首页 优秀范文 分子生物学进展

分子生物学进展赏析八篇

发布时间:2024-04-09 14:40:32

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的分子生物学进展样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

分子生物学进展

第1篇

关键词:钾离子通道;结构;基因

离子通道(ion channe1)是跨膜蛋白,每个蛋白分子能以高达l08个/秒的速度进行离子的被动跨膜运输,离子在跨膜电化学势梯度的作用下进行的运输,不需要加入任何的自由能。一般来讲,离子通道具有两个显著特征:

一是离子通道是门控的,即离子通道的活性由通道开或关两种构象所调节,并通过开关应答相应的信号。根据门控机制,离子通道可分为电压门控、配体门控、压力激活离子通道。

二是通道对离子的选择性,离子通道对被转运离子的大小与电荷都有高度的选择性。根据通道可通过的不同离子,可将离子通道分为钾离子(potassium ion,k )通道、钠离子(natrium ion,na )通道、钙离子(calcium ion,ca2 )通道等。其中,k 通道是种类最多、家族最为多样化的离子通道,根据其对电势依赖性及离子流方向的不同,可把k 通道分为两类:①内向整流型k 通道(inward rectifier k channel;kin),② 外向整流型k 通道(outward rectifier khannel;k out)。k 是植物细胞中含量最为丰富的阳离子,也是植物生长发育所必需的唯一的一价阳离子,它在植物生长发育过程中起着重要的作用,具有重要的生理功能。植物中可能存在k 通道,这一点早在20世纪6o年代植物营养学界就有人提出,而一直到80年代才被schroeder等人[23证实,他们利用膜片钳(patch chmp)技术,首先在蚕豆(v/c/afaba)的保卫细胞中检测出了k 通道钾离子通道的结构单个钾离子通道是同源四聚体,4个亚基(subunit)对称的围成一个传导离子的中央孔道(pore),恰好让单个k 通过。对于不同的家族,4"亚基有不同数目的跨膜链(membrane。span。ning element)组成。两个跨膜链与它们之间的p回环(pore helix loop)是k 通道结构的标志2tm/p),不同家族的k 通道都有这样一个结目前从植物体中发现的k 通道几乎全是电压门控型的,如保卫细胞中的k 外向整流通道等,其结构模型如图2一a所示。离子通透过程中离子的选择性主要发生在狭窄的选择性过滤器(selectivity filter)中(图2一b),x射线晶体学显示选择性过滤器长1.2 nill,孔径约nill,k钾离子通道的作用.有关k 通道在植物体内的作用研究并不多。

从目前的结果来看,认为主要是与k 吸收和细胞中的信号传递(尤其是保卫细胞)有关。小麦根细胞中过极化激活的选择性内流k 通道的表观平衡常数km值为8.8 mmol/l,与通常的低亲和吸收系统km值相似[ 。近年来,大量k 通道基因的研究表明,k 通道是植物吸收转运钾离子的重要途径之一。保卫细胞中气孔的开闭与其液泡中的k 浓度有密切关系。质膜去极化激活的k 外向整流通道引起k 外流,胞质膨压降低,导致气孔的关闭。相反,质膜上h.atpase激活的超极化(hyperpolarization)促使内向整流钾离子通道(k in)的打开,引起k 的内流,最终导致气孔的张开钾离子通道相关基因及其功能特征迄今,已从多种植物或同种植物的不同组织器官中分离得到多种k 通道基因(图3),根据对其结构功能和dna序列的分析,可以把它们分为5个大组:工,ⅱ,ⅳ组基因属于内向整流型通道;m组属于弱内向整流型通道(weakly inwardakt1arabidopsis k transporter 1)是第一个克隆到的植物k 通道基因,采用酵母双突变体互补法从拟南芥cdna文库中筛选出来cdna序列分析表明,akt1长2 649 bp,其中的阅读框为2 517 bp,编码838个氨基酸残基组成的多肽,相对分子质量约为95 400 da。akt1编码的k 通道,对k 有极高的选择性,其选择性依次是k >rb >>na >li 。

northern blot分析表明,akt1组织特异性较强,主要在根组织中表达zmk1(zea mays k channel 1)是从玉米胚芽鞘中分离出的k 通道基因,在皮层表达。在卵母细胞中的表达表明,zmk1编码的k 通道是通过外部酸化激活的。有研究表明,蓝光对zmk1通道在玉米胚芽鞘中的分布有一定影响[3 2l。1组kat1组基因编码内向整流钾离子通道,其与akt1组基因产物结构上的最大区别是在cooh端没有锚蛋白相关区(枷n—related do—main,anky)。kat1组基因主要包括kat1,kst1,sirk,kzm1,kpt1等。kat1(arabidopsis inward rectifier k channel1)是与akt1同时从拟南芥cdna文库中筛选出来的植物k 通道基因。kat1基因的阅读框含有2 031个核苷酸,编码的多肽由677个氨基酸残基组成,相分子质量约为78 000 da。kat1的表达具有组织特异性,kat1在拟南芥植株中的主要表达部位是保卫细胞,在根和茎中也有少量的表达。人们认为kat1通道可能参与了气孔开放,并向维管组织中转运k ,而不是直接从土壤中吸收kj。

以kat1为探针,又能从拟南芥cdna文库中筛选出kat2等功能类似的内向整流型k 通道基因通过基因工程技术,人们已相继开展了将kati和akti基因导人到拟南芥、烟草和水稻的研究,并获得了一些转基因植株。比如,施卫明等利用根癌农杆菌介导法已成功地把kat1和akt1导人拟南芥和野生型烟草中,并获得了转基因植株及其纯合株系,发现转基因植株的吸钾速率和对k 的累积能力都比对照的有明显的提高,而且,经过分子检测,也证实711和akt1基因在转基因植株中得到了整合和表达。因此,运用现代分子生物学手段和基因工程技术筛选高效利用钾的作物品种或利用现有的钾离子通道基因改良作物品种,从而提高作物本身的钾吸收利用能力应该是目前主要的研究方向。可以相信,随着分子生物学技术、基因工程技术和有关分析测试技术的发展和应用。随着研究工作的不断深入,有关钾离子通道基因的分离、克隆和利用会取得更大的进展

参考文献:

1.j langer k,ache p,geiger d,et a1.polar potassiumⅱalispclnerscapable of controlling khomec~tasis and k 一dependent圳0gm—esisljj,theplant journal,2oo2,32:997—1009.

2 .schroeder ji,hedrich r.potassium-selective single channels inguard cell protoplasts of vicia ba[j].nature,1984,312:361— 363.

3 . jacqueline mg,declan ad.potassium channel structures:do theycomform[j].current opinion in structural biology,20o4,14:440—446.

4 . mackinnon r,zhou yf.the occupancy of ions in the k selec—tivity filter:ch~se balance and coupling of ion binding to a proteinconformational change undedie hish conduction rates[j].jmb,2003,333:965—975.

5. mackinnon r,zhou m.a mutant kcsa k channel with alteredconduction properties and selectivity filter ion distribution[j].jmb,2o04,338:839—846.

第2篇

迄今为止已发现和胆道肿瘤有关的癌基因有Ras(K-ras,N-ras)、c-myc、c-erbB-2、某些细胞因子及其受体、抗癌基因有P53、P16/MTS1、APC、DCC等。

1 癌基因

ras基因是一个常见的癌基因家族,由K-ras,N-ras,和H-ras三个成员构成[1]。细胞中正常ras基因编码高度相关的分子量为21000的蛋白质(P21)。P21是一种鸟嘌呤核苷酸(GTP)结合蛋白,它由188或189个氨基酸组成,和细胞生长和分化密切相关。正常P21和GTP结合后激活磷脂酶C,产生第二信使三磷酸肌醇(IP3)和二酰甘油(DG),之后GTP被P21降解,第二信使便执行使细胞分化和生长功能。若正常的ras基因发生了突变而变成了癌基因,其所编码的变异P21蛋白仍能同GTP结合但是失去了降解GTP的功能,从而使磷酸脂酶C持续活化,产生大量IP3和DG,引细胞过度增殖,最终发生癌变[1]。

