首页 优秀范文 故障分析论文

故障分析论文赏析八篇

发布时间:2022-04-03 03:44:16

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的故障分析论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

故障分析论文

第1篇

论文摘要:数控机床电气系统故障的调查、分析与诊断的过程也就是故障的排除过程,一旦查明了原因,故障也就几乎等于排除了。因此故障分析诊断的方法十分重要。

一、故障的调查与分析

这是排故的第一阶段,是非常关键的阶段,主要应作好下列工作:

1、询问调查在接到机床现场出现故障要求排除的信息时,首先应要求操作者尽量保持现场故障状态,不做任何处理,这样有利于迅速精确地分析故障原因。

2、现场检查到达现场后,首先要验证操作者提供的各种情况的准确性、完整性,从而核实初步判断的准确度。由于操作者的水平,对故障状况描述不清甚至完全不准确的情况不乏其例,因此到现场后仍然不要急于动手处理,重新仔细调查各种情况,以免破坏了现场,使排故增加难度。

3、故障分析根据已知的故障状况按上节所述故障分类办法分析故障类型,从而确定排故原则。由于大多数故障是有指示的,所以一般情况下,对照机床配套的数控系统诊断手册和使用说明书,可以列出产生该故障的多种可能的原因。

4、确定原因对多种可能的原因进行排查从中找出本次故障的真正原因,这时对维修人员是一种对该机床熟悉程度、知识水平、实践经验和分析判断能力的综合考验。

5、排故准备有的故障的排除方法可能很简单,有些故障则往往较复杂,需要做一系列的准备工作,例如工具仪表的准备、局部的拆卸、零部件的修理,元器件的采购甚至排故计划步骤的制定等等。

下面把电气故障的常用诊断方法综列于下。

(1)直观检查法这是故障分析之初必用的方法,就是利用感官的检查。

①询问向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。

②目视总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等。

(2)仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC编程器查找PLC程序中的故障部位及原因等。

(3)信号与报警指示分析法

①硬件报警指示这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。

②软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。

(4)接口状态检查法现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。

(5)参数调整法数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障多指故障分类一节中后一类故障,需要重新调整相关的一个或多个参数方可排除。

(6)备件置换法当故障分析结果集中于某一印制电路板上时,由于电路集成度的不断扩大而要把故障落实于其上某一区域乃至某一元件是十分困难的,为了缩短停机时间,在有相同备件的条件下可以先将备件换上,然后再去检查修复故障板。

鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤之后再动手,以免造成更大的故障。

(7)交叉换位法当发现故障板或者不能确定是否故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维的混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。

(8)特殊处理法当今的数控系统已进入PC基、开放化的发展阶段,其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用者自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律或者其他有效的方法。

二、电气维修与故障的排除

电气故障的分析过程也就是故障的排除过程,因此电气故障的一些常用排除方法在上一节的分析方法中已综合介绍过了,本节则列举几个常见电气故障做一简要介绍,供维修者参考。

1、电源电源是维修系统乃至整个机床正常工作的能量来源,它的失效或者故障轻者会丢失数据、造成停机。重者会毁坏系统局部甚至全部。西方国家由于电力充足,电网质量高,因此其电气系统的电源设计考虑较少,这对于我国有较大波动和高次谐波的电力供电网来说就略显不足,再加上某些人为的因素,难免出现由电源而引起的故障。

2、数控系统位置环故障

①位置环报警。可能是位置测量回路开路;测量元件损坏;位置控制建立的接口信号不存在等。

②坐标轴在没有指令的情况下产生运动。可能是漂移过大;位置环或速度环接成正反馈;反馈接线开路;测量元件损坏。

3、机床坐标找不到零点。可能是零方向在远离零点;编码器损坏或接线开路;光栅零点标记移位;回零减速开关失灵。

第2篇

温度风板的控制系统:调节温度旋钮感觉温度是否发生变化,若不变化则可能是风板控制拉线脱落,如脱落则重新安装调整。感觉出风口的风量是否足够大,如果风量小则是蒸发器堵塞,需要拆卸蒸发器进行清洁。触摸空调管,高压管很热甚至烫手,当然低压管也不会凉。这种情况下,可能会出现压缩机频繁通断的现象。尤其是在发动机高转速的情况下压缩机根本不吸合。切忌不能长时间的高速运转发动机,否则会很危险。

查看冷凝器和水箱及其之间是否被污物堵塞。如有,清除掉污物即可。如确实无污物堵塞,则查看冷媒观察窗,看冷媒是否过多.现象是能看到液体流动,但看不到任何气泡,则证明冷媒的加注量过多了,需要重新做一次标准的抽空加注。对于高压管过热的现象,还要查看空调压缩机的下方是否有油渍,如有则证明压缩机的限压阀已经被高压破坏,需要更换压缩机。

触摸空调管,高压管温度低,而低压管温度高。此种情况下,是压缩机不能有效的使冷媒进行循环,可能需要更换压缩机。若启动空调制冷系统后,两个电子扇同时运转。但就是空调泵不吸则很可能是汽车电脑损坏应予修复。

