和解决问题的能力,以及终身学习的习惯。既培养学生某一方向的专业技能,也鼓励学生拓宽知识面,以适应现代社会的挑战。具体方案有:1.实行本科生学业导师制度。每名本科生入学后将被指定一位专职教师作为学业导师,导师帮助本科生设计学习项目、选课和选专业。在导师的指导下,本科生有机会参与跨学科实验室和研究中心的研究活动,从而培养学生的研究型思维、完成实验的技能和进行数据分析的能力。2.学院设有独立活动期。每年的一月,学生们可以利用学院实验室与研究中心的资源,从事一些自己感兴趣的研究项目。教师则成为项目的指导者与协作者,鼓励并引导本科生在研究型教学中主动地参与过程。美国明尼苏达大学机械工程本科培养特色为基础知识教育与科研能力培养并重,通识教育与专业教育并重。他们专门设有实践创新教育环节,培养学生综合实践和创意创新的能力。具体方案有:1.大量采用讲座+讨论、讲座+实验的授课方式,强调理论课程与实践、研究环节的结合。2.设立和基础课程学习紧密相关的实践性、研究性学习项目,通过项目的实施,进一步强化学生对基础理论学习与实际问题解决相互关系的理解。学校还设有独立活动期、本科生研究项目等实践创新教育项目,给学生提供了充分的个性发展空间。清华大学电子工程系奉行知识、能力、素质并重的教育理念,通过营造良好的学术环境来激发学生的学习热情和创造力,注重实验教学与理论教学相互促进,注重基本技能、综合能力和创新能力培养,注重将最新的科研成果引入实验教学。其特点是前期强化基础、复合交叉,后期导师指导、以人为本,激励创新。另外,国内外基于问题驱动的产学研教学模式也是值得我们借鉴的。
三、创新培育计划实施所具备的软硬件条件
中山大学生物医学工程学科具有生物医学工程一级学科博士点和博士后流动站,是广东省重点学科,设有广东省传感技术与生物医疗仪器重点实验室、广州市生物医疗设备重点实验室。目前生物医学工程学科已有教授38名、副教授41名、讲师64名,梯队完备,所有教师都是工作在科研一线的研究人员。学科的主要研究方向为医疗仪器与传感器、纳米生物材料与组织工程、靶向输送与控制释放。学科近年来在相关领域内承担了多项纵向研究项目,包括国家重点基础研究发展计划项目和国家高技术研究发展计划项目、国家科技部重大科技专项、国家自然科学基金重点项目和教育部新世纪优秀人才支持计划等。学科紧密结合南沙中山大学科技创新产业基地、广州大学城健康产业基地以及行业龙头企业等合作单位,大力倡导协同创新,承担了多项横向研究项目。因此,学科的平台和师资为生物医学工程本科生创新培育计划的开展提供了充分的保障。
四、本科生创新培育计划的实施方案
首先建立导师制,由专业教师担任本科生学业指导教师,负责本科生的学业指导和项目选题;同时由该教师属下的研究生担任学生导师,负责本科生创新培育计划具体工作的指导与跟进。实行导师制的目的是给予本科生更个性化的发展空间和更全面的有效的指导,这有利于师生双向提高。
在第一学年,考虑到本科生专业知识的缺乏,创新培育计划的主要内容是本科生利用课余时间协助教师或研究生从事实验辅助或文献调研等工作,使本科生对生医工专业本身和具体项目科研过程有一个初步的认识,培养学生基本的实验操作技能和自主检索学习的能力。后期在导师的指导下撰写一份助研工作总结报告或文献检索报告,同时做成PPT用于年终汇报考评,从而培养学生的基本科技写作能力和PPT制作与讲演能力。
第二学年开始引导本科生逐渐进入具体的项目工作。若干名学生组成项目组,可以参与指导教师的在研项目中的某一部分,或者在教师指导下自主选题。首先进行项目调研和前期预研,中期组织进行项目开题答辩,然后在学业导师或学生导师的具体指导下开展项目研究,鼓励项目进展较为顺利的项目组申报学校的大学生科研项目计划。
第三学年本科生在导师们的指导下继续开展创新培育计划项目工作,可以考虑将夏季学期(小学期)中4周生产实习(项目实习)课程和创新培育计划项目合并到一起来做。组织中期检查汇报与成绩评定,推荐项目工作表现优秀的本科生参加国家大学生创新计划、广东省大学生创新计划、挑战者杯等竞赛。
第四学年春季学期有长达12周毕业设计(论文)时间,可以充分利用这段时间,在前面三年创新培育计划工作的基础上,进一步深化、凝练项目成果,完成毕业设计(论文),进行项目结题答辩。对项目研发过程中表现优秀的本科生推荐研究生免试资格,鼓励成果突出的学生撰写专利或论文。另外,学生导师(在读研究生)给予颁发助教资历证书,其中表现优异者在教学实践考评和奖学金评定时给予加分。
总之,我们拟通过生物医学工程创新培育计划的实施,探索出一条研究型本科教学的路子,为解决生物医疗产业的自主技术创新、提升国内企业技术水平及市场竞争力提供人才支持。期望学生通过自主学习和项目实践,熟练掌握生物医学工程的基础理论,具备较强的自我学习能力和实践创新能力,能够综合应用多学科知识和方法解决医学实际问题,成为在生物医疗仪器、生物材料与组织工程等相关领域从事科学研究与应用开发的高素质医工复合型人才。
[ 参 考 文 献 ]
[1] 王海鹰,杨刚,李玉红,季红梅.将科研实验引入本科实验教学的改革与实践[J].中国电力教育,2009,(144):145-146.
[2] 马晓琼,蔡金平,凌有铸.基于问题驱动法的产学研教学模式创新研究[J].长沙大学学报,2011,25(2):122-123.
[3] 薛磊,孙玉强,顾晓清.在应用型本科教学中开展项目教学法的研究与实践[J].教改经纬,2011,(5):49-50.
【摘要】工程院校中,与医学相关的专业发展迅速,相关课程在工程专业院校逐渐开设。人体解剖学是一门重要的医学基础课程,虽然在医科院普遍开设,在工程院校确是作为新课程面貌出现,因此在教学过程中存在了教材不合适,课程设置不合理,教学手段缺乏等一系列问题。笔者对自己多年教学经验进行总结,从明确教学理念,制定教学大纲,改革教学方式和教材,提高教师队伍等方面提出了论点。
【关键词】人体解剖学;教育;工程专业
随着生命科学的发展,在许多工程院校中也开设了人体解剖学这门课程,如生物医学工程专业、生命学院等[1]。这些专业多是医学的交叉学科。人体解剖学是了解人体正常形态结构的课程,是最为重要的医学基础课程之一[2]。但由于这些专业在工程院校设立时间往往不长,人体解剖学在工程专业开设时间也不长,所以仍处在一个发展时期,在教学过程中存在很多问题。本文结合几年来的教学实践,对比医学院校开展本课程的情况,对工程专业人体解剖学的教学现状、存在的问题进行分析,并提出一些建设思路。
1工程专业人体解剖学教学现状及存在的问题
1.1无针对工程专业的人体解剖学教材:目前并无明确的针对工程专业的人体解剖学教材。我们目前使用的教材是为临床医学生开设的教材,人民卫生出版社第七版出版的《系统解剖学》。这些教材是针对将来要从医人员,因此医学术语繁多,课时也相对多。如人体解剖学在医学院针对大一学生在第一学期开设,一般包括理论学习和实验课,总学时约300学时,并且以动手解剖尸体为主。而在我校对理工类学生开设的人体解剖学课程,教学设置包括理论学习(40学时)和实验课(16学时)。与医学院比较,教材相同的情况下,课时确压缩了将近1/4。学生在学习的时候常感觉内容多,重点不突出。
1.2课程教育理念不清晰:目前工程专业人体解剖学的教学目的,主要是使这部分学生在较短的时间里,更好地理解和掌握医学基本理论、基本知识和基本研究方法,为学生从事生物医学工程类相关事业及相关工作打下必要的基础。但在实际工作中,由于受到授课时间短、教学内容多而杂、教学习惯等因素的影响,教师很容易从临床医学授课角度出发,忽略了这部分学生并非想成为医生,人体解剖学对工程专业只是支撑课程而非主学科的事实。在这样一种潜在观念的引导下,很可能导致两方面不良后果:一是教师对工程专业人体解剖学的失望,觉得不够被重视;二是学生在有限时间突然接受大量医学专业词汇,记忆感到枯燥乏味,对人体解剖学失去兴趣,甚至反感。
1.3教学手段缺乏:目前理工院校人体解剖学教学以理论课为主辅以实验课,由于学生课程多,期间经过几次教学改革,人体解剖学课时有所压缩,在有限的时间内完成较多的教学任务,教学形式欠丰富。虽然配有实验课,但工程专业学生人体解剖学课多以观摩模型为主,动手操作少,而模型又比较有限,学生很容易失去兴趣。教师顾着要在有限的时间内完成大纲规定内容,因此难以讲的很深恨透,更谈不上教学形式的多样性了。
1.4教师队伍有待提高:工程专业人体解剖学的教学对教师的要求高,要求教师不仅熟悉人体解剖学的教学内容,最好是有一定的临床实践经验,更为重要的是,而且还要求教师了解与学生相关专业的临床进展[3]。如生物医学工程专业的学生,要讲授介入医学在临床上的应用进展。
而目前现状是讲授人体解剖学的教师多是从事科研为主,长期脱离临床工作,而如果请临床大夫来讲授人体解剖学,又不太现实,且缺乏连贯性。这些因素都对教学有一定影响。
2工程专业人体解剖学的建设和发展思路
人体解剖学作为医药院校的重要专业课程之一,普遍存在且广泛设置,尽管在工程专业作为选修课程,但它对生物医学工程相关交叉学科,边缘学科的形成、促进医学基础知识的普及起了十分关键的作用。从工程专业人体解剖学的教育来看,无论是课程理念,教学方式,教师队伍,教材选择等方面,都还缺乏统一规范,需要相关教育工作者进一步完善。有以下几点可以考虑。
2.1明确工程专业人体解剖学教学理念:明确工程专业人体解剖学的定位是非常重要的。人体解剖学在工程类院校中属于非专业课程,教授的是工程类学生,是为工程专业学生成才作支撑及服务。因此要发挥人体解剖学在其他学科中的协同作用,以助于工程学生从事交叉学科,边缘学科的相关工作。因此应立足在“以学生为本”的服务理念,提高工程类院校工程类学生医学基础素养为目的,从而发挥人体解剖学在交叉学科中的作用。
2.2制定新的教学大纲,规范课程设置:根据生物医学工程专业的特色和这部分学生的特点,结合他们今后可能从事的工作方向,制定适合他们学习的新的教学大纲。人体解剖学是帮助学生开启一扇通晓生命科学知识的窗口。因此要在有限的课堂及短时间的教学中抓住要点,提高学生学习兴趣。生物医学工程专业学生多是从事医疗器械、医药工程设备等相关企业的管理和技术工作,因此应将与相关行业有关的人体解剖学知识作为掌握重点。教学内容不在求全而在求精,既要求注重相关人体解剖学知识点间的连贯性,同时要求内容精炼、重点突出,把医学最基础最根本的思想和理论,在有限的教学课时中着重体现出来。我认为,最为重要的是让学生理解医学的思维方式,研究手段,而医学术语名词的记忆应放在其次。
2.3改革生物医学工程专业人体解剖学教材:根据医学生使用的人体解剖学教材,适当降低医学术语的难度。教材内容可以涉及人体解剖学及生物工程应用等。注意内容的选择及相互之间的衔接,做到既完整、连贯、全面,又能够突出重点,同时还要形象生动,突出与相关学科的联系。
2.4进一步改革教学形式和方法:现在教学宜多采用多媒体课件,可增加一些教学视频,手术录像等,增强教学效果,提高学生学习兴趣和主动学习的能力。并且人体解剖学要注重理论与实践的结合,在教学计划中适当安排观察临床手术,解剖动物等实践性内容,采取多样化教学模式,增强学生的感性认识,提高学习效果。
2.5加强教师队伍建设,不断提高专业教师的水平:教师是灵魂的工程师,教师本身的学术水平对课程的教学效果有着十分重要的影响[3]。一个教师的专业水平和个人魅力也可影响学生对本课程的喜爱程度。让生物医学工程专业的学生在较短时间内得到相对专业的人体解剖学教育,对教师不啻为一种挑战。这不仅要求教师有全面而精神的专业素养,同时要有通俗易懂的讲解能力。因此要根据教学实际,建设一支素质优良的工程专业人体解剖学教师团队,定期开展业务培训,增强教学能力。
参考文献
[1]北京大学医药卫生分析中心. “北京大学医学部——岛津生命科学共建实验室”正式成立.2003,35(6):628
[关键词]纳米羟磷灰石-脂肪族聚酯酰胺;成骨细胞;生物相容性
[中图分类号]R 783.1[文献标志码]A[doi]10.3969/j.issn.1673-5749.2012.01.009
Biological effects of nano-hydroxyapatite-aliphatic polyester-amide composite on the osteoblastsDeng Xia1, Xia Xi2.(1. Dept. of Stomatology, Nuclear of Industry 416 Hospital, Chengdu 610051, China; 2. Dept. of Prosthodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, China)
[Abstract]ObjectiveTo evaluate the biological effects of nano-hydroxyapatite-aliphatic polyester-amide composite(nHA-PEA)on the osteoblast.MethodsThe Dulbecco minimum essential medium(DMEM)leaching liquor of nHA-PEA was applied to the osteoblasts of the test groups while the DMEM itself was applied to control. The methyl thiazolyl tetrazolium assay, flow cytometry and alkaline phosphatase(AKP)analysis were used to evaluate the changes in cell growth, cell cycle and cell function. Moreover, osteoblasts were cultured on the surface of nHA-PEA composite and the attachment, growth and proliferation of osteoblast were investigated. Results The cultured osteoblasts grew well and showed nomorphological variation. Osteoblasts of different test groups demonstrated relative proliferation rate ranging from 92%~107% without dose-dependent effect(P>0.05). The cell cycle and AKP activity were similar in test and control groups(P>0.05). Good cell attachment and proliferation manner were observed on the membranes. ConclusionnHA-PEA has no negative effects on the osteoblast and its osteoblastcompatibility is proved.