现在已在人类多种肿瘤中检测到了ras基因突变[1]。40%的结肠癌,50%的肺腺癌,30%的急性白血病中均可检测到ras基因的突变。其突变的作者单位:中国医科大学第二临床学院肝胆外科(沈阳110003)崔健现在上海医科大学中山医院肝癌研究所(200032)主要方式是点突变,12、13、61密码子是突变热点。在胰腺癌中K-ras基因的突变率高达90%以上,而且突变的位点大多局限于K-ras基因12位点上[2]。但是对于胆系肿瘤,关于ras基因突变研究文献极少,而且结果差异很大,甚至还有完全相反的报道[3~5]。

almoguera应用RNA酶错配切割法和DNA直接测序,分析胆道肿瘤的病理标本时,未见任何ras基因改变[2]。而Tada等应用DNA测序法研究胆囊癌和胆管癌标本发现肝外胆管癌中偶有ras基因突变,在胆囊癌中则不存在ras基因改变[3]。与之相反,Levi等的研究结果表明胆系肿瘤中存在着广泛ras基因点突变[4]。他们认为以往文献所报道的胆系恶性肿瘤中K-ras基因低突变率的原因不在于肿瘤细胞中真的不存在K-ras基因改变,而是检测方法灵敏度不够所致。DNA直接测序时,大约需要20%的细胞发生突变才能得到阳性结果,而RNA酶寡核苷酸错配切割法的灵敏度则更低。他们认为,由于胆道肿瘤是多克隆发病,因而发生K-ras基因突变的细胞只是一小部分,用常规的实验方法难以检测出来。他们应用改良的两步PCR-RFLP法(两轮碱基错配PCR+两轮限制性核酸内切酶酶切)配以DNA直接测序,发现肝外胆管癌中K-ras基因突变率为100%。这种方法灵敏度非常高,可以在512个等位基因中检测到一个基因的点突变。

watanabe等应用与Levi类似但更为简便的方法检测了20例胆道肿瘤的标本[5]。结果发现55%的胆囊癌、100%的肝外胆管癌均存在K-ras基因改变。总的突变率为75%。绝大多数突变发生在第12位密码子。常见的突变方式是GA,使GGT变成了GAT,所编码的氨基酸也随之由甘氨酸变成了天冬氨酸。少部分发生GGTGTT及GGTTTT改变,这些都导致了相应氨基酸改变,因而均是有意义突变。更为重要的是,他们发现一例胆囊腺瘤癌变的标本中,表面正常的腺瘤已经发生了K-ras基因突变,而且突变方式和癌组织完全一样,从而在基因水平上支持了胆囊腺瘤癌变的理论。

ajiki等的研究亦表明K-ras基因突变是胆道肿瘤中的一种普遍现象[6]。在他们的研究中,胆囊癌、胆管癌、胆囊上皮不典型增生的K-ras基因12位点的点突变率分别为57%、59%、73%。他们的实验也发现了一个很有意义的现象:9例发生在胆囊癌周围的不典型增生,都表现出了和胆囊癌相同的突变。因此他们认为在某些致癌因素(如:胆石、长期胆汁酸刺激等)的作用下,胆囊粘膜肠上皮化生胆囊粘膜不典型增生胆囊癌是胆囊癌的发病机制之一。

yukama 等应用免疫组织化学方法研究了慢性胆囊炎、早期胆囊癌和进展期胆囊癌中ras基因和其他癌基因产物的表达。发现早期胆囊癌中ras基因产物P21阳性表达率高达95%。胆囊炎为33%。其他癌基因产物如c-myc、c-erbB2、表皮生长因子(EGF)、转化生长因子受体(TGF-β)等在胆囊癌都有高表达,平均阳性率在60%左右。而在慢性胆囊炎中它们表达阳性率较低,平均在10%以下[7]。Lee等的研究结果也表明,与胆囊不典型增生和慢性胆囊炎相比,胆囊癌中P21呈现强表达,阳性率为62%,胆管癌中P21阳性率也达到了50%。P21表达和预后没有明显的关系[8]。以上学者都认为:胆囊癌发病过程中存在着多种基因共同作用,其中,ras基因突变可能是早期发生的事件之一。这与ras基因突变在结肠癌发病中的作用是类似的[9]。

c-erbB2癌基因所编码产物是一种表皮生长因子受体(EGFR)类似物。对于它的研究结果不尽相同。Kamel等的研究结果表明胆囊癌中c-erbB2·35·肝胆胰外科杂志1999年第11卷第1期阳性率大约为10%。胆囊粘膜不典型增生中,其阳性率为0。他们认为c-erbB2表达在胆囊癌中是一较晚事件,只有在细胞癌变后才出现[10]。而Yukama等的研究表明c-erbB2在早期胆囊癌中阳性表达率为69%。在进展期胆囊癌中表达率为0。他们认为c-erbB2癌基因突变是胆囊癌发生早期事件之一[7]。出现这一不同结果的原因可能是:1.他们采用的方法、技术和对阳性率的规定不同。2.所选择的胆囊癌是由完全两种不同的致癌因素造成的。因此关于c-erbB2在胆囊癌发生中到底起何种作用,仍需进一步研究。

2 抑癌基因

关于抑癌基因,目前研究最多的是P53基因。P53定位于人染色体17P13,全长为16-20Kb,由11个外显子构成。正常P53基因编码野生型P53蛋白,是一种分子量为53KD的核内磷蛋白。人的P53蛋白由393个氨基酸组成。P53基因突变后所编码的蛋白称为变异型P53。

在人乳腺癌、脑瘤、结直肠癌、食管癌和肺癌中均已发现P53基因突变,总突变率为50%左右[11~13]。其中83%为错义点突变,6%为无义点突变,10%为插入或缺失突变。P53的突变并非随机发生,大多数的突变发生于133-299氨基酸。应用PCR技术研究后发现密码子132-145、171-179、239-248、272-286为突变热点。

野生型P53蛋白的主要功能是:抗细胞增殖,抑制细胞生长分裂,使细胞停止于G1期而不进入S期。野生型P53可以阻碍DNA复制起始复合物的装配,抑制DNA复制,并且在转录水平进行调节,防止细胞过度生长分裂。此外野生P53蛋白还可以诱导细胞分化。野生型P53基因失活的细胞经久处于未成熟状态,持续增生。突变型P53则不具备以上的功能。

野生型P53蛋白极不稳定,半衰期很短,而突变型P53则很稳定,可以在核内积聚,这使得可以用免疫组织化学方法检测到它的存在[14]。突变型P53的检测可以很好反映P53基因突变情况[15]。这一点不同于Ras基因。Wee等用S-P法研究了胆囊癌和肝外胆管癌中P53蛋白表达,阳性率分别为73%和64%[16]。他们认为在胆道癌发病过程中,P53基因突变是一个普遍发生的事件,是胆道癌发生内在因素之一。Kamel[10]等的研究结果也表明在胆道癌中普遍存在着P53基因突变。更为重要的是,在两例胆囊上皮不典型增生的标本中,他们也发现了P53蛋白阳性表达。

hanada等研究发现,在病理类型为平坦型的胆囊癌中,P53阳性率高于息肉型胆囊癌。而平坦型癌多为浸润癌[17]。Roa的研究也表明,在早期胆囊癌中,P53的阳性率为23.5%,在进展期胆囊癌中,P53的阳性率达到48.2%。在高分化胆囊癌中,P53的阳性率为25%,而在低分化的胆囊癌中,P53的阳性率达到50%[18]。以上研究均提示P53高表达是肿瘤分化低、处于进展期、预后不佳的标志。

p16是近年发现的比P53更有力地引起正常细胞癌变的肿瘤抑制基因,又称为多肿瘤抑制基因(MTS1)。P16基因定位于人染色体9P21,由三个外显子构成。总长度为8.5Kb。其编码产物P16蛋白是细胞增殖周期的重要调节者和控制者[19]。它是细胞周期依赖性激酶4(CDK4)抑制因子。因而又称M TS1/P16/CDK4。细胞进入分裂周期依赖于周期蛋白依赖性激酶(CDKs)的活化,CDK4和D型周期蛋白结合形成复合物能促进细胞从G1S期的转变,从而促进细胞增生,这可能是恶性肿瘤发生因素之一。P16蛋白能和CDK4结合,抑制细胞转化。近年来有关P16基因纯合性丢失的研究表明,在人类大部分肿瘤中,均有P16纯合性丢失,与杂合性丢失一起,总的突变率为50%。碱基突变和缺失另占25%,故在肿瘤组织中P16总突变率为75%,比P53的50%的突变率高得多。

1995年,Yoshida等人世界上首次报告了P16基因在胆道肿瘤中的突变情况[20]。他们分析了25例胆道肿瘤标本和4个胆系肿瘤细胞株后发现原发胆道肿瘤中P16/MTS1的总突变率为64%(其中胆囊癌80%,胆管癌63%),高于P53突变率。他们认为在胆系肿瘤发生中,P16可能比P53起更重要的作用。但是P16在胆系肿瘤中到底作用如何,具体突变方式如何,因目前研究太少,尚不能得出一个明确结论。

aPC基因和DCC基因是通过对大肠癌研究在人5号染色体上克隆的抑癌基因,前者位于5q21,编码产物分子量超过300,000,调控ras基因表达。后者也位于5q21,在APC附近。关于他们在胆道肿瘤的研究较少。虽然已在2个人类胆管癌细胞株中发现有5号染色体改变[21],但应用多种基因探针杂交未发现在肝内胆管癌中有5q[21,22]缺失,故认为APC和DCC与胆管癌关系不大[22]。

3 前景和展望

虽然对于胆系肿瘤的分子生物学研究与胃癌、结直肠癌和胰腺癌相比仍不够深入,众多的问题还有待于解决,但是目前的研究结果大大丰富了我们对于胆系肿瘤的认识,这对于寻找早期诊断胆系肿瘤的有效手段具有重要的指导价值。