轿车空调制冷系统常见故障的分析与排除如下:

①制冷剂泄漏制冷系统完全没有冷气吹出,其原因为:制冷系统中无制冷剂或制冷剂泄漏,制冷剂泄漏后,首先要查明漏点,并将其修复好,再重新抽真空,灌注制冷剂。

②制冷系统严重堵塞当压缩机工作时,若制冷系统中某个部位严重堵塞,没有制冷剂循环流动,则就失去了制冷作用。这时,用压力表检测制冷系统的高、低压侧的压力值,可发现高压侧压力值比正常时低,而低压侧的压力值成真空状态,且堵塞部位前后有明显的温差,这一般出现在储液干燥器或膨胀阀内。因此,可用氮气对着储液干燥器或膨胀阀的进口或出口吹气,如不通畅,说明其堵塞,需更换。

③压缩机部件损坏压缩机缸垫窜气、进排气阀损坏,均能造成压缩机不能压缩制冷剂或压缩不良。此时,用压力表检测压缩机工作时的进气压力和排气压力,可发现两者压力相同或相差不大,提高发动机转速时,其压力值仍无明显变化;用手触摸压缩机上的进气管和排气管。可感觉两者温差不大。当压缩机出现缸垫窜气时,用手触摸压缩机会感觉非常烫手。这时,一般需更换损坏的部件。

④输出的制冷量不足造成输出的制冷量不足(即吹出的冷气不凉)的原因和检修:

a.制冷剂不足。当制冷系统中循环制冷剂不足时,高、低压侧的压力值均会比正常时低,且从观察窗内可看到气泡流动。此时,在检查系统无泄漏后,应添加适量的制冷剂。

b.制冷剂过多。如充注的制冷剂量超过制冷系统的正常容量,必然使冷凝器内液体制冷剂增加,从而减少了散热面积,使冷却效率降低。其主要表现是:系统的高、低压侧压力值比正常时高;用手触摸高压管,感觉烫手;断开空调开关约45s后,从观察窗中仍看不见有泡沫状态的制冷剂流过。这时,需从低压侧放掉适量的制冷剂,使其达到正常的排气压力和温度。

c.散热效果差。冷凝器散热片变形,表面过脏或散热风扇电动机转速下降,均会使散热效果变差,从而导致系统的高、低压侧压力值过高和排气温度过高,且用手触摸从冷凝器出来的高压管时有烫手的感觉,需进行修复或更换。

d.膨胀阀开得过大。膨胀阀温包与蒸发器出口包扎不好,或膨胀阀本身有问题,均会引起膨胀阀开得过大。表现为系统的高压值比正常时偏低,而低压值比正常时高;从蒸发器出来的低压管温度比蒸发器表面温度还凉,需检查膨胀阀温包与蒸发器出口是否包扎良好,必要时更换膨胀阀。sp;

e.制冷系统脏堵。由于压缩机长期运转,机械磨损产生的杂质可使储液干燥器或膨胀阀轻微堵塞,从而导致输出的制冷量不足。表现为系统的低压值过低,储液干燥器前后的管子有明显的温差,或膨胀阀处结霜,需更换储液干燥器或清洗制冷系统。

f.制冷系统内有空气。由于空气很难压缩成液化的气体,因此制冷系统内进入空气后,会使压缩机排气压力和排气温度增高,从而导致输出的制冷量下降。从观察窗内能看到大量泡沫状态的制冷剂流过。这是由于抽真空不够彻底,或制冷剂泄漏后,引起制冷系统低压端成真空状态而吸入了外界的空气。需在系统重新抽真空,再灌注制冷剂。

2.桑塔纳轿车空调制冷系统常见故障检修:当接通空调开关,冷凝器风扇运转,但压缩机电磁离合器不吸合,而制冷系统有一定压力的制冷剂量。该故障现象表明从x路电源熔断丝FI4空调开关外界温度开关空调继电器线圈的电路完好,故障可能在外界温度开关与电磁离合器线圈的电路上。这时可用直流电压表先测量恒温开关上输入端插接线与车身搭铁之间的电压,如有电源电压,再检测其两端插接线之间是否导通,若导通,说明故障不在恒温开关上;然后用相同的方法对低压开关进行检测,也可把低压开关两端的插接线短路一下,如压缩机电磁离合器恢复工作,说明低压开关损坏,需更换;如仍不工作,再进一步检查压缩机电磁离合器线圈:从蓄电池正极直接引出一根火线接压缩机电磁离合器线圈,此时压缩机电磁离合器应吸合,否则说明其已损坏,需更换。接通空调开关,压缩机电磁离合器吸合,鼓风机也能运转,但冷凝器风扇不转,而冷却液温度达到规定值后,风扇又能运转。上述故障现象说明熔断丝F23,和散热风扇电动机本身均无问题。因此,需检查空调继电器,可用直流电压表测量空调继电器输出端与车身搭铁之间的电压,如发现空调继电器能吸合而无输出电压时,则说明空调继电器输出电路断路,需焊接或更换空调继电器;也可更换上新的空调继电器进行对比试验,若风扇运转则为空调继电器有故障。