[Key words]nano-hydroxyapatite-aliphatic polyester-amide composite;osteoblast;biocompatibility
有机-无机复合生物材料是组织工程学研究的热点[1],该材料主要用于修复和重建人体的硬组织。纳米羟磷灰石-脂肪族聚酯酰胺(nano-hydroxyapatite-aliphatic polyester -amide composite,nHA-PEA)复合材料由nHA粒子与PEA均匀混合制得,其中羟磷灰石(hydroxyapatite,HA)是人体骨、牙等无机组织的主要成分,PEA及其共聚物是一类新型的生物可降解高分子材料[2]。nHA- PEA复合材料兼具了有机物的韧性和无机物的刚性,具有良好的理化性能。本研究将nHA-PEA复合材料作用于体外培养的成骨细胞,检测其对细胞生长、增殖能力、细胞周期、碱性磷酸酶(alkaline phosphatase,AKP)活性的影响,观察细胞在其表面的黏附、铺展形态,评价其对骨细胞的相容性和生物活性。
1材料和方法
1.1主要材料和仪器
达尔贝科极限必需培养液(Dulbecco minimum
essential medium,DMEM)、胰蛋白酶(Gibco公司,美国),新生小牛血清(成都哈里生物工程有限公司),甲噻唑四唑氮(methyl thiazolyl tetrazolium,MTT)试剂(Sigma公司,美国),AKP试剂盒(北京柏定生物工程有限公司)。Sanyomco-17AI二氧化碳孵箱(Sanyo公司,日本),Olympus IX50相差倒置显微镜(Olympus公司,日本),JSM-5900LV型扫描电子显微镜(scanning electron microscope,SEM;JEOL公司,日本),可见光高效分析仪/HTS 7000plus多孔板紫外/荧光(PE公司,美国),流式细胞计数(flow cytometry,FCM;Coulter公司,美国),LightCycler检测仪(Roche公司,德国)。1.2浸提液制备
按文献[3]制得4组nHA-PEA复合材料,按其无机和有机成分的质量分数分组,分别为A组0和100%,B组10%和90%,C组20%和80%,D组30%和70%。将4组nHA-PEA复合材料(平均厚度0.5~1 mm)消毒灭菌后,按照国际标准化组织ISO 10993-5医疗器械生物学评价标准所推荐的试样表面积和浸提介质为6 cm2·mL-1的比例[4],置37℃滤除细菌的培养液中,浸提3~4 d的浸提液备用。
1.3成骨细胞培养和细胞悬液的制备
取生长稳定的第4代SD乳鼠颅骨成骨细胞,经质量分数0.25%的胰酶消化后行细胞计数,用DMEM配制5×104个每毫升的细胞悬液。
1.4甲噻唑四唑氮比色
将200μL密度为5×104个每毫升的细胞悬液加入96孔板,置于体积分数5%的二氧化碳培养箱,37℃培养24 h,细胞贴壁后弃掉原有培养液,将细胞分为试验组(A~D)和对照组(E),试验组每组均分别加入200、100、50μL终质量分数分别为100%、50%和25%的浸提液,形成A1、
A2、A3,B1、B2、B3,C1、C2、C3,D1、D2、D3,
对照组加入原培养液。每日于相差显微镜下观察细胞形态,生长和增殖情况。分别于第1、3、5、7 d各取96孔板1块,每孔加入20μL的MTT,孵育4 h,每孔加入200μL二甲基亚砜,振荡1 min,混匀,570 nm波长下测定各孔吸光度(A),取3孔均值,计算细胞增殖率(proliferation rate,RP):RP=(A试验组/A对照组)×100%。1.5流式细胞计数
接种对数生长期的成骨细胞1×105个每毫升瓶,细胞贴壁后A~D组弃原培养液加入质量分数均为100%的复合材料浸提液,E组加入新鲜原培养液,标准环境下3 d换液1次,培养7 d,消化、离心并收集沉淀细胞。流式细胞计数DNA荧光强度及散光参数,Multicycle软件分析细胞的周期分布和程序性死亡情况。1.6碱性磷酸酶活性检测
取1×105个每毫升的细胞悬液3 mL加入小号培养瓶,将其置于体积分数5%的二氧化碳培养箱,37℃培养24 h,细胞贴壁后弃掉原有培养液,A~D组均加入质量分数100%的浸提液,E组加入新鲜原培养液,分别于第4天和第7天中止培养,收集80μL细胞悬液,以AKP试剂盒通过HTS 7000plus多孔板高效分析仪行AKP活性测试。
1.7成骨细胞与材料的复合培养
将载有nHA-PEA复合膜的血盖片试样置于6孔板内,环氧乙烷冷消毒,磷酸缓冲盐溶液浸泡清洗3次,每次1 h,DMEM孵育过夜备用。取1×105个每毫升的细胞悬液,分别接种于已准备好的材料上,37℃,体积分数5%的二氧化碳孵箱继续静置培养5 d。分别于第1天和第5天将试样取出,以体积分数10%的多聚甲醛固定,体积分数30%~100%的乙醇梯度脱水,醋酸异戊酯置换乙醇,临界点干燥,表面喷金,SEM下观察。1.8统计学分析
使用单因素方差分析,分析各组总体均数间差别有无统计学意义,在检验数据之前对数据行方差齐性检验。用q检验比较两组间均数的差别。P>0.05为差异无统计学意义。
2结果
2.1细胞生长观察及甲噻唑四唑氮比色结果
显微镜下,不同质量分数的nHA-PEA复合材料浸提液组及对照组细胞培养6 h后均已贴壁,12 h细胞突逐渐舒展,24 h细胞开始铺展,72 h后细胞数目明显增多,排列规则密集,细胞呈梭形、三角形或不规则形,形态分析各试验组与对照组细胞形态相似,显示各组细胞均生长良好。试验组和对照组不同时间的MTT比色结果见表1。试验组间的MTT值及其与其对照组间的差异无统计学意义(P>0.05);试验组成骨细胞的相对增殖率为92%~107%,不同质量分数的nHA-PEA复合材料浸提液组对成骨细胞的细胞毒性级数为0~
1级(0级:细胞相对增殖率大于等于100%,1级:细胞相对增殖率为90%~99%)[5],不同质量分数浸提液组间差异无统计学意义(P>0.05)。
3讨论
在生物医学材料的细胞毒性试验方法中,最常用的是材料浸提液培养法和细胞材料直接接触法。本试验综合运用了这两种方法,首先选择浸渍法,具体原因如下。1)对于nHA-PEA复合材料,nHA的生物相容性勿庸置疑;而PEA是新型的人工合成的生物降解型高分子材料,其理化性能和降解性能已有相关研究[6],但其生物相容性鲜有报道。2)由于直接接触法共同培养时,细胞对材料表面和对培养孔板底部的黏附性有差异,细胞洗脱率的不同会产生干扰而使试验复杂化。事实上,仅需考察nHA-PEA复合材料溶出物的
细胞毒性,就可以达到初步评价其生物相容性的目的,而且以材料的浸提液代替材料本身在材料学的研究中已得到公认。本试验严格按照国际标准化组织ISO 10993-5医疗器械生物学评价标准和要求制备生物医学材料浸提液[4],以浸提出最大量的滤出物质,考察其对成骨细胞增殖和细胞周期的影响。
MTT比色是常用的细胞增殖能力检测方法,可以对材料的细胞毒性作出可靠的定量评价[5]。本试验在相差倒置显微镜下观察到nHA-PEA复合材料浸提液不影响细胞的生长形态;MTT值在试验组间以及各组与对照组间差异无统计学意义,试验组的细胞增殖率在92%~107%,表明nHA-PEA复合材料浸提液对成骨细胞的生长无不良影响。因此在进一步地对细胞周期和功能进行的分析中,仅选用最高质量分数的nHA-PEA复合材料浸提液作为试验组进行分析比较。在加入HA的试验组,MTT值略高于对照组,但差异无统计学意义且无量效关系。原因可能与其中的钙、磷水平较高有关。
流式细胞计数已广泛应用于肿瘤学、生物化学和免疫学等领域,细胞周期检测已成为生物材料生物相容性评价的一种可靠方法和指标[7],是常规细胞增殖试验的一项重要补充。近年来,生物材料生物相容性研究进展之一是生物材料的生物功能性评价[8]。生物材料作用于细胞后使其周期改变,从而使其行为和功能发生改变。本试验在MTT比色的基础上进一步使用流式细胞计数,旨在从细胞增殖周期的角度来分析nHA-PEA复合材料浸提液对细胞增殖周期DNA合成的影响,从分子水平上评价材料的细胞毒性。从MTT比色可见,组间、组内不同质量分数的nHA-PEA复合材料浸提液对成骨细胞的增殖和增殖周期影响不大,细胞周期各亚期组成比和程序性死亡率差异亦无统计学意义。B、C、D组处于S期的细胞略多,表明加入HA对细胞增殖有一定促进作用,但不显著,不存在量效关系。此结果与MTT比色结果一致。
除了对细胞增殖的影响,生物材料的细胞相容性还表现在材料对细胞重要功能的影响。AKP是骨形成所必需的酶,是生物矿化和成骨细胞分化成熟的早期标志物[9-10]:其表达代表骨形成状况,表明细胞分化的开始,并随细胞分化的发展而增强;其活性的高低,反映了相应细胞向成骨方向化的趋势。本研究采用酶联法对成骨细胞AKP的表达进行检测,结果显示试验组AKP的表达量与对照组相比较差异无统计学意义,说明nHA-PEA复合材料对成骨细胞的功能酶表达无不良影响,也没有明显的促进作用,不抑制其分化功能。
用浸提液作为试验样品测定复合材料中滤出物质对细胞生长、增殖的影响,仅为预测材料植入体内的潜在危害提供了初步依据,其结果尚有一定的局限性;因此,需在浸渍试验良性结果的基础上再采用直接法将成骨细胞与材料联合培养,以进一步考察材料本体的结构性能对细胞生物学的影响。本研究表明,成骨细胞在复合材料上具有良好的黏附、铺展和增殖行为,即nHA-PEA复合材料具有成骨细胞相容性和良好的细胞相容性等特性。
4参考文献
[1]Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering[J]. Biomaterials, 2004, 25(19):4749-4757.