胆道肿瘤发病率近年明显上升。由于早期诊断困难,故预后极差。寻找一条有效的早期诊断手段是当前研究的重要课题。从胰腺癌的研究中我们可以获得一些启发。1990年Shibata对36例胰腺癌标本作细胞学检查的同时作K-ras基因突变分析,结果25例细胞学检查恶性标本中18例测到了ras基因点突变[23]。3例细胞学检查良性标本无一例发生ras基因突变。8例细胞学检查为不典型增生标本中,有两例发生突变。1991年,Tada等对B超引导下胰腺穿刺所获得的细胞进行基因分析,检测K-ras基因12位点的突变,成功地为2例细胞学检查无法判定病变良恶性的病例作出了诊断[24]。随着研究方法的不断改进,特别是改良的二步PCR-RFLP方法的应用,人们发现胆道肿瘤中也广泛存在着K-ras基因12位点的突变,总突变率在75%~100%之间,接近于胰腺癌突变水平。由于PCR技术灵敏性和特异性极高,可以从几个拷贝的DNA分子中检测到K-ras基因点突变,因而用十二指肠引流或PTCD检查获得胆汁中的脱落细胞,或在B超引导下用细针穿刺胆道肿瘤获得标本,然后用PCR法检测标本中K-ras基因12位点突变,有可能开创一条早期诊断胆道肿瘤的新途径,而且对于常规影像学和细胞学检查有重要补充价值。

4 参考文献

1 Bos,JL.Ras oncogenes in human cancer A review.Cancer Res,1989,79(17)∶4682~4689

2 Almoguera c,Shibata,Forrester k,et al.Mos thuman carcinomas of the exocrine pancreas contain mutant c-K-ras.genes Cell,1988,53(4)∶549~554

3 Tada m,Omata m,Ohto M.Analysis of ras gene mutations in human hepatic malignant tumors by polymerase ;chain reaction and direct sequencing.Cancer Res,1990,50(4)∶1121~1124

4 Levi s,Urbano-Ispizua a,G ill R,et al.Multi-ple k-ras codon 12 mutations in cholangiocarcinomas demonstrated with a sen si-tive poly-merase chain reaction technique.Cancer Res,1991,51(13)∶3497~3502

5 Watanabe m,Asaka m,Tanaka j,et al.Poin tmutations of K-ras gene in biliary tract tu-mors.Gastroenterology,1994,107(4)∶1147~1153

6 Ajiki t,Fujimori t,Onoyama H,et al.K-ras gene mutation in gallbladder carcinoma and dysplsia.Gut,1996,38(3)∶426~429

7 Yukawa m,Fujimor iT,Hirayawa d,et al.Expression of oncogene products and growth factors in early gallbladder cancer,advanced gallbladder cancer and chronic cholecystitis.Human Pathol,1993,24(1)∶37~40

8 Lee cS.Ras p21 prote in immunoreactivity and its relationship to P53 expression and progno-sis in gallbladder and extrahe paticBiliray carcinoma.Eur J Surg Oncol,1997,23(3)∶233~237

9 Fearon eR,Vogelstein b.A genetic model for colorectal tumorigenesis.Cell,1990,61(5)∶759~767

10 Kame lD,Paakko p,Nuorva K,et al.P53 and c-erb b-2 protein expression in adenocarcinoma and epithelialdys plasias of the gallbladder.J of Pathol,1993,170(1)∶67~72

11 Harris aL.Mutant p53:the commonest& nbsp;genetic abnormality in human cancer.J Pathol,1990,162(1)∶5~6

12 Chang f,Syrjanen s,Tervahauta A,et al.Tumorigenesis associated with the P53 tu-mour suppressor gene.Br J Cancer,1993,68(4)∶563~661

13 Finlay cA,Hinds pW,Levine aJ.The p53 pro-oncogene can act as a suppressor of trans for mation Cell,1989,57(7)∶1083~1093

14 Bartek j,Bartkova j,Lukas j,et al.Im-munohistochemica analysis of the P53 onco-protein on paraffin sections using a series of novel monocl onalantibodies.J Pathol,1993,169(1)∶27~34

15 Teh m,Wee a,Path MRC,et al.An immunohistochemical study of P53 proteinin gallbladder and extrahepatic bile duct/am-pullary carcinomas.Cancer,1994,74(5)∶1542~1545

16 Itoi t,Watanabe h,Yoshida M,et al.Cor-relation of P53 expression with gene mutation in gallbladder carcinomas.Pathol Int,1997,47(8)∶525~530

17 Hanada k,Itoh m,Fuji iK,et al.P53 mu-tation in stage I gallbladder carcinoma with special attention to growth patterns.Eur J Cancer,1997,33(7)∶1136~1140

18 Roa i,Villaseca m,Araya J,et al.P53 tum o r suppressor gene protein expression in early and advanced gallbladder carcinoma 。Histopathology,1997,31(3)∶226~230

19 Kamb a,Gruis nA,Weaver-Feldhaus J,et al.A cell&nbs p;cycler egulator potentially involved ingenesis of many tumor types.Science,1994,264(5157)∶436~440

20 Yoshida s,Todoroki t,Ischikawa y,et al.Mutations of p16ink4/CDKN2 and p15ink4B/MTS2 genes in biliary tract cancers.Cancer Res,1995,55(13)∶2756~2760

21 Storto pD,Saidman sL,Demetris aJ,et al.Chromosomal breakpoints in cholangiocarcinom a cell lines.Genes Chromosomes cancer,1990,2(4)∶300~310

22 Ding sF,Delhanty jD,Bowles L,et al.Infre-quent chromosome allele loss in fibrolamellar carcinoma.Br J Cancer,1993,67(2)∶244~246

第3篇

非酒精性脂肪性肝病 (nonalcoholic fatty liver disease,NAFLD)是以无过量饮酒史(酒精摄入量<20 g/d)以及肝细胞脂肪变性、气球样变、弥散性肝小叶轻度炎症和(或)肝中央静脉、肝窦周围胶原沉积等为临床病理特点的慢性肝脏疾病[1],它包括单纯性脂肪肝 (nonalcoholic fatty liver,NAFL)、脂肪性肝炎(nonalcohlic steatohepatitis,NASH)、脂肪性肝硬化(fatty liver cirrhosis,FLC)三种类型。NAFLD已成为导致转氨酶异常的首要病因,并且有部分患者进展到终末期肝病,部分患者甚至与肝脏肿瘤有关。目前我地区NAFLD的发病正在逐渐上升[2],本病的发病原因尚不完全清楚,认为其发生与胰岛素抵抗、氧应激反应和脂质过氧化物质的代谢失衡有关[3]。本文就该病近几年来其分子生物学方面的一些研究进展综述如下。

1.氧自由基对肝细胞的损害作用

患者由于甘油三脂在肝细胞内蓄积,大量的游离脂肪酸(FFA)在线粒体内氧化,产生了过多的超氧阴离子和活性氧物质 (reactive oxygen species,ROS),使抗氧化物质耗竭,过量的过氧化氢 (H2O2)和氢氧根离子 (OH)损伤肝脏细胞的线粒体和细胞膜,使肝细胞正常生长停滞,炎症变性,最终导致肝细胞变性坏死而引起临床症状[4]。氧是生物维持活性的必要元素,但其在代谢过程中形成的中间产物ROS,与生物膜的磷脂、酶和膜受体相关的多价不饱和脂肪酸及核酸等大分子物质发生脂质过氧化反应,结果使细胞膜的流动性和通透性发生障碍,引起细胞功能失调甚至破裂、死亡。机体在正常生理状态下,具有完善的抗氧化机制,包括超氧化物歧化酶(SOD)等酶类和谷胱甘肽(GSH)等非酶类活性氧清除剂。现代研究认为,活性氧增多和活性氧清除剂减少是NAFLD的重要发病机制[5]。线粒体是脂肪酸进行β氧化和三羧酸循环、ATP合成和ROS形成的主要场所,线粒体在氧化脂肪和其他燃料供给大多数细胞 ATP时,快速形成 ROS,尽管在这一过程中部分电子可与呼吸链上的半醌自由基反应形成超氧阴离子(O2)、过氧化氢 (H2O2 )和氢氧根离子 (OH)等氧自由基,其中超氧阴离子是最重要的毒性氧类产物,但细胞内的抗氧化剂可以清除之,避免其所致的氧化应激和脂质过氧化[7]。线粒体是 ROS形成的主要部位,线粒体电子转运系统可消耗细胞90%的氧。大量的ROS可直接或间接通过改变线粒体膜通透性转变孔 (MPTP)的开关,导致细胞凋亡和坏死[8]。 ROS可氧化不饱和脂肪酸导致脂质过氧化,所形成的脂质过氧化物 (LPO)可使部分非酒精性脂肪性肝炎(NASH)患者发生 mtRNA缺失、复制错误、修复障碍和断裂,并造成其呼吸链复合物活性降低[4]。DNA对氧应激很敏感,线粒体的DNA(mtRNA)的氧化损伤敏感性比核DNA高达10~16倍,这是由于mtRNA缺乏组蛋白保护、线粒体修复程序不完整以及 mtRNA相似呼吸链(该链是细胞内 ROS的主要来源)的缺乏[6]。研究发现,大部分NAFLD患者的大部分肝脏 mtRNA均有缺损,造成呼吸链复合物活性降低,同时,线粒体缺乏过氧化氢酶,该酶是唯一作用于GSH过氧化氢毒性作用的酶,线粒体不仅是氧应激的源头,而且是 ROS作用的靶,大量的ROS促成线粒体功能障碍[8]。LPO还可与线粒体蛋白反应形成复合物,抑制电子沿着呼吸链的传递,使氧自由基形成显著增多,进而加重线粒体损伤[6]。