3.轿车空调故障检修实例:

高压管被油污、脏污堵塞,空调不制冷一辆94款奔驰乘用车,配装WI40底盘和全自动空调,制冷剂为R134a,使用中空调不制冷,电磁离合器不吸合,有时能吸合一下,但立即脱开,无法正常工作。更换了空调压缩机、蒸发器和膨胀阀等,加注制冷剂后仍是如此,后又诊断是压缩机工作不良。检查时,启动发动机后开空调,电磁离合器吸合一下便即跳开,连续几次后便不再吸合。接上歧管压力表,检测高压侧压力、低压侧压力均偏低,加入三罐制冷剂,此后能吸合稍长时间,但仍是间歇性吸合、脱开,车内也不制冷,此时高压侧压力为980.7kPa左右,低压侧压力为196kPa左右。在其更换压缩机后,首先读取故障代码:左边温度设定旋钮转至红色区域并显示“HI”;右边温度设定旋钮转至蓝色区域并显示“LO”;点火开关置于ON,按下AUTO键,20s内同时按下RES和“0”键2s以上;左边显示屏显示EO和El,右边显示屏显示故障代码17和06,因该车曾更换过蒸发器、膨胀阀和仪表板,可能造成假故障代码,故先进行清码:读取故障代码后,按左侧AUT0键,在左显示屏出现“d”后再按右侧AUTO键,这时左显示屏显示EO,右显示屏显示00,故障代码清除完毕。拆下贮液干燥器、膨胀阀和相关高压管道等,发现冷凝器至贮液干燥器的高压管接口处几乎被油污、脏污所堵塞,管道和冷凝器内也是金属屑及黑油,于是更换冷凝器及高压管,清洗压缩机,更换了冷凝器、高压管和贮液干燥器;再用高压氮气吹净低压管道,并更换了膨胀阀,加入了适量专用冷冻机油,然后再压入氮气检漏,抽真空,加制冷剂,经试验制冷效果很好,故障消除。

继电器电阻值过大,空调压缩机不工作一辆红旗CA7220E型乘用车新车,在使用不久,便发现外界气温高和空调使用时间长时,会出现空调压缩机不工作的故障。数分钟后重新启动空调,压缩机工作又正常,而且制冷系统良好。此故障时有时无出现频繁,但停车检查短时间内却无此故障出现。该车采用可变排量压缩机,只有在节气门全开、冷却液温度超过规定值和空调管路处于高、低压保护的情况下压缩机才不工作,在汽车正常行驶,空调制冷正常的情况下,压缩机离合器是不会断开的。但要判断故障部位,必须在空调(制冷)开启而压缩机不工作的情况下才能进行。根据上情况,停车启动发动机并开启空调,在连续正常运转1小时后,压缩机终于停止工作。随即对连接压缩机离合器的线路进行监测,发现该线路无电,拔下原继电器与新继电器相比,用数字万用表测量各端子之间的电阻,发现两继电器对应的端子75到U、U到31和U到30间的电阻值相同,分别为12.7kΩ、11.7kΩ、和14kΩ。而端子U到HLS和30到HLS间的电阻值,新继电器为129kΩ,原继电器是143kΩ。可以判定:原继电器部分端子间电阻值稍大,长时间工作发热,使线圈电阻值变化,引起控制压缩机离合器电路通断的触点断开。稍停数分钟后重新启动空调正常,是因为继电器触点断开切断电流后继电器线圈温度下降,工作又恢复正常。

当更换新的空调压缩机离合器继电器后,工作开始正常。

温控开关失效,使用空调就开锅一辆夏利轿车平时行车正常,一开空调制冷,时间不长发动机就开锅。把节温器拿掉和装上都差不多。冷却系统清除了水垢,结果还是同样不能使用空调。

车辆使用空调,开锅肯定是不正常的。当在该车停驶状态下打开空调试验,果然不久就开了锅,说明水温已达100℃,而车上的电动风扇却没有工作。夏利轿车冷却系统为闭式、液冷,带膨胀箱,风扇为电动式,发动机的冷却主要依靠汽车向前行驶产生的风。只有当水温高于92℃时,电动风扇才开始工作,而当水温低于87℃时,电动风扇又自动停止工作,这全靠温控开关控制。这种结构,有利于发动机保持最佳水温,平时风扇也不消耗发动机动力。冷却水开锅了,电动风扇却还没有工作,将点火开关转至ON位置,拆下散热器温度控制开关接头,并将其接地,电动风扇开始转动,说明风扇电动机是好的。检查有关保险丝也是好的,把温控开关拆下放入盆中用万用表Ω档,一个表笔接温控开关接线端,一个表笔接外壳,盆中倒入冷水加热,有开水可直接倒入开水。正常情况下,水温高于92℃时应导通,低于87±2℃时应断开。未用温度表,倒入滚开的水,表针也不动,说明温控开关失效。该车更换温控开关后,使用空调再也没有开锅了。