[2]Han SI, Kim BS, Kang SW, et al. Cellular interactions and degradation of aliphatic polys derived from glycine and/or 4-amino butyric acid[J]. Biomaterials, 2003, 24(20):3453-3462.
[3]邓霞,陈治清,钱志勇,等.纳米羟磷灰石/脂肪族聚酯酰胺复合材料[J].生物医学工程学杂志, 2008, 25(2):378-381, 392.
[4]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003:8.
[5]王喜云,王远亮.生物材料的生物学评价方法研究进展[J].北京生物医学工程, 2007, 26(1):95-98.
[6]Liu C, Gu Y, Qian Z, et al. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers[J]. J Biomed Mater Res A, 2005, 75(2):465-471.
[7]戴建国,黄培林,郭英,等.细胞周期作为生物相容性评价指标的研究[J].东南大学学报:自然科学版, 2005, 35(2):271-274.
[8]杨晓芳,奚廷斐.生物材料生物相容性评价研究进展[J].生物医学工程学杂志, 2001, 18(1):123-128.
【关键词】脉搏波模型理论脉诊客观化中西医结合
Abstract:Pulsewave,aresearchfocusinbothtraditionalChinesemedicineandWesternmedicine,whichcontainsawealthofhumanphysiologicalandpathologicalinformation,hasalwaysbeentheconcernofmedicalpractitioners.Onthebasisofthereviewonthedevelopmentofthepulsewavetheoryanditsapplications,theexistingproblemsinthisfieldarediscussedinthispaper.OnthebasisofthestatusquoofpulsewaveinformationextractionmethodsandtheutilizationofpulsewaveintraditionalChineseandWesternmedicine,amoreindepthstudyonpulsewaveisproposedtomakeitabridgeconnectingtraditionalChinesemedicinewithWesternmedicine.
Keywords:pulsewave;models,theoretical;objectifyingpulsetaking;integrativetraditionalChineseandWesternmedicine
当心脏周期性地收缩和舒张时,左心室射入主动脉的血流冲击主动脉瓣和血管壁,产生的振动将以波的形式自主动脉根部发出,沿动脉树向外周动脉传播,此波称为向前波。当向前波受到动脉分支和外周动脉等因素的作用时,产生与之方向相反的反射波。反射波沿动脉树向心脏方向传播,与向前波叠加后形成具有不同波形特征的脉搏波。脉搏波的传播过程不仅受到心脏本身的影响,还受到沿途动脉和周围组织器官状况的影响,使脉搏波蕴藏着丰富的人体生理和病理信息。另外,由于脉搏波的检测不需要复杂而昂贵的仪器,操作简便,而且无创,因此关于脉搏波深入细致的研究,历来都受到中外医学界的重视。
1脉搏波理论发展
对脉搏波的理论研究,国外学者做了大量的工作,从18世纪初开始至今,其研究历史已长达几个世纪。而国内学者对脉搏波理论研究则始于解放后。脉搏波理论研究大致经历了从理论描述到模型分析以及线性化理论到非线性化理论的发展过程[14]。见表1。表1脉搏波理论发展历程
发展阶段分析模型及理论研究者理论描述首次发现和认识到血液循环现象HarveyW(17世纪初)首先论证了动脉弹性腔的意义NewtonI(1700年)线性化理论提出Windkessel模型(弹性腔模型)HaleS(1733年)发表了理想流体的弹性管内波传播速度公式YoungT(1808年)提出血管阻力模型,解释了动脉中平均血压下降的原因PoiseuilleJLM(1840年)发现主动脉和外周动脉压力波波形的差异MahomedF(1872年)发表计算脉搏波传播速度的杨莫恩斯公式MoensAI和KortewegDJ(1878年)建立了相当于动脉系集中参数模型的风箱理论(弹性腔模型)FrankO(1899年)提出第一个血流脉搏波传播的分析模型MorganGW和KielyJP(1954年)[5]提出线性分布参数模型(Womersley理论)WomersleyJR(1957年)[6]提出双弹性腔模型GoldwynR和WattT(1967年)[7]提出一个完整的线性化脉搏波模型AtabekHB(1968年)[8]对心血管弹性腔理论作了较为深入的研究柳兆荣(1980年)[9]非线性理论提出非线性分布参数模型,阐明动脉脉搏波传播的非线性特性EulerL(1755年)提出多项式血管壁应力应变表达式VaishnavRN等(1972年)[10]提出一个包含血管和外周组织运动的非线性脉搏波传播理论伍时桂等(1986年)[11]提出大血管中非线性压力波满足的孤波方程SigeoY(1987年)[12]首次在心脏和血管动态耦合的基础上,研究了人体动脉中压力和流量脉搏波的传播王英晓等(1998年)[13]建立了非线性血流脉搏波在动脉内传播的理论模型谢官模等(2001年)[14]
2脉搏波分析方法与应用
目前,对脉搏波的分析主要是比较正常和病理状态下,脉搏波波形和传播速度的不同,或者是提取时域或频域特征参数来加以分析研究。主要分析方法包括时域分析法、频域分析法、时频联合分析法、数学建模分析法和脉搏波传播速度分析法等。
2.1时域分析法时域分析法是指在时域脉搏波图上分析波动信号的动态特征,通过对主波、重搏前波和重搏波的高度、比值、时值、夹角和面积值等进行参量分析,找出某些特征与人体生理病理变化的内在联系。时域分析法是目前最常用的脉搏波分析方法[15],主要包括直观形态法和波图面积法等。
直观形态法是直接通过脉搏波波图的形态分析,在时域波图中提取特征信息,如波图的波、峡的高度、特征点、相应时值等参量,从而分析脉搏波蕴含的生理病理信息。如Millasseau等[16]用主波高度与延迟时间(主波与重搏波之间的时间间隔)的比值作为大动脉硬化指数,研究了随年龄增长引起的大动脉硬化。
脉图面积法是以脉搏波波图面积的变化为基础的脉搏波形特征量K值提取的一种方法[17],能较好地反映人体心血管系统中血管外周阻力、血管壁弹性和血液黏度等生理因素。后来,又将K分解成K1和K2,综合K、K1和K2三个参数,结合血压和心率能够较准确地得到心输出量。同时,也解决了由不同生理状况却得到同一K值的问题,使脉图面积法在临床上有了更好的应用[18]。
2.2频域分析法频域分析法是近代物理学、工程力学中常用的一种对周期性波动信息做数值分析的方法。此法通过离散快速傅里叶变换,将时域的脉搏波信号变换到频域,从脉搏波频谱中提取与人体生理病理相应的信息,主要观察振幅、相位随频率的变化,找出信号在时域中不太明显而在频域中比较明显的特征。具体方法包括功率谱分析和倒谱分析等。
功率谱分析是指利用广义平稳随机过程的N个样本数据估计该过程的功率谱密度,也称为谱分析。对脉搏波信号进行功率谱分析的算法通常采用经典的快速傅立叶变换(fastFouriertransform,FFT),主要是把时域的脉搏波信号用FFT转换成频谱图,再通过比较频谱图上不同频率的特征峰来分析脉搏波。此法在脉搏波信号分析中使用较早[19,20],在当前的许多研究中也经常使用[21]。
倒谱分析是对频谱取对数后,进行傅立叶变换。它将频域内的周期成分转化为倒谱上单根线谱及其倒谱波,测得脉搏周期较为准确。如宋建勤等[22]运用倒谱理论讨论了正常心律和非正常心律受检者的脉搏信号在倒谱域中的特征表现,并通过对286例脉搏信号的倒谱分析,发现病理与正常心律脉搏信号的倒谱特征差异有统计学意义。
2.3时频联合分析法时频联合分析法是把一维信号或系统表示成一个时间和频率的二维函数,时频平面能描述出各个时刻的谱成分。常用的时频表示方法有短时傅立叶变换和小波变换等。
短时傅立叶变换法是将信号划分成许多小的时间间隔,用傅立叶变换分析每一个时间间隔,以便确定在此时间间隔存在的频率,这些频谱的总体表示频谱在时间上如何变化[23]。它依赖于被分析信号的线性特性,即信号的频谱与在数据中提供正弦成分的幅度成线性比例。其最主要的优点是容易实现,计算简洁有效。
利用小波变换可在信号的不同部位得到最佳时域分辨率和频域分辨率,具有可变的时间和频率分辨率,把傅立叶变换中的正弦基函数修改成整个时频平面的基函数,最终达到高频处时间细分和平低频处频率细分,自动适应时频信号分析的要求,从而可聚焦到信号的任意细节。小波变换这种独特的能力使它成为分析脉搏波这种非平稳信号的有利工具,可以实现对脉搏波信号同时进行时域、频域特征值的提取和分析[24]。
2.4数学建模分析法数学建模分析法是指利用模拟电路、流体力学和生物力学等方法,结合脉搏波传播的理论特征和脉搏波与心血管系统的联系,建立相应的脉搏波分析数学模型,从而在计算机上仿真脉搏波,系统地分析其特征参数和生理病理信息。具体方法包括力学建模法、电路模拟建模法和系统仿真建模法等。
力学建模法是指根据生物力学和血液动力学原理建立脉搏波在动脉管中传播的线性和非线性模型,可以在一定意义上反映脉搏波的传播规律。力学建模主要针对理论研究,而且大部分都是心血管系统的局部建模,因此在脉搏波理论的发展过程中具有重要的意义(见表1),而很难应用于临床研究。
电路模拟建模法是为了便于计算和分析力学方程,利用力电之间的等效关系将力学模型在一定的条件下化为“电路模型”来求解和分析动脉系统。具体把血流比拟为电流,血压比拟为电压,血容量比拟为电量,血流黏滞阻力比拟为电阻,血管顺应性比拟为电容,血液流动惯性比拟为电感等,可建立心脏模拟电路模型等心血管系统模型[25]。具体根据研究目的不同,建立的不同形式的模型,其结构也可以差别很大。