2.肿瘤坏死因子(TNFα) 与NAFLD

机体的氧应激反应产生过多的TNFα可以诱导肝脏成纤维细胞、平滑肌细胞、血管内皮细胞、粒细胞和巨噬细胞产生集落刺激因子(GMCSF),从而影响机体的炎症反应和脂质代谢[9]。TNFα与早期非酒精性脂肪性肝病损伤有密切关系。有报道,NAFLD患者循环中TNFα水平增高,且TNFα与肝脏损伤的生化指数相关[10]。人们应用逆转录聚合酶链反应在大鼠非酒精性肝病模型的研究中发现,肝内TNFα mRNA增高的水平与肝脏病理损伤的程度相关,同时发现,抗TNFα抗体可以明显减轻非酒精性脂肪性肝病大鼠的肝脏炎症和肝细胞坏死病变,但对肝脂肪变性无影响[11]。对离体人肝胚细胞瘤细胞进行细胞毒性实验发现,TNFα可以使该细胞生存力下降,这种作用与TNFα抗体引起细胞凋亡有关,抗TNFα抗体可以减轻TNFα的细胞毒性作用[12]。以上研究说明,TNFα在NAFLD的发病中起一定作用。

3.白介素(Interleuldn,IL) 与NAFLD

近年来有研究表明,不同的枯否氏细胞的功能状态可加重或减轻NAFLD的肝损伤,因此认为其在NAFLD的发病中起重要作用,为此,枯否氏细胞的功能状态在NASH发病机制中的作用也日益受到关注。人们发现NAFLD不但循环中 ILla和 IL6水平显著增高,而且两者的浓度与肝脏损伤的严重程度呈高度相关趋势[13]。采用逆转录聚合酶链反应研究发现,给大鼠过量的脂肪灌胃2周或 4周,其肝脏内 ILla mRNA水平增高。喂饲过量的脂肪16周的大鼠肝内枯否氏细胞产生的 IL6 mRNA水平较对照组增加4倍。因此认为NAFLD中ILla和IL6的增高可能与 ILla、IL6转录水平增高有关[14]。IL6可以刺激培养的人皮肤纤维母细胞合成胶原。有人发现,枯否氏细胞 IL6 mRNA表达的增高与NAFLD纤维化形成有关,提示NAFLD中枯否氏细胞起源程序 IL6可能有促进胶原形成的作用[13]。另外,离体的 ILla、IL6细胞毒性实验发现,单独或联合将 ILla或(和)IL6作用于肝炎细胞不会引起细胞毒性反应[14]。目前,关于 ILla、IL6在NAFLD发病中的作用途径还在研究中。

4.转化生长因子β(TGFβ)与NAFLD

TGFβ广泛存在于哺育动物所有组织中,以血小板和骨组织中表达水平最高。在人体内存在 TGFβ1、2、3三种异构体。TGFβ起着调节细胞生长和分化的作用[15]。NAFLD患者,肝内TGFβ主要来源于枯否氏细胞。目前认为,TGFβ在NAFLD的主要作用是通过诱导细胞外基质的形成,抑制细胞外基质降解,导致肝纤维化形成[16]。从脂肪性肝纤维化大鼠肝脏分离得到的枯否氏细胞作用于肝星状细胞,可以发现肝星状细胞产生胶原。为了进一步证实TGFβ的作用,将抗TGFβ IgG预先与枯否氏细胞一起培养,然后去除多余的IgG,此时枯否氏细胞刺激肝星状细胞产生胶原的作用被抑制,表明脂肪性肝损伤中枯否细胞产生TGFβ是促进胶原形成的重要细胞因子[17]。另外,离体培养的肝窦内皮细胞上的受体可与TGFβ快速结合。肝窦内皮细胞上这种高亲和力受体的存在可能是TGFβ作用的重要途径[18]。研究显示,增殖细胞核抗原(PCNA)单克隆抗体,停滞于G1/S期的肝窦内皮细胞数量与NAFLD的严重程度明显相关。TGFβ通过与肝窦内皮细胞受体结合抑制其增殖,使其分化为平滑肌样细胞,后者在肝纤维化中起一定的作用。肝窦内皮细胞增殖抑制还可能通过产生另一些中间介质刺激肝星状细胞分泌细胞外基质。人体内三种形式的TGFβ在NAFLD中均增高,并且随病变严重程度而增加,其mRNA表达水平明显增高。肝内TGFβ二聚体具有生物活性,还原剂可使二聚体分离,活性完全丧失,酸性微环境对于激活TGFβ有着重要意义。枯否氏细胞可能首先分泌非活性TGFβ,后者在细胞外或靶细胞表面激活,转化为活性形式的TGFβ而发挥作用[19]。

此外,本病还受遗传、环境、免疫和药物等因素影响,总之,NAFLD的发病机制具有多样性,仍有广阔的研究空间。我们坚信随着对本病研究的不断深入,其发病机制将会得到进一步的阐明,并为其有效的防治提供措施。

参考文献

[1]Bitencourt AG,Cotrim HP,Alves E,et al.Nonalcoholic fatty liver disease:clinical and histological characteristics in obese who underwent bariatric surgery[J].Acta Gastroenterol Latinoam,2007,37(4):224-230.

[2]农乐根,钟秋红,李振忠,等.百色市机关事业单位职员脂肪肝发病情况调查[J].广西医学,2006,28(12):1924-1926.

[3]Adams LA.Nonalcoholic fatty liver disease and diabetes mellitus[J].Endocr Res,2007,32(3):59-69.

[4]Marovi D.Ultrasonography findings of liver in textile workers for diagnosing nonalcoholic fatty liver disease[J].Srp Arh Celok Lek,2007,135(9-10):532-535.

[5]Chavez-Tapia NC,Sanchez-Avila F,Vasquez-Fernandez F,et al.Non-alcoholic fatty-liver disease in pediatric populations[J].J Pediatr Endocrinol Metab,2007,20(10):1059-1073.

[6]Yoneda M,Yoneda M,Mawatari H,et al.Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD)[J].Dig Liver Dis,2007,13(2):123-126.

[7]Mitry RR,De Bruyne R,Quaglia A,et al.Noninvasive diagnosis of nonalcoholic fatty liver disease using serum biomarkers[J].Hepatology,2007,46(6):2047-2048.

[8]Tahan V,Imeryuz N,Avsar E,et al.Effects of rosiglitazone on methionine-choline deficient diet-induced nonalcoholic steatohepatitis[J].Hepatology,2007,46(6):2045-2046.

[9]Guha IN,Parkes J,Roderick P,et al.Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers[J].Hepatology,2008,47(2):455-460.

[10]Zamora-Valdés D,Méndez-Sánchez N. Experimental evidence of obstructive sleep apnea syndrome as a second hit accomplice in nonalcoholic steatohepatitis pathogenesis[J].Ann Hepatol,2007,6(4):281-283.

[11]de Oliveira CP,de Mello ES,Alves VA,et al.Changes in histological criteria lead to different prevalences of nonalcoholic steatohepatitis in severe obesity[J].Ann Hepatol,2007,6(4):255-261.

[12]Duseja A,Thumburu KK,Das A,et al. Insulin tolerance test is comparable to homeostasis model assessment for insulin resistance in patients with nonalcoholic fatty liver disease[J].Indian J Gastroenterol,2007,26(4):170-173.

[13]Marchesini G,Babini M.Nonalcoholic fatty liver disease and the metabolic syndrome[J].Minerva Cardioangiol,2006,54(2):229-239.

[14]Ahmed MH,Saad RA,Osman MM.Ezetimibe: effective and safe treatment for dyslipidaemia associated with nonalcoholic fatty liver disease.Response to: Toth PP, Davidson MH: simvastatin and ezetimibe:combination therapy for the management of dyslipidaemia[J].Expert Opin Pharmacother,2005,6(1):131-139.

[15]Yoneda M,Fujita K,Iwasaki T,et al.Treatment of NASH: nutritional counseling and physical exercise[J].Nippon Rinsho,2006,64(6):1139-1145.

[16]Carvalheira JB,Saad MJ.Insulin resistance/hyperinsulinemia associated diseases not included in the metabolic syndrome[J].Arq Bras Endocrinol Metabol,2006,50(2):360-367.

[17]Church TS,Kuk JL,Ross R,et al.Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease[J].Gastroenterology,2006,130(7):2023-2030.