转速滤波器引线断损,空调系统不能正常工作一辆夏利乘用车,在接通鼓风机开关和空调开关时,发动机的怠速转速提高了,但是空调压缩机不工作,仪表板上的风口吹出热风。启动发动机,接通鼓风机开关和空调开关,发动机的怠速转速提高,仪表板上的风口正常吹风,这说明空调开关和鼓风机工作正常。但此时空调压缩机不工作,而且冷凝器风扇也不转动。检修时,首先将歧管压力计的高、低压软管与制冷系统中对应的检测阀连接好,此时歧管压力计的高压表和低压表都指示为0.6MPa,在正常静态压力值范围内。启动发动机,接通鼓风机开关和空调开关。从蓄电池的正极柱引电源线直接接通空调压缩机的电磁线圈后,其压盘吸合,说明空调压缩机的电磁离合器没有损坏,制冷系统正常工作了,冷凝器风扇也转动起来,同时仪表板上的风口也吹冷风了。再观察歧管压力计的低压表指示值和高压表指示值均在正常范围;高压管道上的液镜内无气泡,证实了制冷系统中制冷剂充足。

空调压缩机的电磁离合器和冷凝器风扇都受该车的空调放大器控制。二者均不能正常工作,其故障根源可能就在空调放大器上。空调放大器为电子式,其正常的工作过程如下:在发动机正常运转时,接通鼓风机开关和空调开关,在制冷系统中制冷剂充足的条件下,空调放大器首先发出提高怠速转速的电信号来驱动怠速真空电磁阀,使发动机怠速转速提高到l200r/min;此时空调放大器接收到发动机的相应转速脉冲信号和蒸发器出风侧的相应温度电信号后,再接通空调压缩机电磁离合器和冷凝器风扇控制继电器电路,使得制冷系统进入正常工作状态。

经试验,该车空调放大器工作正常;检查空调放大器的线束连接器,首先确认点火开关控制的电源线和接地线均正常,压力开关也正常,然后逐线检查连接器各端子到各传感器和执行器之间的线路通断情况。发现原来是转速滤波器的引线断损,使空调放大器无法得到发动机的转速提高信号,因而空调放大器无法接通空调压缩机电磁离合器和冷凝器风扇控制继电器的电路,使得该车空调系统不能正常工作。后将转速滤波器的引线焊好,再将空调放大器复位装好。启动发动机,接通鼓风机开关和空调开关,随着发动机的转速提高,空调压缩机的电磁离合器吸合,冷凝器风扇也转动起来,驾驶室内仪表板上的风口吹出冷风,空调系统恢复了正常工作。

进气门间隙过小,冷机开空调熄火一辆(F22B2型四缸直列电控发动机)本田雅阁乘用车,使用中发动机怠速抖动,转速过低,冷机时一开空调就熄火,但热机时开空调不熄火,故障指示灯不亮。诊断时,首先调取故障代码,无代码输出。检查点火系统正常。测试各汽缸压力也正常,估计为发动机内部无故障。于是拆下节气门体及怠速控制阀等进行检查,发现都被胶质物体严重堵塞。将节气门体、怠速控制阀和快怠速阀都进行了清洗。之后安装试车,有明显好转,但冷车时仍抖动,开空调仍熄火。而发动机温度升高后,怠速较稳定,开空调也正常。该车发动机怠速系统由三部分组成:一是怠速调整螺钉,用以调整基本怠速;二是快怠速阀,它的开闭动作与蜡式节温器相似,冷机时石蜡柱塞收缩,旁通气道开大,冷却液温度升高后,石蜡柱塞膨胀,旁通气道关小;第三个是怠速控制阀,该阀由ECU控制,当空调打开、转向助力泵负荷增大,以及大灯和后窗加热器等投入使用时,怠速控制阀会适时开大,以提高发动机转速。该车进修前曾调整过气门间隙,检查气门间隙时,发现进气门间隙过小,一般只有0.05mm左右。冷机时气门间隙标准值应该是:进气门0.23~0.28mm,排气门0.28~0.32mm。原来该车发动机的上述故障,主要有两个方面的原因:一是节气门体、怠速调整螺钉的空气通道,以及怠速控制阀和快怠速阀都被胶质物体堵塞,因此怠速过低;另一个是进气门间隙过小,使进气门提前开启,进、排气门同时打开的时间加长(气门重叠角过大),造成废气倒流入进气管,影响发动机的工作。后将气门间隙重新按标准调整后,故障排除,一切正常。

第3篇

关键词:电容式电压互感器故障分析处理

2001年3月中旬,我局继电保护人员在对110kV金原变电站新安装设备电源自动投入(以下简称BZT)装置进行投运前检查时,发现备用电源侧无电压。因为这个电压是通过安装在备用电源线路侧的电容式电压互感器(以下简称CVT)而引入的,于是继电保护和高压试验人员对CVT及其二次回路进行了一系列的检查试验,结果发现该CVT电磁单元烧损的严重故障,检修人员及时对其进行了更换,避免了一起设备事故的发生。