系统仿真建模法是利用系统分析和数字信号处理研究生理系统的一种新方法,主要是通过系统各部分的分析整合,建立系统整体的仿真模型。清华大学白净教授[26]在美国德勒克塞尔大学Jaron教授建立的仿真模型基础上,增加了左心房和肺循环等部分,并扩充和建立了人体上肢模型,其仿真实验结果与临床试验结果基本吻合。
除上述建模方法外,国内还有学者用高斯函数来仿真脉搏波。一个高斯函数可以构建一个钟形波,因此,一个周期的桡动脉脉搏波可以用3个高斯函数来合成,分别对应主波、重搏波和重搏前波[27]。通过这种方法建立的仿真模型可以提取若干脉搏波特征参数,用于区别正常和病理状况下的脉搏波。
2.5脉搏波传播速度分析法脉搏波传播速度(pulsewavevelocity,PWV)是指脉搏波由动脉的一特定位置沿管壁传播至另一特定位置的速率。动脉血管在年龄和各种致病因素等的作用下导致动脉僵硬度增加,从而增加沿动脉树传播的PWV。PWV是通过测量两个记录部位的距离和脉搏波传播时间求得,目前临床上通常采用记录的部位有颈动脉股动脉、颈动脉肱动脉、颈动脉桡动脉以及肱动脉踝动脉等。PWV已被认为是表征血管硬化程度的金标准,可作为预测心血管疾病发生率和死亡率的重要依据[28]。近些年来,国外对脉搏波的临床应用研究大部分都集中在PWV上,主要用来预测和判断高血压[29]、糖尿病[30]和晚期肾衰竭[31]等疾病患者的心血管状况。
3脉搏波与中医脉诊
对脉搏波的研究最早可追溯到中国古代的中医脉诊。在中国传统医学中,脉诊具有十分重要的地位,自古就有“切之以九脏之动,惟妙在脉,不可不察”之说,其价值已被2600多年的中医临床实践所证实。
3.1脉诊理论现有有关脉诊的最早记载是公元前3世纪前后出现的《内经》;到公元3世纪晋代的王叔和,著有《脉经》十卷,成为当时脉学研究的集大成者,他提出“独取寸口”的诊脉方法,对脉学的发展起了重要的作用;明代李时珍著有《濒湖脉学》一书,以歌诀的形式来描述脉法,使脉学得到普及和发展。脉诊理论经历代医学家的反复临床实践与研究,已经发展成为一门独具特色的诊断科学——“中医脉诊学”。它是中医“整体观念”和“辨证论治”基本思想的体现和应用,也是中医理论体系中不可缺少的重要组成部分。
3.2脉诊客观化研究脉诊理论有着悠久的历史,对中华民族的世代繁衍和发展做出了巨大的贡献,其内容之博大精深已为世人所公认。但由于中医脉诊具有极大的个人主观臆断性,所谓“脉理精微,其体难辨”;“在心易了,指下难明”。脉象的概念模糊、笼统,难以掌握,长期影响着脉诊的现代化发展。因此,自解放后国内学者就掀起了脉诊客观化研究的热潮,主要是针对脉象形成机制、典型脉图的识别分类和脉图的客观描记(脉诊信息采集装置的研制)等研究。
对脉象的研究除借鉴上述几种脉搏波分析方法外,还有学者提出多因素脉图识脉法[32]、脉象速率法[33]、句法模式识别法[34]、模糊聚类方法[35]、希尔伯特黄变换(HilbertHuangtransform,HHT)法[36]、盲解卷法[37]和人工神经网络法[38]等。随着大量现代工程和信号分析方法的引入,脉诊客观化研究正向着多元化的方向发展。但目前大部分的研究都集中在典型脉图的解析上,仅有关此方面的研究专著就不下十几部。
传感器是脉诊信息采集装置研制的最关键部分,主要可分为压力式和光电式等接触性传感器,以及传声器和超声多普勒技术等非接触式传感器。由于非接触性传感器不符合中医指压切脉的特点,目前主要还是以接触式传感器开发为主。脉诊信息采集传感器的研制经过了从单探头到双探头,再到三探头的发展历程,逐渐模仿中医同步取三部脉象的特征。为了把脉象图和指压指感趋势图结合起来,车新生等[39]开发了三维脉象图采集模块,并用VB应用程序构建了三维坐标系作为显示平台,从而得到了立体化的脉象图,使脉象特征表达更明显,与脉诊理论中的脉象描述更为贴切。由于脉诊信息的采集是后期信号分析的关键前提,很多学者都在探讨性能更加优良的传感器,随之而开发出的脉象仪和脉诊仪等智能化脉象分析设备也是品种繁多,功能各异,为脉诊客观化研究提供了良好的硬件基础。
4问题讨论与前景展望
脉搏波的现代研究作为中医和西医共同的研究热点,吸引了国内外越来越多学者的参与。其理论研究经历了从线性化理论到非线性化理论,局部分析到整体分析的发展过程。而应用研究也经历了从经验传授到客观描述,简单波图分析到复杂频谱分析和系统建模研究的过程。以生物医学为基础,结合物理学、工程学、数学和计算机科学的技术和方法,大量的信号处理算法被应用到脉搏波的分析和研究中来,使脉搏波研究成为一个多学科交融的领域。
但是从研究现状来看,脉搏波研究主要存在以下几点不足:只重视纯理论研究的深入而无法应用于临床,或是发现临床应用价值而不重视从理论上进行验证,使脉搏波的理论与应用研究脱节;分析使用的算法虽然很多,但每种算法都有局限性,脉搏波研究缺乏一种通用的算法或系统的研究体系;多数研究方法都是提取脉搏波的特征参数作为分析的依据,有限几个特征参数并不能完整地反映脉搏波的全部信息,而且缺乏对特征参数之间联系的研究,难以得出很有价值的研究结果;时域分析等方法只重视单个周期的波图研究,虽然操作简单、直观,容易为临床医生所接受,但误差较大,也无法体现脉搏波的动态变化特征;单从数学角度建立的模型,在应用上比较方便灵活,但缺乏医学上的说服力;而从生理学和力学角度建立的模型能够很好地反映脉搏波的生理病理特征,但过于庞大和复杂,限制了模型的应用。
这些不足很大程度上制约了脉搏波在临床中的应用,PWV研究却是个例外。PWV只是脉搏波复杂信息中的一部分,但PWV研究是众多脉搏波研究工作中最成功的例子,通过比较成熟的理论研究和临床试验验证,PWV已经成为心血管系统疾病研究中的一个重要标准。所以,脉搏波研究最重要的一点就是,将广泛的临床应用研究与深入的理论研究紧密结合。
相比较而言,西医更重视脉搏波的理论研究,西方对脉搏波产生和传播机制的研究已经长达几个世纪,研究手段已经比较成熟,理论分析也比较深入。但是,西医不像中医这样有独特的脉诊理论作指导,脉搏波的临床应用只限于心血管系统疾病的诊断和分析,研究对象大多集中在脉搏波传播速度分析及其测量和分析手段的优化,对脉搏波信息的利用有很大的局限性。而中医比较重视脉搏波的临床应用研究,但由于缺乏系统深入的理论研究,中医无法客观地解释脉诊的科学内涵。
因此,如果能将西医的理论研究和中医的应用研究很好地结合起来,取长补短,那么脉搏波作为中医和西医都很关注的研究热点,很有希望成为沟通二者的桥梁。而且一些学者已经认识到,脉搏波技术是一个“省钱”的生物医学工程,可以提供一个简单、快捷、安全、有效和省钱的心血管无创诊断方法[3]。特别是近些年来,为了发展无创伤诊断技术和降低医疗费用,美、英、日、韩和加拿大等国的学者对人体脉搏信息和中医脉诊理论的研究也发生了浓厚的兴趣,这已成为发展无创伤诊断技术的前沿课题之一。随着脉搏波理论研究的不断深入,以及现代生物医学、电子与信息学、工程学和计算机学等应用科学的迅猛发展,脉搏波研究必将在中西医结合领域中发挥越来越重要的作用。
【参考文献】
1LiJK,MelbinJ,RiffleRA,etal.Pulsewavepropagation.CircRes.1981;49(2):442452.
2WangBH,XiangJL.Theprogressinresearchforhumanpulsesystemmodelingandpulseconditioninformationanalysis.ShengWuYiXueGongChengXueZaZhi.2002;19(2):329333.ChinesewithabstractinEnglish.
王炳和,相敬林.脉搏系统建模与脉象信息分析的研究进展.生物医学工程学杂志.2002;19(2):329333.
3LuoZC,ZhangS,YangYM.Engineeringanalysisofpulsewaveanditsapplicationinclinicalpractice.Beijing:SciencePress.2006:34,183185.Chinese.
罗志昌,张松,杨益民.脉搏波的工程分析与应用.北京:科学出版社.2006:34,183185.
4LiuZR,LiXX.Principlesandmethodsofhemodynamics.Shanghai:FudanPress.1997:47.Chinese.
柳兆荣,李惜惜.血液动力学原理与方法.上海:复旦大学出版社.1997:47.
5MorganGW,KielyJP.Wavepropagationinaviscousliquidcontainedinaflexibletube.JAcoustSocAm.1954;26(3):323328.
6WomersleyJR.Oscillatoryflowinarteries:theconstrainedelastictubeasamodelofarterialflowandpulsetransmission.PhysMedBiol.1957;2(2):178187.
7GoldwynR,WattT.Arterialpressurepulsecontouranalysisviaamathematicalmodelfortheclinicalquantificationofhumanvascularproperties.IEEETransBiomedEng.1967;14(1):1117.
8AtabekHB.Wavepropagationthroughaviscousfluidcontainedinatethered,initiallystresses,orthotropicelastictube.BiophysJ.1968;8(5):626649.
9LiuZR.Theoryofelastictubeanditsapplicationindetectingcardiovascularparameters.ShanghaiYiXue.1980;3(7):4446.Chinese.
柳兆荣.弹性腔理论及其在心血管参数检测中的应用.上海医学.1980;3(7):4446.