第4篇

关键词:合成类高分子材料 生物可降解 药物载体 生物医学

Doi:10.3969/j.issn.1671-8801.2013.08.066

【中图分类号】R-0 【文献标识码】B 【文章编号】1671-8801(2013)08-0070-02

生物可降解高分子材料在主链上一般含有可以水解的基团,如酯、酸酐、碳酸酐、酰胺或氨酯键等,在活体环境中,这些基团可以通过简单的化学反应或者酶催化作用而降解[1],降解产物为水、二氧化碳等小分子,从而能够被生物体代谢、吸收或排除,对人体无毒无害,而且这类材料具有良好的生物相容性和亲和性,物理化学性质可调节等优点,可用于受损生物体组织和器官的修复、重建以及药物载体材料。

1 生物可降解高分子材料的分类

生物可降解高分子材料按其来源可以分为天然的和合成的两大类。天然的可降解高分子如壳聚糖、明胶、纤维素、淀粉等,因具有良好的生物相容性和可降解特性而被广泛用作药物载体材料[2]。Hejazi等[3]用化学交联的方法制备的四环素-壳聚糖微球,研究发现,通过调节PH改变微球中谷氨酰胺带电性质,可实现药物的靶向释放。淀粉微球在鼻癌治疗中的应用也越来越引起关注[4]。明胶是动脉栓塞疗法治疗肿瘤的常用天然基质材料。近年来研制的抗肿瘤明胶微球如甲氨蝶呤明胶微球、羟基喜树碱明胶微球等,研究证明其治疗效果明显优于传统给药方法,且理化性质稳定。然而,天然高分子大多具有热塑性差、成型加工困难、耐水性差,单独使用时性能差等缺点,应用中受到很多限制。

2 合成类高分子材料的分类

2.1 生物合成类高分子材料。合成类高分子材料可分为生物合成和化学合成降解高分子。生物合成可降解高分子主要是由微生物或酶合成,如聚羟基烷酸酯(PHAs),其具有良好的生物相容性,已被应用于药物载体、手术缝合线、植入材料、骨夹等生物医学装置。但是PHAs力学强度差、降解过慢,适合长期植入材料,为了满足实际要求,往往将不同种类的PHAs按一定比例共混,调节材料的强度和降解速度。Hu等[5]制备了PHAs类聚酯的三元共聚物,研究发现其具有较粗糙的表面,亲水性优于PLA等,材料表面的骨髓基质细胞生长量和成骨性都优于其它PHAs类聚酯。然而这种材料价格较为昂贵,限制了它的临床推广。

2.2 化学合成类高分子材料。

2.2.1 脂肪族聚酯类。化学合成的可降解高分子材料主要有聚酯类、聚碳酸酯、聚氨酯类和聚酸酐类等。脂肪族聚酯类是目前研究最多、应用最广的生物可降解合成高分子,常见的有聚乙交酯(PGA)、聚丙交酯(PLA)、聚己内酯(PCL)及其共聚物,它们具有良好的生物相容性、成膜性好、化学稳定性高、降解产物无毒无害、降解速度和物理化学性能可以通过调节聚合物组分、组成比例和分子量来实现,其单体大部分来源于植物、石油、天然气等再生资源,因此成为目前应用最广泛的合成类生物降解高分子材料[6]。聚乳酸(PLA)材料韧性差且降解慢,而PGA力学强度大,加工成型难度大,降解速度快,所以两者共聚可以取长补短,通过调节两组分比例和分子量改变共聚物的特性来满足实际应用要求。有时也会加入其它的聚合物来改善共聚物的性能,如把亲水性的聚乙二醇(PEG)(B段)插入到PLGA、PCL、LA或GA(A段)的链段中,形成温度敏感型嵌段共聚物ABA或BAB类型,用于调节共聚物的亲水性和降解速度。Ruan等[7]合成了PLA-PEG-PLA嵌段共聚物,并作为水溶性抗癌药物紫杉醇的药物载体,研究表明PEG的加入提高了聚合物的亲水性和释药速率。

2.2.2 聚磷酸酯类。聚磷酸酯类最近几年报道较多,在生物医学、塑料工业、饲料行业等都有应用,但在药物控释领域研究尤为突出。主要原因有三[8],其一,聚磷酸酯中的五价磷原子结构使其更容易被修饰和功能化,可直接接枝药物分子或活性分子;其二,磷酸酯类大量存在于人体内,而且是细胞膜的主要组成之一,因此聚磷酸酯类在生物体内具有很好的细胞亲和性和细胞膜通透能力,而且易被水解和被酶分解;其三,肿瘤细胞内磷酸酯酶和磷酰胺酶等的含量和活性都高于正常细胞,聚磷酸酯载药微粒易被分解而释放药物,达到靶向释放的目的。因此,聚磷酸酯作为抗肿瘤药物的载体越来越受到重视。具有提高人体白细胞作用的茜草双酯和磷酰二氯缩聚反应合成的聚磷酸酯,可以作为抗肿瘤药物5-Fu的载体,降解释放的茜草双酯和5-Fu可达到治疗癌症放化疗引起的白细胞减少症和抗癌的双重功效[9]。Wang等人[10]用含阳离子的聚磷酸酯与其他聚合物合成三嵌段共聚物纳米胶束,作为带负电的小干扰RNA的基因载体,可较好的沉默细胞异性蛋白的表达。聚磷酸酯在组织工程领域也引起越来越多的关注。聚磷酸酯与对苯二甲酸乙酯的共聚物,可作为神经导管材料,生物相容性好,有利于神经再生长[11]。

2.2.3 聚氨基酸类。聚氨基酸具有很好的生物相容性和可降解特性,无毒无害,已广泛应用于药物载体、组织工程材料等生物医学领域。但因其降解性能难控,实际应用中常通过与其他化合物共聚,改变各组分比例、分子量等手段得到具有新特征的材料,如聚赖氨酸-聚乙二醇共聚物、聚天冬氨酸-聚乙烯醇共聚物、聚谷氨酸-氧化硅接枝共聚物、聚氨基酸-聚乳酸共聚物等。目前,研究最热的是聚氨基酸-聚乳酸共聚物。聚乳酸具有亲水性差、细胞亲和性不理想、结晶度高、降解慢的缺点,对聚乳酸的改性成为研究的重点。聚氨基酸含有羟基、氨基、羧基等多个活性官能团,可以固定蛋白质、多肽等生物活性因子,将聚氨基酸与聚乳酸共聚,不仅可以改善聚乳酸的亲水性、细胞亲和性和降解速度,还可以引入活性基团。叶瑞荣[12]等人用直接熔融法合成聚(乳酸-甘氨酸)和聚(乳酸-天冬氨酸),研究发现,改性后的聚乳酸为无定型态,结晶度降低,亲水性和降解速度均提高,可作为药物缓释材料。严琼姣等人[13]用3S-[4-(苄氧羰基氨基)丁基]-吗啉-2,5-二酮和丙交酯共聚,制备了RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)共聚物,RGD修饰后的共聚物具有很好的神经细胞亲和性和亲水性,可作为神经修复支架材料。

2.2.4 聚碳酸酯。聚碳酸酯是一类环境友好型和生物相容性较好的高分子材料,因主链和侧基的不同而种类繁多,可通过引入功能化侧基(如羧基、羟基、氨基、双键等)和化学设计分子主链等方式,改变其亲水性、降解速度和热力学性能,同时还可以接入多肽、抗体等活性基团。近年来在药物控释系统、手术缝合线、骨固定材料等领域应用越来越广泛。聚碳酸酯根据主链结构的不同,可分为脂肪族聚碳酸酯和含芳香族主链的聚碳酸酯。聚碳酸三亚甲基酯(PTMC)是最常见、研究最多的线型脂肪族聚碳酸酯,在体内生物酶的作用下可加速其降解[14]。聚碳酸酯可通过引入功能化侧基、物理共混和化学共聚的方法进行改性。Zhuo等[15]以甘油为起始原料合成了主链含有羟基的聚碳酸酯,研究证明该聚合物具有较好的生物相容性,羟基的引入改善了聚合物的亲水性和降解特性。Albert-stson等[16]制备了以PTMC为载体的阿米替林释药模,但是药物释放速度很慢,通过PTMC与一定量的聚酸酐共混,可明显提高阿米替林的释放速度。商品名为Maxon的生物可吸收手术缝合线就是由32.5%(摩尔比)的TMC与GA共聚得到的Poly(GA-co-TMC),该聚合物具有很好的弹性,弥补了PTMC降解速度慢的缺点[17]。

2.2.5 聚酸酐类。聚酸酐类最早由Bucher和Slade在1909年合成。直到八十年代,人们发现它的易水解特性才将其应用到药物缓释体系中。聚酸酐具有以下特点:①表面溶蚀的降解特性。其在人体内的药物释放接近零级释放,且无药物暴释现象。②降解速度可调节。可以通过调节共聚物的组成、组分比例和分子量等调节降解速度和药物释放速度。③具有良好的生物相容性,对人体无毒害作用。④在药物释放领域具有良好的药物稳定作用。目前,用聚酸酐局部控制给药体系治疗实体瘤癌症已引起高度重视,成为研究的热点。美国FDA已批准其用于复发恶性脑瘤的辅助化疗。

3 应用和发展趋势

目前,合成类生物可降解高分子材料在药物控释体系、组织工程、手术缝合线、超声造影等领域已经得到广泛的关注和应用。在药物控释领域,根据作用部位不同,可加工成微球、纤维、片剂、膜、棒、纳米乳和亚纳米乳等。为了提高药物的靶向性,纳米颗粒和磁性纳米颗粒成为研究的热点。单个的聚合物材料因自身缺点往往不能满足生物医学的要求,常与其他高分子共聚、共混或引入活性官能团,通过改变各组分配比、分子量、制备方法和条件等因素,或对侧基进行功能化修饰,制备出符合现实要求的、兼顾各自优点的新型高分子材料。当然,新型材料制备的经济成本和工艺实现工业化等问题也应引起重视。未来,合成类生物可降解高分子材料在生物医学领域的应用会越来越广阔。