1设备故障发现经过

我局金原变电站有两条110kV电源线路,正常运行时,一条主供一条CVT备用。为了在主供线路发生永久性故障时能快速合上备用线路开关,110kV系统装设了BZT装置。如图1所示,BZT装置接入金原110kV南北两段母线电压和两条线路侧电压,通过装置的切换把手,可以分别将每条线路转换为主供线路或备用线路,并把相应母线电压、线路电压和二次回路做相应的切换。正常运行方式下,紫金线为主供电源,T金线备用,这时将金原110kV北母线电压和T金2线路侧电压切入BZT装置,北母线电压反映主供电源工作状态,T金2线路侧电压反映备用电源是否正常,能否起到备用作用。

这套BZT装置是2000年12月份安装的。今年3月中旬,继电保护人员对装置进行投运前检查。工作人员在装置屏后端子排上测量了两段母线电压和紫金线路侧电压,正常:当测量备用电源T金2线路侧CVT的二次电压时,没有电压。当时工作人员认为线路没带电,就将此事搁下,而只对装置本身进行了检验。因那时全站设备要进行定期高压试验,只有将备用线路投入运行,主供线路设备才能停下作试验。运行人员同调度联系后将T金线投运带全站负荷,紫金线停运。这时继电保护人员确知T金线有电,便再次在BZT装置屏上测其线路侧电压,仍旧没有。CVT二次保险,没有爆;拆了回路核对线芯,没有问题;拔下二次保险,直接在二次出线端子上测量,还是没有电压。继电保护人员这才意识到可能是CVT内部出了故障。所以在很快对紫金线设备做完高压试验后,将紫金线投入运行,安排T金线停电,拆除其线路侧CVT的一次引线进行试验。

这台电容式电压互感器的型号是是2000年12月份才投入运行时,CVT的电气原理如图2所示。高压试验人员先测试了CVT的高压电容C1、中压电容C2以及总电容量,再试验了介质损耗,与设备出厂时和投运前的试验数据相比变化不大,说明电容分压器单元没有问题。

为查清CVT的电磁单元有什么问题,试验人员先用万用表的电阻档测中压互感器的一次线圈电阻,其阻值为500多欧姆;然后在中压互感器的一次线圈上加交流电压,测二次电压的值,当一次电压升高时二次电压不仅不升反而下降;最后在中压互感器二次侧的da、dn线圈上加交流电压,用静电电压表测一次电压的值,电压均为零。根据这些试验情况和数据,试验人员初步判断电磁单元内部可能有短路。因没有更为详细的关于这些型号CVT的技术和试验数据,所以当时无法判定具体的故障。鉴于设备要尽快投运(该站载波通讯的结合滤波器接在这台CVT下),检修人员就将这台CVT拆下,我局物资公司通知设备厂家在郑州的办事处,第二天就送来一台新的电容式电压互感器。

新CVT与原来的型号一样,只是电磁单元的结构稍有不同。有这台新CVT作参考,工作人员又对拆下的CVT电磁单元的线圈直流电阻和在二次侧加压重做了试验,对比试验数据如表1所示。这些数据表明,T金线路侧电容式电压互感器电磁单元的中压互感器一次绕组发生了短路。于是,工作人员很快对新CVT进行了试验和安装,及时投入了运行,并将旧CVT运回局里准备解剖检查。

2CVT解体检查和故障原因分析

2001年4月,我局专业技术人员和CVT厂家人员一起,对拆下的CVT进行了解体检查。当工作人员用扳手拧松电磁单元油箱法兰的几颗螺栓后,刺鼻和刺眼的油气从法兰缝隙朝外喷出,明显感到内部聚有很大压力。拆完一圈螺栓,用天车将电容器单元稍微吊离下节油箱,在取下中间电压端子A′和中压电容C2下端接线端子δ与电磁单元之间的引线时,发现固定中压电容C2下端接线端子δ的4只螺栓少了一只,因油箱中的油较满,也看不到这只螺栓掉到了哪里。工作人员用器具把油箱中的油慢慢抽出,当油面低于中压互感器的接线板时,人们终于看清了,掉下的螺栓落在了中压互感器一次绕组抽头的几个接线柱中间。在螺栓与接线柱接触的地方,发现有轻微的短路熔焊痕迹。油箱中的油已经失去了其应有的淡黄色,而变成了象酱油一样的黑褐色。在往外抽油的过程中,油中不断有气体逸出,油中泛起黑褐色的泡沫。当油被全部抽完后,人们看到了中压互感器的铁芯已经烧得没有了硅钢片特有的光泽,最外层的硅钢片已被烧变了形,中间鼓起来了。中压互感器绕组外面包的白布带已被烧成黑炭质,用手一扣就有渣子掉下来。油箱内壁沾满了含有炭质的油渍,用手一摸全是黑。为了拆掉补偿电抗器的引线,工作人员将出线端子盒上方的盖板拆开,发现这个盖板因内部压力太大已经鼓肚。至此,CVT的故障已经十分清楚,那就是中压互感器一次线圈烧损。既是这样,我们还是让油务人员取了油样,进行了油色谱分析。分析结果:除乙炔为零值外,总烃和氢气均大大超过注意值;经计算三比值为020,故障类型是低温过热(150~300℃),这进一步印证了故障的情况。根据对CVT解体检查所发现的情况,我局技术人员和设备厂家人员一致认为,造成中间单元烧损的原因是,固定中压电容C2下端的一只螺栓掉入中压互感器一次绕组的接线柱丛中,使一次绕组部分线匝被短接,其交流阻抗减小,一次电流超过额定值,造成一次绕组烧毁。但螺栓造成的短路不是太严重,或者说被螺栓短接的匝数并不多,因为如果短路严重,短路电流所产生的热将在短时间内使变压器油分解出大量气体,这有可能造成下节油箱爆炸,或使高压电容C1两端所加电压太高而使其爆炸。至于这只螺栓为什么会在运行中脱落,我们认为,这是该设备在安装时未紧固好,工序间检查时也未发现。设备运行后,它位于中压互感器的交变电磁场中,在交变电磁场的作用下不断振动、转动和向下移位,以至于最后脱落,造成中间互感器一次绕组短路。所幸的是,在这次对继电保护自动装置检验中,发现了这个问题,并及时进行了更换,防止了更为严重的设备事故发生。