10VaishnavRN,YoungJT,JanickiJS,etal.Nonlinearanisotropicelasticpropertiesofthecanineaorta.BiophysJ.1972;12(8):10081027.
11WuSG,LiZZ.Atheoreticalmodelofnonlinearpulsewavepropagationinarterywithperipheralorganizations.BeijingGongYeDaXueXueBao.1986;12(3):110.ChinesewithabstractinEnglish.
伍时桂,李兆治.非线性脉搏波在具有外周组织的动脉内传播的理论模型.北京工业大学学报.1986;12(3):110.
12SigeoY.Solitarywaveinlargebloodvessels.JPhysSocJpn.1987;56(2):506520.
13WangYX,WuWY,WenGB.Theinfluenceofcardiovasculardynamiccouplingonthebloodpulsewavepropagationinhumanbody.YingYongShuXueHeLiXue.1998;19(7):565576.ChinesewithabstractinEnglish.
王英晓,吴望一,温功碧.心脏和血管系统动态耦合对人体体动脉搏波传播的影响.应用数学和力学.1998;19(7):565576.
14XieGM,ZhangGH,ChangXN.Atheoreticalmodelofnonlinearpulsewavepropagationinarteries.WuhanLiGongDaXueXueBao.2001;23(7):7779.ChinesewithabstractinEnglish.
谢官模,张光辉,常晓年.非线性血流脉搏波在动脉内传播的理论模型.武汉理工大学学报.2001;23(7):7779.
15O''''RourkeMF,PaucaA,JiangXJ.Pulsewaveanalysis.BrJClinPharmacol.2001;51(6):507522.
16MillasseauSC,KellyRP,RitterJM,etal.Determinationofagerelatedincreasesinlargearterystiffnessbydigitalpulsecontouranalysis.ClinSci(Lond).2002;103(4):371377.
17LuoZC,YangZB.Astudyontheinformationofpulsewavecharacteristics.BeijingGongYeDaXueXueBao.1996;22(1):7179.ChinesewithabstractinEnglish.
罗志昌,杨子彬.脉搏波波形特征信息的研究.北京工业大学学报.1996;22(1):7179.
18LiJ,YangL,ZhangS,putationofcardiacoutputbypulsewavecontour.ICBBE2007.2007;6(8):10881090.
19HaoJY,ZhangYD,TaoZL,etal.Spectrumanalysisofpulsewave.LiXueYuShiJian.1980;2(2):6466.Chinese.
郝敬尧,张玉东,陶祖莱,等.脉搏波的频谱分析.力学与实践.1980;2(2):6466.
20LeeCT,WeiLY.Spectrumanalysisofhumanpulse.IEEETransBiomedEng.1983;30(6):348352.
21NieGQ,FangZX.Measurementandanalysisofhumanpulse.ShanghaiShengWuYiXueGongCheng.2006;27(2):7476.ChinesewithabstractinEnglish.
乜国荃,方祖祥.人体脉搏的测量与分析.上海生物医学工程.2006;27(2):7476.
22SongJQ,DongYW,WuSJ.Applicationofcepstraltechniquestoanalysingpulsesignals.ShannxiShiFanDaXueXueBao.1997;25(2):3943.ChinesewithabstractinEnglish.
宋建勤,董彦武,吴胜举.倒谱技术在人体脉搏信号分析中的应用.陕西师范大学学报.1997;25(2):3943.
23ZhouD,CaiKB.ThepulsesignalspatternidentificationmethodbasedonshorttimeFouriertransform.ChongqingKeJiXueYuanXueBaoZiRanKeXueBan.2007;9(3):4952.ChinesewithabstractinEnglish.
周丹,蔡坤宝.基于短时傅立叶变换的脉象信号的模式识别方法.重庆科技学院学报(自然科学版).2007;9(3):4952.
24DiaoY,WuSC,LiuYJ,etal.Analgorithmforautomaticallydetectingthepulsewaveformofradialartery.BeijingShengWuYiXueGongCheng.2006;25(1):5962.ChinesewithabstractinEnglish.
刁越,吴水才,刘有军,等.一种桡动脉脉搏波信号的自动检测波算法.北京生物医学工程.2006;25(1):5962.
25JaronD,MooreTW,BaiJ.Cardiovascularresponsestoaccelerationstress:acomputersimulation.IEEEITCProceedings.1988;76(6):700707.
26BaiJ,WuDS.Asimulationmodelofpulsewaveinradialartery.HangTianYiXueYuYiXueGongCheng.1995;8(2):9498.ChinesewithabstractinEnglish.
白净,吴冬生.桡动脉脉搏波的仿真模型.航天医学与医学工程.1995;8(2):9498.
27QianWL,XuLY,ChengFY,etal.AcquiringcharacteristicsofpulsewavebyGaussfunctionseparation.ZhongguoShengWuYiXueGongChengXueBao.1994;13(1):17,15.ChinesewithabstractinEnglish.
钱伟立,徐兰义,陈富裕,等.高斯函数分解法提取脉搏波特征.中国生物医学工程学报.1994;13(1):17,15.
28HansenT,JeppesenJ,RasmussenS,etal.Pulsewavevelocityandcardiovasculardiseaseinageneralpopulation.AmJHypertens.2005;18(5):A14.
29MeaumeS,BenetosA,HenryOF,etal.Aorticpulsewavevelocitypredictscardiovascularmortalityinsubjects>70yearsofage.ArteriosclerThrombVascBiol.2001;21(12):20462050.
30CruickshankK,RisteL,AndersonSG,etal.Aorticpulsewavevelocityanditsrelationshiptomortalityindiabetesandglucoseintolerance.Circulation.2002;106(16):20852090.
31BlacherJ,GuerinAP,PannierB,etal.Impactofaorticstiffnessonsurvivalinendstagerenaldisease.Circulation.1999;99(18):24342439.
32WeiR.Multifactoridentificationofpulse:anewattemptforobjectiveofpulsediagnosis.ZhongguoYiLiaoQiXieZaZhi.1981;5(2):17.Chinese.
魏韧.多因素脉图识脉法——脉诊客观化的一种新尝试.中国医疗器械杂志.1981;5(2):17.
33XueH,FungYC.Persistenceofasymmetryinnonaxisymmetricentryflowinacircularcylindricaltubeanditsrelevancetoarterialpulsewavediagnosis.JBiomechEng.1989;111(1):3741.
34HuangXJ,XingW,LiF.Applicationofsyntacticpatternrecognitioninresearchonpulsewave''''scharacteristicinformation.ZhongguoYiLiaoQiXieZaZhi.2005;29(5):325327.ChinesewithabstractinEnglish.
黄祥钧,邢武,李锋.基于句法模式识别的脉搏波特征信息研究.中国医疗器械杂志.2005;29(5):325327.
35WangBH,XiangJL.PuzzyclusteringofhumanbodypulsesignalsbasedonARmodel.YingYongShengXue.2001;20(5):2125.ChinesewithabstractinEnglish.
王炳和,相敬林.基于AR模型的人体脉象信号模糊聚类研究.应用声学.2001;20(5):2125.
36SunR,ShenHD,LuCJ,etal.ApplicationoftheHHTmethodtothewristpulsesignalanalysis.YiYongShengWuLiXue.2006;21(2):8793.ChinesewithabstractinEnglish.
孙仁,沈海东,鲁传敬,等.HHT方法在脉搏波信号分析中的应用.医用生物力学.2006;21(2):8793.
37QiH,ZhangYL,ChenZS.Signalanalysisofhumanpulsewavebasedonblinddeconvolution.ShengWuYiXueGongChengYanJiu.2003;22(4):3436.ChinesewithabstractinEnglish.
亓慧,张艳丽,陈振生.基于盲解卷问题的脉搏波的信号分析.生物医学工程研究.2003;22(4):3436.
38XuFW,CaiKB.Applicationofneuralnetworkstothedetectionofpulsesignals.ChongqingDaXueXueBaoZiRanKeXueBan.2004;27(8):3539.ChinesewithabstractinEnglish.
徐方维,蔡坤宝.人工神经网络在中医脉象信号检测中的应用.重庆大学学报(自然科学版).2004;27(8):3539.