参考文献

[1] Vert M, Li S,Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. J Controlled Release,1991,16:15-26

[2] Anal A K,Stevens W F,Remunan-Lopez C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int . J. Pharm,2006, 312(1-2):166-173

[3] Hejazi R,Amiji M. Int. J. Pharm,2004,272:99-108

[4] Morath L P. Adv Drug Deliv Rev,1998,29:185-194

[5] Hu Y J,Wei X,Zhao W,et al. Acta Biomater,2009,5:1115-1125

[6] Kobayashi S,Uyama H. Biomacromolecules and Bio-Related Macromolecules. Macromol. Chem. Phys,2003;204(2):235-256

[7] Ruan G,Feng S S. Biomaterials,2003,24:5037-5044

[8] 张世平.新型脂肪族酯和磷酸酯共聚物的合成、表征及其生物相容性研究.[D].西安.西北大学,2009

[9] 汪朝阳,赵耀明.高分子通报,2003,(6):19-27

[10] Sun T M,Du Z,Yan L F,Mao H Q,Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials,2008,29:4348-4355

[11] Wang S,Wan A C A,Xu X Y,Gao S J,Mao H Q,Leong K W,Yu H. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials,2001, 22:1157-1169

[12] 叶瑞荣,王群芳,汪朝阳等.不同氨基酸直接改性聚乳酸的性能研究[J].化学研究与应用,2010,22(9):1126-1131

[13] 严琼姣,李世普,殷义霞等.RGD多肽接枝聚(乳酸-羟基乙酸-L-赖氨酸)的制备与表征[J].中南大学学报,2008,39(6):1190-1195

[14] 周瑜,刘芝兰,陈红祥.脂肪族聚碳酸酯及其在医学中的应用.化学通报,2011,74:1112-1113

[15] Wang X L , Zhuo R X, Liu L J , et al. J. Polym. Sci,Polym. Chem. 2002, 40: 70-75

第5篇

分子生物学的专业术语众多、基础理论较抽象,尽管已有相关理论课程讲授,但是笔者发现在实习中,仍有相当多的学生存在基本概念不清、基本原理模糊等问题。因此在临床实习阶段,带教教师必须帮助医学检验专业学生进一步理解和掌握分子生物学理论知识。

1.1基础知识的强化讲解

在临床实习阶段,对于学生基础知识的强化讲解不能是简单的教材重复讲授,讲授内容的选择要有针对性和实用性。因此,笔者选择常用的分子生物学临床检验项目为实例,采取小组讨论的形式,鼓励学生大胆提问和自由讨论,将实验涉及的专业术语和基础理论进行再次讲解。例如,笔者以检验项目乙型肝炎病毒DNA定量和基因分型检测实验为讨论对象,在DNA提取过程中向学生介绍核酸分子的特性;在PCR扩增时详细讲解聚合酶链反应的条件、过程和特点;在检测状病毒基因型时讲解核酸分子杂交的基本原理等。在基础知识讲授的过程中,将枯燥的专业术语和抽象的基础理论融入一个个具体的临床检验实例,由临床问题引出要掌握的基本概念和基本原理,极大的提高了学生学习理论的兴趣、改善了理论教学的效果。笔者通过实习阶段对学生的强化讲解,使学生能够切实掌握在临床分子生物学实验室中开展工作所必备的基础知识。

1.2前沿知识的扩展讲授

由于教材一般都滞后于学科的发展,并且教材的编写通常更加注重知识的广泛性而非深入性,因此相当部分的分子生物学新进展未能在理论课程中讲授川。而在临床实验室中,越来越多的分子生物学新技术已在临床运用,为了弥补分子生物学教材和临床实际脱节的缺陷,笔者在医学检验专业学生临床实习期间,采用专题学习的方式,针对性的讲解分子生物学检测的新进展和新技术。例如,在学生已掌握聚合酶链反应基本原理的基础上,更加深入的介绍临床和科研工作中常用的R子PCR、巢式PCR、多重PCR、荧光定量PCR等衍生扩增技术的相关原理和特性。

对于基因芯片检测、高分辨溶解曲线分析等最新的分子生物学技术,也以专题讲座的方式,结合临床和科研的实际运用现状向学生进行深入浅出的讲解,并且鼓励学生广泛阅读文献和参考资料。在实习期间,实际操作中还会安排有兴趣的学生参加院内、市内和省内举办的各种分子生物学新技术继续教育培训,使医学检验专业学生能够了解最新的学科进展。通过上述多种方式,培养学生自主学习知识的兴趣和能力。

2培养实践动手能力

分子生物学技术的种类繁多、发展迅速,学生在校学习期间,仅仅依靠有限的教学设备和较短的实验课时是无法掌握分子生物学的基本技术。临床分子生物学实验室通常都具有较为完备的实验器材和检测设备。因此,在实习期间,如何充分利用上述有利条件,培训医学检验专业学生的实验技能也是分子生物学实习教学的一个重点川。

2.1基本实验技能的培训

学生在进入临床实验室实习后,对很多实验器材、精密设备比较陌生,实际操作中往往存在很多不规范的环节川。笔者必须从检测样本的离心、移液器的使用、反应液的混匀等最基本的实验操作出发,细致的讲解各项操作过程,让学生掌握每一步的操作规范,重点强调操作要点和关键步骤,通过示范性操作和一对一指导,由易到难,带领学生认真完成每一项实验操作内容,使每位学生都能够熟练的掌握各种操作的具体步骤和注意事项。并且在临床实际工作中,教师必须做到“放手不放眼”,对学生持续关注、严格要求,以培养学生良好的实验习惯和严谨的工作作风。以病毒核酸提取的培训为例,笔者要求学生在理解提取原理的基础上,掌握提取操作的流程,熟悉操作的要点和关键步骤,并且能够分析影响实验结果的相关干扰因素。在学生的临床实习期间,通过多种和大量的实际操作,使学生掌握临床检测和科研工作中常用的分子生物学技术,培养医学检验专业学生基本的工作能力困。

2.2科研项目的教学转化

临床分子生物学实验室承担的不仅仅是临床检测任务,还包括部分的科研任务。笔者在申报各级科研课题的过程中,鼓励学生大胆参与查阅文献、凝练科学问题、实验设计、撰写标书等各个方面工作,学生通过文献的阅读、搜集和分析能够巩固基础理论知识,了解最新研究进展;通过科学问题的凝练能够培养学生的独立思考能力;学生通过实验设计能够熟悉各种实验方法;通过撰写项目标书能够极大的提高学生的科研写作水平。笔者也鼓励学生在教师的指导下积极参与多项科研项目,以提高学生的实验观察能力和强化学生的独立操作能力。科研和教学的相互渗透、相互转化不仅丰富了分子生物学实习教学的内容,而且拓展了学生的思维、提高了学生的综合素质,激发了学生的科研能力和创新精神,幻。

第6篇

关键词 工科院校 分子生物学实验 改革

中图分类号:G640 文献标识码:A

On Biological Students' Individualized Practice

Education in Engineering College

――Take Molecular Biology Laboratory as an example

XIE Hui, SHEN Xiaomin

(School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126)

Abstract In this paper, the author of the engineering colleges features, combined with years of experience in the course professor of molecular biology experiments, analysis of some of the drawbacks of traditional molecular biology lesson exist now leads aspects of molecular biology experiment teaching system in need of reform. Try to open innovation experiments, increasing the comprehensive design experiment, the introduction of the experimental research of teachers and teaching aspects reforms to achieve significance in molecular biology experiment teaching.

Key words engineering college; molecular biology experiment; reform

1 工科院校分子生物学实验教学存在的问题

1.1 课时紧张,实验项目大同小异

分子生物学实验课广泛存在于全国多数具有生命科学学院的专业实验课程中,一般均为专业必修实验课程。但由于多数工科院校对于理科课程分配的课时有限, 如本校分子生物学实验课程学期课时仅30学时。因此,教师要在有限的时间内达到大纲规定的培养目标和要求就直接导致了传统分子生物学实验教学内容上往往是选择一些基础实验进行讲授。这样实验课程往往成了走过场,使得学生不能真正认识到分子生物学实验在他们专业领域中的实际作用,进而会严重影响学生对分子生物学实验的学习积极性和学习兴趣。

1.2 压制学生的创造性

现在高校中绝大多数学生均为90后,由于接触到更多的新事物,他们对于事物的认知和渴望是非常强烈的。但是在传统分子生物学实验教学过程中,很多内容都是由实验教师提前做好充分的准备,学生进入实验室一般只会做一些老师设定好的简单操作就可以完成整个实验,对于很多重要实验原理具体技术路线,实际应用均不知晓。这样机械化的实验教学形式,不能激发现代大学生对实验动手操作的兴趣, 同时会影响他们对分子生物学实验教学的积极性,更为严重者还会导致学生对自己所学专业的失望。