3经验教训

电容式电压互感器在电力系统中的应用非常广泛,但象这次因螺栓脱落而造成故障的情况却是十分罕见的。对电力设备制造厂家来说,在出厂产品中若万分之一有问题,对设备用户来说就是百分之百的故障隐患。T金线路侧的这只CVT,幸亏发现及时,才未酿成更大的设备事故。因此,作为电力设备的生产厂家,安装人员一定要加强责任心,质检人员一定要把好验收关,以确保每台产品的质量。

第4篇

引起爬行的原因很多,但主要有以下两个方面。

1.摩擦阻力的变化引起爬行

机床床身导轨工作台导轨面都是经过磨削或刮削获得的,宏观上看是平直而光滑的,但在微观下却总存在有较小间距和峰谷组成的微量高低不平的痕迹。实际上,两接触贴合面只有两面的微峰峰尖接触,所以实际接触面积是非常小的,因而峰尖所承受的压力非常之大,远远超过其弹性变形极限而出现的塑性变形,尤其是大型机床更为突出。此外,发生塑性变形的接触点的金属分子在运动中产生强烈的粘结作用。由于参差不同高度的峰谷会出现互相交错咬合,在相对运动时便产生“犁刨”现象。这便是机床两相对贴合运动导轨表面产生摩擦阻力的主要潜因。

机床的爬行现象主要发生在低速滑动时,因为高速时工作台导轨面在微观存在的较小间距和峰谷间储存着微量油液,在高速作用的贴合运动中容易形成动压油膜,而将两贴合导轨面隔离开,摩擦系数此时是非常小的。然而,在低速滑动时,则较难形成动压油膜,从而出现由微峰直接接触的边界。这时导轨表面的微峰由于直接接触,压力极高,因而发生塑性变形,导致接触处产生局部振动、高热、运动不平稳,出现金属分子的烧结,也称“冷焊”,这时摩擦系数是相当大的。

实验证明,在边界条件下摩擦系数与滑动速度之间呈现如图1所示的函数关系。

在实践中,我们都有这样的经验:需推动一个物体运动所用的力要大于维持这个物体运动所用的力。也就是说静摩擦力(静摩擦系数)大于动摩擦力(动摩擦系)。如图1,μ0表示边界的摩擦系数作为滑动速度的函数曲线。在相互贴合的工作面低速滑动开始的短暂时间内,摩擦系数μ0从静止状态下的最大值开始呈迅速下降趋势至最小值。此时工作台表现为向前冲动,又随速度μ0的增大而开始上升。当上升到较大值时,摩擦阻力增大,工作台趋向静止。此时,由于摩擦阻力的增大,相对的驱动力也随之增大,当驱动力增大到足以克服摩擦阻力时,工作台又重复出现以前那种冲动,驱动力随之减小。这个驱功力和摩擦阻力不断循环变化的过程,就是工作台时走时停的循环冲动的过程,这便是爬行。

2.滑动部件的驱动系统的刚性对爬行的影响

机床的滑动部件,如龙门刨床和龙门铣床的工作台是蜗杆与蜗轮传动;镗床的工作台是光杆与齿轮及齿轮与齿条传动;磨床的工作台是液压传动;不论哪一种传动,传动系统与滑动部件的连接决不是完全刚性的。从而产生以下的问题:①传动副中存在一定的传动间隙。如镗床的工作台就有光杆与齿轮,齿轮与齿条等多个传递环节,每个环节必须存在一定的间隙。②传动件由于刚性问题必须存在弹性变形。如轴类零件的扭转变形(如传动轴、螺杆、光杆等),这些传动系统可以理解为相当于一个弹簧系统,在驱动工作台滑动工作时,传动件(如传动光杆)刚性越差,弹性变形则越严重,传递动力就越不平稳。所以,在驱动力和摩擦阻力不断地循环变化过程中,又可以理解为一个不断地蓄能、放能的循环过程,即爬行的过程。