【关键词】胚胎干细胞;临床医学;应用
【中图分类号】R817.4【文献标识码】A【文章编号】1044-5511(2011)10-0123-01
一、引言
胚胎干细胞是一种存在于囊胚内的原始细胞团或存在于早期胚胎中的原始生殖细胞,在适当的条件下,它能够在体外进行无限次的扩增并保持未分化的状态。可以说,这是一种未分化的全能行细胞,它具有无限增殖性、多向分化性和可塑性等多种优良品质。人体正常的胚胎干细胞含有23对染色体,呈现出胞核大、胞浆小的形态特点,在体外培养时,它们会紧聚在一起,呈一个集落且没有明显的界线,通过适当的引导它可分化成人体所需各种细胞类型。上个世纪末期,美国科学家从早期的胚胎中取出原始生殖细胞,建立了最早的人类胚胎干细胞体系,这成为了人类继“人类基因组计划”之后的又一个热门话题,极大的轰动了国际学术界,目前,胚胎学已经成为了一门基础的医学课程。
从表面看去胚胎学与临床医学之间关系不大,但研究发展,许多疾病都发生在细胞层面、组织层面和分子层面,也就是说胚胎干细胞与临床医学息息相关。随着科学技术的进步,人类的认知能力会越来越强,胚胎学也将发挥越来越重要的作用。那么胚胎干细胞是怎么发展起来的呢,它到底又有什么样的发展前景呢,为此,本文在前人工作的基础上总结了胚胎干细胞的发展过程和临床应用研究。
二、胚胎干细胞的研究进展
人们对胚胎干细胞的研究开始于胚胎癌细胞或者说畸形胎瘤干细胞。1958年,有人把胚胎干细胞移植到小鼠精巢或肾脏的被膜下,能够得到小鼠的相应细胞。1974年,科学家把胚胎干细胞注射到正在发育的胚泡腔后,胚胎干细胞能够发育成胚胎嵌合体。到了70年代末期,人们已经形成了用正常的胚胎干细胞作为遗传物质载体来研究基因对胚胎发育影响的思想。
1981年哺乳动物胚胎干细胞研究进入了它的新纪元时代,这年科学家利用小白鼠胚胎,在体外培养分离出了其干细胞并建立了类胚胎干细胞。在随后的7~8年里,科学家相继用延迟着床的办法建立了仓鼠、兔、羊、猪、牛以及水貂的类胚胎干细胞。1994年,美国科学家分离得到了人类的传2代胚胎干细胞。1998年,科学家用类似的方法分离并克隆出了可以传32代的人类胚胎干细胞,在这研究过程中科学家成功完成了人类胚胎干细胞的冷冻和解冻实验,该项研究成果被美国时代杂志评为上世纪九十年代“世界十大科技进展”之首。
本世纪初,美国科学家卡茨和赫德里克研究培养出了成体干细胞。这种细胞是由从人的大腿或臀部抽取少量脂肪和液体培养而来,它们能够在适当的引导条件下发育成健康的肌肉、骨细胞和软骨,保持了胚胎干细胞发育成各种组织和器官的全能性。这一成果有可能使脂肪组织成为干细胞的主要来源,解决了科学家必须从骨髓或胚胎组织中提取干细胞的难题。
三、胚胎干细胞的临床应用
胚胎干细胞具有良好的自我更新功能,在给予合适的信号诱导或在适当的外界条件下,它可以分化成构建人体的不同细胞,用这类细胞分化成的特定器官进行移植时,排除了免疫排斥过程。所以说,胚胎干细胞作为一种“种子细胞”一定会在临床应用中有重要的应用,目前,应用最多最成熟的还是自体干细胞移植。
有了自体干细胞移植,在病床上躺了三个月的35岁的李先生又重新站了起来。今年上半年,李先生因交通事故,造成第四、第五胸椎粉碎性骨折,神经中枢受损,导致双侧以下失去感觉,大小便失禁,肌肉萎缩,下肢瘫痪。检查表明脊髓呈横贯性损害,医生决定为李先生进行自体骨髓干细胞移植。手术一月后患者的身体感觉平面已经恢复到了膝关节,三个月后下肢肢体触觉全部恢复,在搀扶下可站立10多分钟,并能借助轮椅自理生活。
3.1用于治疗遗传病、癌症等疾病
癌症、遗传病是人类目前最严重的医学难题,发生这些疾病是因为细胞在转化和分化的过程中出现异常。胚胎干细胞技术的出现为弄清细胞分化、发育过程,更深刻的了解细胞分化的奥秘提供了方法,为治疗上述疾病提供了崭新的手段和可能性。科学家已利用胚胎干细胞制造出许多小鼠的疾病模型,并使人的致病基因在小鼠体内表达,为下一步治疗人类疾病奠定了坚实的基础。美国国家神经病研究所分子学实验室用小鼠胚胎干细胞诱导神经上皮细胞,植入脑内得到大量的小突状细胞和神经胶质细胞,设想可用来治疗多发性硬化症。
3.2用于器官组织移植
作为一种被称之为种子细胞的胚胎干细胞,为临床的组织,器官移植提供大量材料。胚胎干细胞经过免疫排斥基因剔除后,再定向诱导终末器官以避免不同个体间的移植排斥。这样就可能解决一直困扰着免疫学界及医学界的同种异型个体间的移植排斥难题。美国ACT公司将人皮肤细胞核移植到去除所有遗传信息的牛卵母细胞中,培育出具全能性的胚胎干细胞。如果能将其成功地应用于临床,将来许多疑难疾病都将得到根治,对其他若干疾病也有理想的治疗效果。
3.3用于新药研制和开发
应用胚胎干细胞研究可以大大改变研发药品及其安全性检验。因为从理论上讲胚胎干细胞可以在体外培养出人体的210种不同类型的细胞。故可以对不同药物进行不同细胞类型的细胞水平的致畸形实验和药物筛选,使药品研制过程更趋合理有效并避免消耗大量实验动物。如应用胚胎干细胞培养成大量心肌细胞,将有助于心脏病药物的开发等。此外,胚胎干细胞还将用于出生缺陷、不孕、流产的控制与检测等方面。
四、结语
展望本世纪,生物医学工程将是一个被高度发展的世纪,现在人们意识不到的许多事件都将会出现在人们的面前,如生物经济将取代目前的网络经济。胚胎干细胞技术的应用价值不可估量,目前,其已成为了各国研究焦点之一。不过,从胚胎干细胞研究到实际临床应用之间还会有很长的一段路要走。
胚胎干细胞研究不是一个潮头,它将是一个巨大的推动力,推动着生物医学深刻革命,给人类带来更多的福音!到那时,如人们的某组织器官失灵了,完全可以像更换机器零件那样,用自身的成体干细胞定向诱导分化形成的组织器官替代失灵器官,而不担心供体不足的问题,更不用担惊受怕移植排斥的问题。
参考文献
近期,印第安纳大学与普渡大学印第安纳波利斯联合分校的研究人员开发了一种机器学习算法,可以90%预测急性骨髓性白血病(AML)的复发,以及100%准确预测缓解,当患者在初诊时,白血病细胞为1012,经过导入疗法的化学治疗以后,白血病细胞减少到大约109以下时,就不能再从血液和骨髓中发现白血病细胞,这时候,病人即可以达到完全缓解的程度。这项小型研究凸显了机器学习具备取代传统诊断方法的潜力,研究者使用的是来自AML患者的骨髓细胞、病史数据以及其他健康个体的信息。
传统诊断方式主要是手动分析来自流式细胞术(流式细胞术是对悬液中的单细胞或其他生物粒子,通过检测标记的荧光信号,实现高速、逐一的细胞定量分析和分选的技术)的数据,而机器学习方法体现了它的高准确率和及时性。
普渡大学生物科学中心计算生物学研究助理教授Bindley Bartek Rajwa解释,他的计算系统采用流式细胞术的数据作为输入。流式细胞术是一种广泛使用的技术,可以快速地提供样本中单个细胞的特性,如血液或骨髓细胞。
Rajwa是该研究的第一作者,该论文已经被IEEE 生物医学工程学期刊收录。
“魍车牧魇较赴术的结果是由受过高度培训的人类专家评估,而不是机器学习算法,”他补充说,“但是计算机通常比人类更擅长从复杂数据中提取知识。”
斯坦福大学医学院教授和遗传学教授Michael Snyder博士,同意计算机在复杂癌症病例诊断中是关键的辅助工具,也许最终会取代人类医生。
在8月份的时候,他使用机器学习来区分不同类型的肺癌,他认为病理学的观点非常主观,“两个高度熟练的病理学家评估同一张幻灯片时,只有60%的部分是共同认可的。使用机器学习的方法,可以用复杂、定量的测量结果来取代主观性,我们认为很有希望改善患者的诊断结果。
机器学习正在迅速地成为许多疾病类别预测分析和诊断的流行工具,包括脓毒症、创伤护理、心脏病、人群健康管理、视力保健和精神卫生保健。
2015年,来自哥伦比亚大学,布宜诺斯艾利斯大学和IBM计算生物学中心的一项研究也使用机器学习实现准确无误的预测诊断记录,他们使用自然语言处理技术来标记可能进入精神病发作的心理健康患者。
随着开发人员和研究人员改进他们的机器学习方法,以及供应商更多工具,从事高级分析的机构可以访问庞大的计算能力,诊断准确率会普遍得到显著提升。
印第安纳大学与普渡大学印第安纳波利斯联合分校的病毒进展研究的高级作者、计算机副教授Murat Dundar表示,教会计算机识别AML是非常简单的,一旦你开发了一个强大的鲁棒算法,能将以前的工作提升到接近100%的准确率。
“有挑战性的是如何超越确诊AML工作本身。我们要让计算机准确地预测AML患者的疾病变化方向,从新的数据中理解并预测未知走向,知道哪些新的AML患者将进入缓解状态,哪些会进入复发状态。
【关键词】 脉搏波 模型 理论 脉诊客观化 中西医结合
Abstract: Pulse wave, a research focus in both traditional Chinese medicine and Western medicine, which contains a wealth of human physiological and pathological information, has always been the concern of medical practitioners. On the basis of the review on the development of the pulse wave theory and its applications, the existing problems in this field are discussed in this paper. On the basis of the status quo of pulse wave information extraction methods and the utilization of pulse wave in traditional Chinese and Western medicine, a more indepth study on pulse wave is proposed to make it a bridge connecting traditional Chinese medicine with Western medicine.
Keywords: pulse wave; models, theoretical; objectifying pulsetaking; integrative traditional Chinese and Western medicine
当心脏周期性地收缩和舒张时,左心室射入主动脉的血流冲击主动脉瓣和血管壁,产生的振动将以波的形式自主动脉根部发出,沿动脉树向外周动脉传播,此波称为向前波。当向前波受到动脉分支和外周动脉等因素的作用时,产生与之方向相反的反射波。反射波沿动脉树向心脏方向传播,与向前波叠加后形成具有不同波形特征的脉搏波。脉搏波的传播过程不仅受到心脏本身的影响,还受到沿途动脉和周围组织器官状况的影响,使脉搏波蕴藏着丰富的人体生理和病理信息。另外,由于脉搏波的检测不需要复杂而昂贵的仪器,操作简便,而且无创,因此关于脉搏波深入细致的研究,历来都受到中外医学界的重视。
1 脉搏波理论发展
对脉搏波的理论研究,国外学者做了大量的工作,从18世纪初开始至今,其研究历史已长达几个世纪。而国内学者对脉搏波理论研究则始于解放后。脉搏波理论研究大致经历了从理论描述到模型分析以及线性化理论到非线性化理论的发展过程[14]。见表1。表1 脉搏波理论发展历程
发展阶段分析模型及理论研究者理论描述首次发现和认识到血液循环现象Harvey W (17世纪初)首先论证了动脉弹性腔的意义Newton I (1700年)线性化理论提出Windkessel模型(弹性腔模型)Hale S (1733年)发表了理想流体的弹性管内波传播速度公式Young T (1808年)提出血管阻力模型,解释了动脉中平均血压下降的原因Poiseuille JLM (1840年)发现主动脉和外周动脉压力波波形的差异Mahomed F (1872年)发表计算脉搏波传播速度的杨莫恩斯公式Moens AI和Korteweg DJ (1878年)建立了相当于动脉系集中参数模型的风箱理论(弹性腔模型)Frank O (1899年)提出第一个血流脉搏波传播的分析模型Morgan GW和Kiely JP (1954年)[5]提出线性分布参数模型(Womersley理论)Womersley JR (1957年)[6]提出双弹性腔模型Goldwyn R和Watt T (1967年)[7]提出一个完整的线性化脉搏波模型Atabek HB (1968年)[8]对心血管弹性腔理论作了较为深入的研究柳兆荣(1980年)[9]非线性理论提出非线性分布参数模型,阐明动脉脉搏波传播的非线性特性Euler L (1755年)提出多项式血管壁应力应变表达式Vaishnav RN等 (1972年)[10]提出一个包含血管和外周组织运动的非线性脉搏波传播理论伍时桂等(1986年)[11]提出大血管中非线性压力波满足的孤波方程Sigeo Y (1987年)[12]首次在心脏和血管动态耦合的基础上,研究了人体动脉中压力和流量脉搏波的传播王英晓等(1998年)[13]建立了非线性血流脉搏波在动脉内传播的理论模型谢官模等(2001年)[14]