2 个性化分子生物学实验教学改革分析

2.1 针对工科实践性特点安排实验

由于本校是一所工科院校,多数学生最终都要进入生产第一线,因此,一方面我们申请增加了分子生物学实验课程课时量,另一方面我们增加了分子生物学技术在尖端科研、疾病检测及环保领域应用的创新性、综合性实验,使学生能够直观地了解到自己所学的知识及实验技能能够学以致用。整个实验课教学体系分为三个主要部分进行:第一部分为五个基本实验,是所有学习分子生物学的工科学生必须掌握的最基本的基础实验技能,其中包括三个核酸提取实验、一个电泳检测实验、一个PCR反应实验。第二个部分为分子生物学基本实验技能应用、提高的实验内容,包括学生选做的三个实验。这些实验的目的在于培养学生能够应用分子生物学的基本实验技能解决一些实际问题,例如:聚合酶链式反应对疾病的检测、引物设计合成和功能性基因扩增、分子生物学方法高精度检测环境微生物种类及分布。第三个部分为综合性、设计性实验,主要是针对学生的不同特点,分组选择课题进行研究,完成后撰写并提交研究报告,该部分主要是学生根据所学知识和技能自主进行完成。

2.2 设立分子生物学实验开放性实验

首先在分子生物实验课程中尝试了开放式的教学模式,包括实验内容的开放(分子生物学实验教学改革中第三个部分的综合性、设计性实验)及实验时间的开放。在分子生物实验教学内容中,第三部分的内容为开放式的,学生可以根据自己的专业方向、兴趣自主选择研究课题,任课教师也可给出部分开放式研究题目供学生选择。此外,在分子生物学教学实验时间上也实行开放式,即学生可以在规定周次内的具体时间来实验室进行试验项目研究。通过开放式的实验教学模式,提高了学生自己动手做实验的兴趣,同时,方便了学生实验时间的安排。

2.3 科研转化分子生物学实验教学

通过近年来分子生物学实验教学的实践,将教师的科研课题转化为实验教学内容是一种很好的实验教学改革模式。首先,由于生命科学领域进展很快,甚至超越了电子信息技术,所以在一般的教师科研项目中,会有大量全新的内容补充到实验教学内容中,从而使实验教学内容能够不断更新;其次,教师的科研课题一般代表了该领域全新的研究内容和研究方法,这就使我们的分子生物学实验教学内容能够紧跟该领域的研究步伐,不至于过于陈旧、落后。同时,使得当代个性化发展的90后学生能在分子生物学实验教学过程中了解并掌握生产实践中的实用技术,为日后实践工作或继续深造奠定了扎实的基础。

3 结语

本文通过实践调研、教学经验、综合各工科高校优势培养理念后认为:新形势下分子生物学实践教育应以90后高校大学生为主体、生命科学学院专职、专业实验教师为主导力量。另外,辅以专业基础实验室、探究性学习实验室、本科生开放性实验、各类高端互动实验、创新性课题实验、生产实习与调研的全方位、立体化、多层次、高效率的分子生物学实验教育教学模式,有利于培养90后大学生分子生物学综合实验技能、创新能力、严谨精神、逻辑思维和科研素养以及90后生物专业学生分子生物学实验个性化实践教育的全面培养。

参考文献

[1] 王金发,何炎明,戚康标,等.开放式、研究性实验教学模式的创立与实践[J].高等理科教育,2007.76(6):97-100.

[2] (加)马克思 范梅南.生活体验研究人文科学视野中的教育学[M].宋广文,译.北京:教育科学出版社,2003.

[3] 黎平辉.教学情景中的教学个性化[J].湖北民族学院学报(哲学社会科学版),2008.26 (1):153-160.

[4] 郝福英,许崇任.整合实验资源,深化实验改革,培养生命科学基础人才[J].中国大学教育,2006(1):47-48.

[5] 屠平官,陈坚刚,李英姿,等.现代生命科学实验教学示范中心建设的实践[J].实验技术与管理,2006.23(3):1-4.

[6] 杨祖幸,孙群,赖春霞,等.浅析我校国家级生物科学实验教学示范中心的建设[J].实验技术与管理,2008.25(4):107-110.

[7] 陈小麟,庄总来,司卓亚,等.改建结合,创建国家级生命科学实验教学示范中心[J].实验室研究与探索,2006.25(8):950-986.

[8] 腾利荣,孟庆繁,逯家辉,等.国家级生物实验教学示范中心建设的研究与实践[J].中国大学教育,2007(7):36-38.

第7篇

关键词:研究型教学;生物化学与分子生物学;大学生科技创新

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)18-0146-02

进入21世纪后,分子生物学的发展迅猛,新技术新手段层出不穷并已渗透到各个学科;分子生物学理论与技术已经成为人们认识生命本质和改造生物特性的有力武器。然而,我们在指导大学生科技创新活动中发现:大多数学生(即使考试成绩很好的学生)很难能应用所学的分子生物学理论与技术设计出科学研究的实验方案;我们调查也发现:很多硕士研究生在利用分子生物学理论与技术设计科学研究实验方案时仍困难重重,这说明我们传统的“老师讲、学生听、再考试”按部就班的生物化学与分子生物学教学模式已经很难实现“培养高素质创新性人才”的目标。那么,如何在教学中引导学生进行科技创新?

随着近年来分子生物学的飞速发展,给生物化学与分子生物学教学带来一些问题,主要体现为:教学学时的不足与教学内容的扩增;学生理论知识的学习与科学研究实验环节的严重脱离,这是造成分子生物学知识在应用中“困难重重”的主要原因。

研究型教学也称主题研究,是在美国布鲁纳的“发现式学习模式”和瑞士皮杰的“认知发展学说”基础上构建的教学模式[1],是在老师指导下有目的地相对独立地对教学内容相关的实际问题进行探索研究,从而提高学生运用知识解决实际问题的能力,从而培养出具有独立思考研究能力的创新型及应用型人才。

“开展大学生创新教育、培养高素质创新性人才”是高等教育改革与持续发展的一个重要主题。为坚持“教学以学生为本”的原则,以培养“实践能力强、综合素质高”的创新型医学人才为中心,我们以“肿瘤微环境与免疫治疗湖北省重点实验室”为平台,以教师承担的科研项目为引导,在生物化学与分子生物学理论及实验教学中探索并实践“研究型教学”模式。

1.优化和整合理论教学内容,夯实学生创新基础。生物化学与分子生物学发展快速,新技术、新方法、新成果不断涌现。我们根据教学大纲要求,优化、整合教学内容:删除淘汰的内容,合并重复的内容,增加新出现的内容。在课堂讲授中,将国内外一些最新分子生物学研究成果、发展动态及科学前沿知识充实到教学内容中;介绍分子生物学新技术在疾病诊断、治疗、预防中的最新进展,使学生明白生物化学与分子生物学在医学中的重要性。

2.利用多种现代化教学方法和手段,激发学生科技创新兴趣。生物化学与分子生物学课堂内容丰富、信息量大,而教学课时少。因此,我们在理论教学中将教学内容分为讲授和自学两部分:在讲授中,利用多媒体等多种现代化教学手段,将难点和抽象的内容以动画的形式反应出来,使教学内容直观化,增加学生对知识的掌握;在自学中,充分利用网络教学平台实现师生之间、生生之间的交流互动;同时将教师承担的科研课题设置成科研专题,让学生带着科研专题的问题开展学习。

3.加强实践教学,培养学生科技创新能力。我们在重视理论知识教学的基础上,加强实践教学与理论教学相结合。我们重新组合实验内容,实行“三型实验原则”(即将实验分为验证型实验、综合型实验、研究型实验):减少基础性验证型实验、增加设计性综合型实验、开展创新性研究型实验。

在课堂内的基础性实验部分:减少传统的验证性及临床生化指标测定的实验项目及学时数,使实验项目主要集中于基本操作、比色技术、离心技术、层析技术及电泳技术等方面的实验;对基本的规范化实验操作方法及常规实验技术(如比色、离心、层析、电泳等技术)操作流程录像后上传到课程网站中以便学生对照学习。

在课堂内的设计性综合型实验部分:我们组织学生针对教学中遇到的问题设计研究方案。例如,在肝脏生物化学中提到:白蛋白主要是由肝脏合成,而白蛋白又是临床医疗和科研中常用制剂,如何提取出有活性的白蛋白?如何利用生物技术大量生产白蛋白?通过讨论,使学生了解解决这一问题所依据的蛋白质理化性质和分离纯化、基因表达、基因重组、PCR等理论知识。通过设计白蛋白分离纯化与鉴定实验,在对蛋白质理化性质加深理解的同时,使学生掌握合理运用盐析沉淀、离子交换层析等技术操作流程;在此基础上,启发学生运用基因重组、RT-PCR等分子生物学技术设计重组表达白蛋白的实验方案。指导教师对学生设计的研究方案可行性和合理性进行点评及修改,学生在老师指导下,在课堂内开展上述设计性综合型实验。

4.在课堂外的创新性研究型实验部分:学生组成多个研究小组(3~5人/组)对教师承担的科研课题(已设置成多个科研专题)查阅文献和资料后进行创新性科研专题申请书的撰写;指导老师根据申请书质量及个人兴趣爱好挑选部分研究小组开展科研专题的实验研究;在此过程中,学生利用课余时间在老师指导下开展创新性实验研究,从而进一步培养科技创新能力。