下面再以液压传动的磨床来分析这个问题。磨床加工精度高,要求工作平稳性和精确程度高,因此对爬行振动的特殊形式特别敏感。又由于磨床是以油液作为传递动力介质的,所以磨床最容易出现爬行现象。因此,对磨床的爬行的讨论就更有意义。

为什么以油液作为传递动力介质的磨床更容易出现爬行呢?这是因为:①油液具有可压缩性,当然这种可压缩性很小,一般情况下可以忽略不计。尽管如此,油液的刚性毕竟比刚体的刚性要差的多。②在这里关键的问题是组成液压系统的各个环节。如油泵、油管、接头、控制阀、油缸等密封不太严密,在运动的作用下常常会侵入空气。空气侵入液压系统中,或溶解在油液中或形成气泡浮游在油液中。空气的可压缩性则是极大的(大约相当油液的一万倍)。这样,侵入了空气的油液则必然增大了油液本身存在的可缩性。因此,液压驱动系统就成了一个十足的“弹簧环节”。

下面具体分析磨床工作台的爬行情况。从示意图2看,侵入空气的油液进入油缸的左腔,左腔的气泡受到压缩,压缩到一定压力时才能克服工作台与导轨之间的摩擦阻力,工作台开始向右方移动。开始移动的短暂时段内,静摩擦力转变为动摩擦力,摩擦力由大值骤然下降,工作台向右方冲动。此时,左腔的油液压力随之降低,气泡逸出随之膨胀。向右冲动的工作台又使右腔压力油液中的气泡受到压缩,工作台的阻力增大,致使工作台冲动受阻,速度降低,趋向静此。此时左腔的油液压力又增大,直到克服工作台的近乎静摩擦力再向前冲动。如此不断的循环,便形成了工作台时走时停地冲动,即为爬行。

二、消除爬行的措施

1.有效地降低摩擦阻力

有效地改善导轨摩擦阻力的变化环境,在于减小摩擦曲线随运动速度增加而下降的斜率,也就是减小静、动摩擦系数差,其重要措施在于有效地改善环境。

⑴改善导轨的环境,保证较为有效的油量及较好的油油性,粘度适宜。对于工作台载荷大的大型机床应采用粘度高耐磨的专业导轨油。

⑵在单靠油本身难以达到性能要求的情况下,可以通过改善工作面的储油条件(如在平整的工作面表面刮花);加入添加剂,改善油的性能。例如加入三甲酚磷酸脂、硫化鲸鱼油、M0S2油剂等,或者在导轨上涂一层固体M0S2剂。

⑶对大型和高精度机床采用液体静压导轨。液体静压导轨就是在导轨面上开出一定面积的油腔,让压力油通过节流器进入油腔,在两导轨面之间保持一定厚度的油膜,形成完全液体摩擦。这种静压导轨摩擦系数较小,无论滑动速度多么低,工作台均能平稳移动无爬行。但静压导轨结构复杂,成本高,应用受到限制。

⑷在导轨上粘贴一层TSF导轨软带(TSF导轨软带是一种以聚四氟乙烯为基的高分子复合材料,具有优异的摩擦特性,摩擦系数很低,约为铸铁滑动导轨的1/10)。在当机床导轨磨损较重,修复困难时采用TSF导轨软带是一种非常省事的办法。

2.提高传动系统刚性

⑴提高传动零件的加工精度;零部件的装配进度,尽量减小装配间隙。装配合理,如零件的平行、垂直关系,轴的同心,螺纹连接的松紧程度等。

⑵在机械传动中,除尽量减少动力传递层次,对传动类零件从材料和工艺上提高其刚性。

⑶对液压机床主要是防止液压系统的空气侵入。增强液压元件及接合处的密封程度。在快速往复移动的状态下,合理有效的可开启排气阀将空气排出。

三、其它爬行实例消除的措施

1.导轨表面拉伤或液压油缸内锈蚀拉毛

有些机床由于防护装置密封不良,滤油器损坏,机械杂质和金属切削末进入导轨摩擦面或液压油中,从而导致导轨表面拉伤或油缸内表面锈蚀拉气,使其表面粗糙,摩擦阻力增大,工作台不能确保正常运行而导致爬行。

消除方法:①采用耐磨涂层修补拉伤表面,精心修刮导轨,使其平直度和表面粗糙度恢复正常,选用油性好,粘度适当的导轨油。②修刮油缸内锈蚀拉毛处,如果拉毛程度较严重时,可上锉床按间隙配合塞,选用油质好的液压油。

2.机床导轨面缺油,或用油不当或油已经氧化变质,从而使机床产生爬行

消除方法:①机床导轨面必须有充足的油而产生油膜,减小摩擦阻力。②保证油质,因为油在温度升高的条件下,生成氧化胶质,产生酸性腐蚀,使表面发涩。所以对机床回油进行冷却降温,定期换油,检测酸性基础上,防止油的氧化胶质形成。