2 脉搏波分析方法与应用
目前,对脉搏波的分析主要是比较正常和病理状态下,脉搏波波形和传播速度的不同,或者是提取时域或频域特征参数来加以分析研究。主要分析方法包括时域分析法、频域分析法、时频联合分析法、数学建模分析法和脉搏波传播速度分析法等。
2.1 时域分析法 时域分析法是指在时域脉搏波图上分析波动信号的动态特征,通过对主波、重搏前波和重搏波的高度、比值、时值、夹角和面积值等进行参量分析,找出某些特征与人体生理病理变化的内在联系。时域分析法是目前最常用的脉搏波分析方法[15],主要包括直观形态法和波图面积法等。
直观形态法是直接通过脉搏波波图的形态分析,在时域波图中提取特征信息,如波图的波、峡的高度、特征点、相应时值等参量,从而分析脉搏波蕴含的生理病理信息。如Millasseau等[16]用主波高度与延迟时间(主波与重搏波之间的时间间隔)的比值作为大动脉硬化指数,研究了随年龄增长引起的大动脉硬化。
脉图面积法是以脉搏波波图面积的变化为基础的脉搏波形特征量K值提取的一种方法[17],能较好地反映人体心血管系统中血管外周阻力、血管壁弹性和血液黏度等生理因素。后来,又将K分解成K1和K2,综合K、K1和K2三个参数,结合血压和心率能够较准确地得到心输出量。同时,也解决了由不同生理状况却得到同一K值的问题,使脉图面积法在临床上有了更好的应用[18]。
2.2 频域分析法 频域分析法是近代物理学、工程力学中常用的一种对周期性波动信息做数值分析的方法。此法通过离散快速傅里叶变换,将时域的脉搏波信号变换到频域,从脉搏波频谱中提取与人体生理病理相应的信息,主要观察振幅、相位随频率的变化,找出信号在时域中不太明显而在频域中比较明显的特征。具体方法包括功率谱分析和倒谱分析等。
功率谱分析是指利用广义平稳随机过程的N个样本数据估计该过程的功率谱密度,也称为谱分析。对脉搏波信号进行功率谱分析的算法通常采用经典的快速傅立叶变换(fast Fourier transform, FFT),主要是把时域的脉搏波信号用FFT转换成频谱图,再通过比较频谱图上不同频率的特征峰来分析脉搏波。此法在脉搏波信号分析中使用较早[19,20],在当前的许多研究中也经常使用[21]。
倒谱分析是对频谱取对数后,进行傅立叶变换。它将频域内的周期成分转化为倒谱上单根线谱及其倒谱波,测得脉搏周期较为准确。如宋建勤等[22]运用倒谱理论讨论了正常心律和非正常心律受检者的脉搏信号在倒谱域中的特征表现,并通过对286例脉搏信号的倒谱分析,发现病理与正常心律脉搏信号的倒谱特征差异有统计学意义。
2.3 时频联合分析法 时频联合分析法是把一维信号或系统表示成一个时间和频率的二维函数,时频平面能描述出各个时刻的谱成分。常用的时频表示方法有短时傅立叶变换和小波变换等。
短时傅立叶变换法是将信号划分成许多小的时间间隔,用傅立叶变换分析每一个时间间隔,以便确定在此时间间隔存在的频率,这些频谱的总体表示频谱在时间上如何变化[23]。它依赖于被分析信号的线性特性,即信号的频谱与在数据中提供正弦成分的幅度成线性比例。其最主要的优点是容易实现,计算简洁有效。
利用小波变换可在信号的不同部位得到最佳时域分辨率和频域分辨率,具有可变的时间和频率分辨率,把傅立叶变换中的正弦基函数修改成整个时频平面的基函数,最终达到高频处时间细分和平低频处频率细分,自动适应时频信号分析的要求,从而可聚焦到信号的任意细节。小波变换这种独特的能力使它成为分析脉搏波这种非平稳信号的有利工具,可以实现对脉搏波信号同时进行时域、频域特征值的提取和分析[24]。
2.4 数学建模分析法 数学建模分析法是指利用模拟电路、流体力学和生物力学等方法,结合脉搏波传播的理论特征和脉搏波与心血管系统的联系,建立相应的脉搏波分析数学模型,从而在计算机上仿真脉搏波,系统地分析其特征参数和生理病理信息。具体方法包括力学建模法、电路模拟建模法和系统仿真建模法等。
力学建模法是指根据生物力学和血液动力学原理建立脉搏波在动脉管中传播的线性和非线性模型,可以在一定意义上反映脉搏波的传播规律。力学建模主要针对理论研究,而且大部分都是心血管系统的局部建模,因此在脉搏波理论的发展过程中具有重要的意义(见表1),而很难应用于临床研究。
电路模拟建模法是为了便于计算和分析力学方程,利用力电之间的等效关系将力学模型在一定的条件下化为“电路模型”来求解和分析动脉系统。具体把血流比拟为电流,血压比拟为电压,血容量比拟为电量,血流黏滞阻力比拟为电阻,血管顺应性比拟为电容,血液流动惯性比拟为电感等,可建立心脏模拟电路模型等心血管系统模型[25]。具体根据研究目的不同,建立的不同形式的模型,其结构也可以差别很大。
系统仿真建模法是利用系统分析和数字信号处理研究生理系统的一种新方法, 主要是通过系统各部分的分析整合,建立系统整体的仿真模型。清华大学白净教授[26]在美国德勒克塞尔大学Jaron教授建立的仿真模型基础上,增加了左心房和肺循环等部分,并扩充和建立了人体上肢模型,其仿真实验结果与临床试验结果基本吻合。
除上述建模方法外,国内还有学者用高斯函数来仿真脉搏波。一个高斯函数可以构建一个钟形波,因此,一个周期的桡动脉脉搏波可以用3个高斯函数来合成,分别对应主波、重搏波和重搏前波[27]。通过这种方法建立的仿真模型可以提取若干脉搏波特征参数,用于区别正常和病理状况下的脉搏波。
2.5 脉搏波传播速度分析法 脉搏波传播速度(pulse wave velocity, PWV)是指脉搏波由动脉的一特定位置沿管壁传播至另一特定位置的速率。动脉血管在年龄和各种致病因素等的作用下导致动脉僵硬度增加,从而增加沿动脉树传播的PWV。PWV是通过测量两个记录部位的距离和脉搏波传播时间求得,目前临床上通常采用记录的部位有颈动脉股动脉、颈动脉肱动脉、颈动脉桡动脉以及肱动脉踝动脉等。PWV已被认为是表征血管硬化程度的金标准,可作为预测心血管疾病发生率和死亡率的重要依据[28]。近些年来,国外对脉搏波的临床应用研究大部分都集中在PWV上,主要用来预测和判断高血压[29]、糖尿病[30]和晚期肾衰竭[31]等疾病患者的心血管状况。
3 脉搏波与中医脉诊
对脉搏波的研究最早可追溯到中国古代的中医脉诊。在中国传统医学中,脉诊具有十分重要的地位,自古就有“切之以九脏之动,惟妙在脉,不可不察”之说,其价值已被2 600多年的中医临床实践所证实。
3.1 脉诊理论 现有有关脉诊的最早记载是公元前3世纪前后出现的《内经》;到公元3世纪晋代的王叔和,著有《脉经》十卷,成为当时脉学研究的集大成者,他提出“独取寸口”的诊脉方法,对脉学的发展起了重要的作用;明代李时珍著有《濒湖脉学》一书,以歌诀的形式来描述脉法,使脉学得到普及和发展。脉诊理论经历代医学家的反复临床实践与研究,已经发展成为一门独具特色的诊断科学——“中医脉诊学”。它是中医“整体观念”和“辨证论治”基本思想的体现和应用,也是中医理论体系中不可缺少的重要组成部分。
3.2 脉诊客观化研究 脉诊理论有着悠久的历史,对中华民族的世代繁衍和发展做出了巨大的贡献,其内容之博大精深已为世人所公认。但由于中医脉诊具有极大的个人主观臆断性,所谓“脉理精微,其体难辨”;“在心易了,指下难明”。脉象的概念模糊、笼统,难以掌握,长期影响着脉诊的现代化发展。因此,自解放后国内学者就掀起了脉诊客观化研究的热潮,主要是针对脉象形成机制、典型脉图的识别分类和脉图的客观描记(脉诊信息采集装置的研制)等研究。
对脉象的研究除借鉴上述几种脉搏波分析方法外,还有学者提出多因素脉图识脉法[32]、脉象速率法[33]、句法模式识别法[34]、模糊聚类方法[35]、希尔伯特黄变换(HilbertHuang transform, HHT)法[36]、盲解卷法[37]和人工神经网络法[38]等。随着大量现代工程和信号分析方法的引入,脉诊客观化研究正向着多元化的方向发展。但目前大部分的研究都集中在典型脉图的解析上,仅有关此方面的研究专著就不下十几部。
传感器是脉诊信息采集装置研制的最关键部分,主要可分为压力式和光电式等接触性传感器,以及传声器和超声多普勒技术等非接触式传感器。由于非接触性传感器不符合中医指压切脉的特点,目前主要还是以接触式传感器开发为主。脉诊信息采集传感器的研制经过了从单探头到双探头,再到三探头的发展历程,逐渐模仿中医同步取三部脉象的特征。为了把脉象图和指压指感趋势图结合起来,车新生等[39]开发了三维脉象图采集模块,并用VB应用程序构建了三维坐标系作为显示平台,从而得到了立体化的脉象图,使脉象特征表达更明显,与脉诊理论中的脉象描述更为贴切。由于脉诊信息的采集是后期信号分析的关键前提,很多学者都在探讨性能更加优良的传感器,随之而开发出的脉象仪和脉诊仪等智能化脉象分析设备也是品种繁多,功能各异,为脉诊客观化研究提供了良好的硬件基础。
4 问题讨论与前景展望
脉搏波的现代研究作为中医和西医共同的研究热点,吸引了国内外越来越多学者的参与。其理论研究经历了从线性化理论到非线性化理论,局部分析到整体分析的发展过程。而应用研究也经历了从经验传授到客观描述,简单波图分析到复杂频谱分析和系统建模研究的过程。以生物医学为基础,结合物理学、工程学、数学和计算机科学的技术和方法,大量的信号处理算法被应用到脉搏波的分析和研究中来,使脉搏波研究成为一个多学科交融的领域。
但是从研究现状来看,脉搏波研究主要存在以下几点不足:只重视纯理论研究的深入而无法应用于临床,或是发现临床应用价值而不重视从理论上进行验证,使脉搏波的理论与应用研究脱节;分析使用的算法虽然很多,但每种算法都有局限性,脉搏波研究缺乏一种通用的算法或系统的研究体系;多数研究方法都是提取脉搏波的特征参数作为分析的依据,有限几个特征参数并不能完整地反映脉搏波的全部信息,而且缺乏对特征参数之间联系的研究,难以得出很有价值的研究结果;时域分析等方法只重视单个周期的波图研究,虽然操作简单、直观,容易为临床医生所接受,但误差较大,也无法体现脉搏波的动态变化特征;单从数学角度建立的模型,在应用上比较方便灵活,但缺乏医学上的说服力;而从生理学和力学角度建立的模型能够很好地反映脉搏波的生理病理特征,但过于庞大和复杂,限制了模型的应用。
这些不足很大程度上制约了脉搏波在临床中的应用,PWV研究却是个例外。PWV只是脉搏波复杂信息中的一部分,但PWV研究是众多脉搏波研究工作中最成功的例子,通过比较成熟的理论研究和临床试验验证,PWV已经成为心血管系统疾病研究中的一个重要标准。所以,脉搏波研究最重要的一点就是,将广泛的临床应用研究与深入的理论研究紧密结合。
相比较而言,西医更重视脉搏波的理论研究,西方对脉搏波产生和传播机制的研究已经长达几个世纪,研究手段已经比较成熟,理论分析也比较深入。但是,西医不像中医这样有独特的脉诊理论作指导,脉搏波的临床应用只限于心血管系统疾病的诊断和分析,研究对象大多集中在脉搏波传播速度分析及其测量和分析手段的优化,对脉搏波信息的利用有很大的局限性。而中医比较重视脉搏波的临床应用研究,但由于缺乏系统深入的理论研究,中医无法客观地解释脉诊的科学内涵。
因此,如果能将西医的理论研究和中医的应用研究很好地结合起来,取长补短,那么脉搏波作为中医和西医都很关注的研究热点,很有希望成为沟通二者的桥梁。而且一些学者已经认识到,脉搏波技术是一个“省钱”的生物医学工程,可以提供一个简单、快捷、安全、有效和省钱的心血管无创诊断方法[3]。特别是近些年来,为了发展无创伤诊断技术和降低医疗费用,美、英、日、韩和加拿大等国的学者对人体脉搏信息和中医脉诊理论的研究也发生了浓厚的兴趣,这已成为发展无创伤诊断技术的前沿课题之一。随着脉搏波理论研究的不断深入,以及现代生物医学、电子与信息学、工程学和计算机学等应用科学的迅猛发展,脉搏波研究必将在中西医结合领域中发挥越来越重要的作用。
【参考文献】
1 Li JK, Melbin J, Riffle RA, et al. Pulse wave propagation. Circ Res. 1981; 49(2): 442452.
2 Wang BH, Xiang JL. The progress in research for human pulse system modeling and pulse condition information analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2002; 19(2): 329333. Chinese with abstract in English.