5.研究型教学模式在生物化学与分子生物学教学中的效果:通过研究型教学模式在三峡大学医学院临床医学专业的生物化学与分子生物学教学中的探索与实践,我们发现学生的考试成绩显著高于未经过研究型教学模式的班级;学生的动手操作能力也显著高于未经过研究型教学模式训练的学生。通过研究型教学模式,学生的科研素质和创新能力得到提高,激发了学生对生物化学与分子生物学的学习兴趣,极大调动了学生的学习积极性。通过学生课外完成的科研专题研究,学生以第一作者在CSCD核心期刊发表研究论文7篇;指导老师在指导大学生科研专题的同时,圆满完成了自己所承担的科研课题的研究;同时老师通过完成科研课题,促进自己的教学水平。

总之,通过上述一系列的探索与实践,能充分调动学生学习积极性,开阔视野,增加学生对生物化学与分子生物学及科技创新活动的兴趣;更重要的是能提高学生的实践动手能力,培养学生的科技创新能力;同时,老师通过完成科研课题,带动人才培养;能使教师把教学与科研有机结合起来,以科研促进教学;使教师不断更新教学内容,不断改善教学框架,形成囊括最新知识框架的教学体系,从而使《生物化学与分子生物学》教学质量得以进一步提高;即充分证明研究型教学模式在生物化学与分子生物学教学实践中是有效和可行的。

第8篇

摘要:简要介绍生物工程专业分子生物学学科特点及学生学习中遇到的困惑,对分子生物学教学改革进行了探讨,并取得了较好的教学效果。

关键词:分子生物学;生物工程;教学改革

生物工程专业是以生物学基本原理为理论基础,以工程学的方法研究并解决生物技术和生命科学中的技术问题。从人才培养的行业要求看,作为生物工程专业的应用型人才,在知识的储备方面,应具有一定的专业基础知识、宽广的人文社会知识、较强的实践管理知识以及相关的其它知识;在实际能力培养方面,应该具备较强的社会生存适应能力、知识更新能力、工程管理实践能力、创新能力;在素质要求方面,应具有良好的思想道德素质、科学文化素质和身体素质[1]。分子生物学是前沿性很强的一门基础课,目前,分子生物学已经深入到生物学科的各个领域,我们应当适应学科发展的实际情况,开拓思路,与时俱进,使分子生物学课程教学为实现培养应用型生物工程专业人才目标服务。

一、分子生物学课程教学改革的必要性

(一)分子生物学课程的重要性。

分子生物学是生物工程专业的专业基础课,是现代生物学综合发展的最高水平。现代分子生物学以跃入学科高速发展期,以渗透到生物的各个学科并作为深入研究的工具和平台。由于分子生物学是在分子水平上对生物进行探究和改造,其研究成果能够从生物的本质上认识和利用生物,因此,分子生物学对生物工程本科是非常重要的课程。

(二)分子生物学在生物工程专业本科学生未来发展中的作用。

分子生物学对进一步深造的学生奠定了专业基础,对生物工程本科就业的学生来说也有重要的作用。就业在与分子生物学间接有关岗位上的学生,可能在其某些环节上与该学科有关;对在分子生物学直接有关岗位上就业的学生,作用当然会更大,其就业情况详见调查表。

(三)分子生物学课程教学改革的必要性。

分子生物学内容繁杂、发展迅猛。针对学生在该课程学习中反映的理解困难,为了帮助学生掌握分子生物学基础理论知识和提高实验技能,激发学生学习的主动性和积极性,亟需对目前的分子生物学课程教学进行改革。

二、教学改革的实施方法与效果

(一)选择好教材, 重视知识更新。

教材是学生获取知识的首要途径。对于首次接触分子生物学的学生来说,选择一本合适的教材,既可以使学生克服畏难情绪,也有助于学生理解抽象概念与规律,建立起对该门课程的兴趣和信心,顺利地迈进分子生物学的大门。首先,我校生物工程专业分子生物学课程安排在第三学年第一学期,学生虽然已经学过了生物化学和遗传学,分子生物学的大部分概念、内容对学生而言仍是晦涩难懂,导致学生产生畏难情绪。其次,由于分子生物学发展日新月异, 新知识新技术不断涌现, 新版教材不断推出,给教材的选择带来了一定的困难。只要我们能够把握该课程的基本脉络并对更新的知识作适当的补充,就能又快又好地掌握该门课程。我们积极收集最新的教材和资料,不断更新教学内容。通过比对各种教材内容、体系设计和风格特点, 我们选用了朱玉贤等主编的《现代分子生物学》,该教材综合了生命科学在分子水平上所取得的研究成果、基本规律、原理与技术,全面完整地反映了分子生物学各领域的最新进展[2],符合生物工程本科教学的要求。

(二)制定科学合理的教学方案。

目前分子生物学理论课中,有三个比较突出的问题:一是课时少内容多;二是内容较抽象;三是教学内容与很多学科相互联系、相互渗透。为了使本学科与其它课程的知识紧密衔接而又避免重复, 合理取舍教学内容, 制定切实可行的教学方案, 教学内容选择时把握三个原则:第一,侧重学科的基本理论和基本技能;第二,注意一些趣味性的动画和模具等的使用;第三,注意和相关科目教师的教学交流,淡化与其它学科重复的内容。对于学过的知识只做简单的复习, 而在此基础上将知识向纵深、向高层次扩展。

(三)把握学科特点, 激发学生学习兴趣。

实践证明, 培养学生学习兴趣是开发学生创造性思维能力、提高教学效率的必要措施之一。在教学中合理地穿插具有趣味性、新颖性、启发性和热点问题的知识。例如在学习逆转录时,我们可以穿插讲解AIDS病毒的复制转录机制,这样通过理论和实践结合,不仅可以加深学生对该知识点的理解和记忆,而且学生听后兴趣盎然,视野开拓,将有利于激发学生的求知欲和培养学生的创造力。

(四)改进教学方法与手段。

分子生物学是一个抽象繁杂的知识体系,传统的“填鸭式”教学方法很难使学生深入理解和掌握,因此迫切需要改进教学方法和丰富教学手段。

1.采用现代化多媒体手段。多媒体教学利用动画展示事物发展的动态或推理的全过程,将抽象的理论的东西形象化具体化,能给学生创造更生动的实际情境,更多样地体验理论的实用性,并充分激发学生的学习兴趣和潜能,能够有效的克服传统教学方式的缺陷。对于分子生物学这类信息量大图文并茂的课程来说,采用多媒体教学特别适合,可使学生产生新鲜感,激起学习热情,提高教学效果。

2.强化教学互动。在教学中,要加强教与学的互动,使学生融入到课堂教学中,最大限度地调动学生的学习积极性。老师详细说明各章节的重点和难点,鼓励学生结合教材主动进行学习,带着问题进入课堂,同时在讲课时,有意识地穿插一些具有趣味性和启发性的热点问题,引导学生积极思考,激发学生探索知识的兴趣,将抽象的分子生物学知识理解透彻,有利于培养学生的创新思维能力。

3.培养科研创新能力。根据教师自身的研究项目充实课堂教学内容,把相关的知识融入到教学中,从项目的立题依据、研究方法、科研成果等方面进行阐述,使学生领悟分子生物学的研究思路和意义,开拓学生的思维,激发求知欲,逐步培养学生的科研兴趣,提高学生的基本科研素质。

(五)重视分子生物学实验,培养学生的实践操作能力

分子生物学是一门以实验为基础的课程。因此,在分子生物学教学中开设实验课是十分必要的。分子生物学技术内容丰富,学生通过动手操作,不仅可以增加对所学理论知识的感性认识,而且可以把所学理论运用到实践中解决实际问题。因此,开设分子生物学实验是加深学生对理论知识的理解,培养学生独立思考和独立工作能力以及创造能力的良好途径。

实验课作为理论知识的“现实版”,也是培养学生动手能力和科研能力的实践课。在实验课教学工作中,应加强所选实验内容的针对性、完整性和先进性。在实验过程中,应注意对学生分析解决问题能力、实验设计能力以及思维能力的培养和锻炼[3]。

(六)利用网络资源,提高学生获取知识的能力

互联网上的信息资料和研究成果可以共享,掌握互联网资源的查询和利用是了解学科发展动态和获得已有研究成果的有效途径。

三、总结与展望

通过我们的教学改革,生物工程专业分子生物学教学效果得到明显改善,学生的出勤率增加,课堂气氛活跃,自主学习能力、思考能力和分析解决问题能力均明显提高。为了进一步提高生物工程专业大学生的实践和创新能力,尚需在以下三个方面加强改革:第一,鼓励学生参加教师的科研项目,使教学和科研相互促进,在科研中提高综合素质;第二,进一步提高任课教师的教学水平,大力发展计算机辅助教学,以更加灵活多样的方式完成教学;第三,结合分子生物学学科特点和学生学习时的困惑,应寓教于乐,夯实基础,开拓视野,培养喜欢学科、热爱专业、认真学习和综合素质高的生物工程专业本科应用型人才。

参考文献:

[1]刘迎春,熊志卿.应用型人才培养目标定位及其知识、能力、素质结构的研究[J].中国大学教学,2004(10):56-57.

[2朱玉贤,李毅,郑晓峰等.现代分子生物学第三版[M]北京: 高等教育出版社,2007