王炳和, 相敬林. 脉搏系统建模与脉象信息分析的研究进展. 生物医学工程学杂志. 2002; 19(2): 329333.
3 Luo ZC, Zhang S, Yang YM. Engineering analysis of pulse wave and its application in clinical practice. Beijing: Science Press. 2006: 34, 183185. Chinese.
罗志昌, 张松, 杨益民. 脉搏波的工程分析与应用. 北京: 科学出版社. 2006: 34, 183185.
4 Liu ZR, Li XX. Principles and methods of hemodynamics. Shanghai: Fudan Press. 1997: 47. Chinese.
柳兆荣, 李惜惜. 血液动力学原理与方法. 上海: 复旦大学出版社. 1997: 47.
5 Morgan GW, Kiely JP. Wave propagation in a viscous liquid contained in a flexible tube. J Acoust Soc Am. 1954; 26(3): 323328.
6 Womersley JR. Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol. 1957; 2(2): 178187.
7 Goldwyn R, Watt T. Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans Biomed Eng. 1967; 14(1): 1117.
8 Atabek HB. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube. Biophys J. 1968; 8(5): 626649.
9 Liu ZR. Theory of elastic tube and its application in detecting cardiovascular parameters. Shanghai Yi Xue. 1980; 3(7): 4446. Chinese.
柳兆荣. 弹性腔理论及其在心血管参数检测中的应用. 上海医学. 1980; 3(7): 4446.
10 Vaishnav RN, Young JT, Janicki JS, et al. Nonlinear anisotropic elastic properties of the canine aorta. Biophys J. 1972; 12(8): 10081027.
11 Wu SG, Li ZZ. A theoretical model of nonlinear pulse wave propagation in artery with peripheral organizations. Beijing Gong Ye Da Xue Xue Bao. 1986; 12(3): 110. Chinese with abstract in English.
伍时桂, 李兆治. 非线性脉搏波在具有外周组织的动脉内传播的理论模型. 北京工业大学学报. 1986; 12(3): 110.
12 Sigeo Y. Solitary wave in large blood vessels. J Phys Soc Jpn. 1987; 56(2): 506520.
13 Wang YX, Wu WY, Wen GB. The influence of cardiovascular dynamic coupling on the blood pulse wave propagation in human body. Ying Yong Shu Xue He Li Xue. 1998; 19(7): 565576. Chinese with abstract in English.
王英晓, 吴望一, 温功碧. 心脏和血管系统动态耦合对人体体动脉搏波传播的影响. 应用数学和力学. 1998; 19(7): 565576.
14 Xie GM, Zhang GH, Chang XN. A theoretical model of nonlinear pulse wave propagation in arteries. Wuhan Li Gong Da Xue Xue Bao. 2001; 23(7): 7779. Chinese with abstract in English.
谢官模, 张光辉, 常晓年. 非线性血流脉搏波在动脉内传播的理论模型. 武汉理工大学学报. 2001; 23(7): 7779.
15 O'Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol. 2001; 51(6): 507522.
16 Millasseau SC, Kelly RP, Ritter JM, et al. Determination of agerelated increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond). 2002; 103(4): 371377.
17 Luo ZC, Yang ZB. A study on the information of pulse wave characteristics. Beijing Gong Ye Da Xue Xue Bao. 1996; 22(1): 7179. Chinese with abstract in English.
罗志昌, 杨子彬. 脉搏波波形特征信息的研究. 北京工业大学学报. 1996; 22(1): 7179.
18 Li J, Yang L, Zhang S, et al. Computation of cardiac output by pulse wave contour. ICBBE 2007. 2007; 6(8): 10881090.
19 Hao JY, Zhang YD, Tao ZL, et al. Spectrum analysis of pulse wave. Li Xue Yu Shi Jian. 1980; 2(2): 6466. Chinese.
郝敬尧, 张玉东, 陶祖莱, 等. 脉搏波的频谱分析. 力学与实践. 1980; 2(2): 6466.
20 Lee CT, Wei LY. Spectrum analysis of human pulse. IEEE Trans Biomed Eng. 1983; 30(6): 348352.
21 Nie GQ, Fang ZX. Measurement and analysis of human pulse. Shanghai Sheng Wu Yi Xue Gong Cheng. 2006; 27(2): 7476. Chinese with abstract in English.
乜国荃, 方祖祥. 人体脉搏的测量与分析. 上海生物医学工程. 2006; 27(2): 7476.
22 Song JQ, Dong YW, Wu SJ. Application of cepstral techniques to analysing pulse signals. Shannxi Shi Fan Da Xue Xue Bao. 1997; 25(2): 3943. Chinese with abstract in English.
宋建勤, 董彦武, 吴胜举. 倒谱技术在人体脉搏信号分析中的应用. 陕西师范大学学报. 1997; 25(2): 3943.
23 Zhou D, Cai KB. The pulse signals pattern identification method based on shorttime Fourier transform. Chongqing Ke Ji Xue Yuan Xue Bao Zi Ran Ke Xue Ban. 2007; 9(3): 4952. Chinese with abstract in English.
周丹, 蔡坤宝. 基于短时傅立叶变换的脉象信号的模式识别方法. 重庆科技学院学报 (自然科学版). 2007; 9(3): 4952.
24 Diao Y, Wu SC, Liu YJ, et al. An algorithm for automatically detecting the pulse waveform of radial artery. Beijing Sheng Wu Yi Xue Gong Cheng. 2006; 25(1): 5962. Chinese with abstract in English.
刁越, 吴水才, 刘有军, 等. 一种桡动脉脉搏波信号的自动检测波算法. 北京生物医学工程. 2006; 25(1): 5962.
25 Jaron D, Moore TW, Bai J. Cardiovascular responses to acceleration stress: a computer simulation. IEEE ITC Proceedings. 1988; 76(6): 700707.
26 Bai J, Wu DS. A simulation model of pulse wave in radial artery. Hang Tian Yi Xue Yu Yi Xue Gong Cheng. 1995; 8(2): 9498. Chinese with abstract in English.
白净, 吴冬生. 桡动脉脉搏波的仿真模型. 航天医学与医学工程. 1995; 8(2): 9498.
27 Qian WL, Xu LY, Cheng FY, et al. Acquiring characteristics of pulse wave by Gauss function separation. Zhongguo Sheng Wu Yi Xue Gong Cheng Xue Bao. 1994; 13(1): 17, 15. Chinese with abstract in English.
钱伟立, 徐兰义, 陈富裕, 等. 高斯函数分解法提取脉搏波特征. 中国生物医学工程学报. 1994; 13(1): 17, 15.
28 Hansen T, Jeppesen J, Rasmussen S, et al. Pulse wave velocity and cardiovascular disease in a general population. Am J Hypertens. 2005; 18(5): A14.
29 Meaume S, Benetos A, Henry OF, et al. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001; 21(12): 20462050.
30 Cruickshank K, Riste L, Anderson SG, et al. Aortic pulsewave velocity and its relationship to mortality in diabetes and glucose intolerance. Circulation. 2002; 106(16): 20852090.
31 Blacher J, Guerin AP, Pannier B, et al. Impact of aortic stiffness on survival in endstage renal disease. Circulation. 1999; 99(18): 24342439.
32 Wei R. Multifactor identification of pulse: a new attempt for objective of pulse diagnosis. Zhongguo Yi Liao Qi Xie Za Zhi. 1981; 5(2): 17. Chinese.
魏韧. 多因素脉图识脉法——脉诊客观化的一种新尝试. 中国医疗器械杂志. 1981; 5(2): 17.
33 Xue H, Fung YC. Persistence of asymmetry in nonaxisymmetric entry flow in a circular cylindrical tube and its relevance to arterial pulse wave diagnosis. J Biomech Eng. 1989; 111(1): 3741.
34 Huang XJ, Xing W, Li F. Application of syntactic pattern recognition in research on pulse wave's characteristic information. Zhongguo Yi Liao Qi Xie Za Zhi. 2005; 29(5): 325327. Chinese with abstract in English.
黄祥钧, 邢武, 李锋. 基于句法模式识别的脉搏波特征信息研究. 中国医疗器械杂志. 2005; 29(5): 325327.
35 Wang BH, Xiang JL. Puzzy clustering of human body pulse signals based on AR model. Ying Yong Sheng Xue. 2001; 20(5): 2125. Chinese with abstract in English.
王炳和, 相敬林. 基于AR模型的人体脉象信号模糊聚类研究. 应用声学. 2001; 20(5): 2125.
36 Sun R, Shen HD, Lu CJ, et al. Application of the HHT method to the wristpulsesignal analysis. Yi Yong Sheng Wu Li Xue. 2006; 21(2): 8793. Chinese with abstract in English.
孙仁, 沈海东, 鲁传敬, 等. HHT方法在脉搏波信号分析中的应用. 医用生物力学. 2006; 21(2): 8793.
37 Qi H, Zhang YL, Chen ZS. Signal analysis of human pulse wave based on blind deconvolution. Sheng Wu Yi Xue Gong Cheng Yan Jiu. 2003; 22(4): 3436. Chinese with abstract in English.
亓慧, 张艳丽, 陈振生. 基于盲解卷问题的脉搏波的信号分析. 生物医学工程研究. 2003; 22(4): 3436.
38 Xu FW, Cai KB. Application of neural networks to the detection of pulse signals. Chongqing Da Xue Xue Bao Zi Ran Ke Xue Ban. 2004; 27(8): 3539. Chinese with abstract in English.
徐方维, 蔡坤宝. 人工神经网络在中医脉象信号检测中的应用. 重庆大学学报 (自然科学版). 2004; 27(8): 3539.