3.高速转动件处于动平衡,其不平衡点产生离心力而出现机械振动波,波及导轨产生爬行

消除方法:对电机和其它高速部件进行动平衡处理,例如在其底座安装弹性支承板,添置可调千斤顶作支承以抵消高速旋转而产生的离心力,除低自激振动,或垫橡胶、羊毛毡等防振材料,以减少机械振动时对导轨的影响。

机床爬行现象作为一种较为常见的机床故障,引发的原因是多方面的,主要是机械、液压、、电器等几个方面,在这里不能逐一阐述。在实际维修中,须针对具体情况进行分析,从分析中找到问题的症结,以找到解决问题的最佳措施。

第5篇

[关键词]锅炉故障故障预测

一、锅炉故障的可预测性

锅炉是由汽水、燃烧及烟风等子系统组成的复杂多层次系统,而每个子系统又可以划分为若干次级子系统和部件,各层次子系统是相互关联的,只要某一个子系统出现异常或失效,就可能会使其它子系统产生功能异常或失效,甚至使整个机组处于故障状态,并且从原发性故障到系统级故障的发生、发展是一个量变到质变的过程。故锅炉故障具有层次性、相关性、延时性的特点。

锅炉故障一般具有一定的时延性,即从原发性故障到系统故障的发生、发展与形成,是一个渐变过程。以其高温过热器壁温为例,其某一时刻的壁温值,与其在过去时刻的壁温值有一定的关系,使其壁温序列间有一定的关联性(确定性),这种关联性是锅炉故障预测的基础。另外,由于影响高温过热器壁温的因素很多,如负荷、烟气温度、主蒸汽温度等,它们之间相互关联,且在锅炉运行中还受一些不确定因素的影响,使其故障预测具有一定的随机性,这种随机性使壁温序列间的关联性减弱,这就决定了高温过热器壁温值小能准确地预测,而只能从统计意义上做出最佳预测,使预测误差满足一定的精度要求。故障预测是故障诊断的一部分,故障诊断的最终目的就是为了指导运行和维修,因此,进行锅炉故障预测,对提高锅炉现代化运行水平和机组可用率具有重要意义。

二、锅炉故障预测相关知识

人工智能故障诊断与预测技术是随着现代化技术、经济高速发展而出现的一门新型技术,它能鉴别设备的状态是否正常,发现和确定故障的部位和性质并提出相应的对策,以提高设备运行的可靠性,延长其使用寿命,降低设备全寿命周期费用。且采用故障预测技术可以实现对故障的早期发现并预测其未来的发展趋势,便于对火电机组及时调整以避免恶性事故的发生,使机组能安全可靠的运行,同时提高机组的经济性。

根据预测期限长短的不同可将故障预测分为:长期预测,为了制定锅炉机组的长远维修计划和维修决策而进行的预测。时间一般为一个月以上。预测精度要求低;中期预测,对锅炉机组在未来比较长的时间内的状态进行预测,为机组的中期维修计划和维修决策服务。时间一般为一周左右。预测精度要求较低;短期预测,对锅炉机组的近期发展情况进行预测。时间为一大左右。对预测精度要求高。对于中、长期预测,由于精度要求不高,可考虑采取简单的预测模型,建立单变量时间序列模型进行预测。而对于短期预测,由于对精度要求较高,同时也由于各相关因素对当时的状态值影响较大,因此在进行短期预测时,除了要考虑时间序列本身外,还应适当将其他相关因素考虑进去,这就需要建立多变量时间序列模型进行预测,以满足短期预测对精度的要求。

三、常用的锅炉故障预测方法

近年来不少研究者采用线性回归分析法、时间序列分析法、灰色模型预测法、专家系统、人工神经网络等方法进行锅炉设备故障诊断研究,以探索快速有效的故障诊断与预测方法。常用的预测方法有:

(一)线性回归分析法

回归分析是寻找几个不完全确定的变量间的数学关系式之间进行统计推断的一种方法。在这种关系式中最简单的是线性回归分析。

(二)时间序列分析法

时间序列是指按时间顺序排列的一组数据:时间序列分析法是指采用参数模。型对所观测到的有序的随机数据进行分析与处理的一种数据处理方法。时间序列。分析法主要参数模型有以下四种:①曲线拟合②指数平滑③季节模型④线性随机模型。时间序列分析法主要适用于进行单因素预测,而对锅炉故障预测这种既有确定性趋势,又有一定的随机性的多因素预测时,需要进行确定性趋势的分离,计算比较复杂,同时还需对分离残差的零均值及平稳性进行假定,且其预测的精度不高。

(三)灰色模型预测法

灰色模型预测法是按灰色系统理论建立预测模型,它是根据系统的普遍发展。规律,建立一般性的灰色微分方程,然后通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型方程。应用灰色系统理论作故障预测主要有两种方法,一是基于灰色系统动态方程GM(或DM)的灰色预测模型,二是基于残差信息数据列的残差辨识预测模型。其中,GM(1,1)预测模型即1阶1个变量的微分方程描述的灰色模型比较常用。灰色预测的解从数学的角度看,相当于幂级数的叠加,它包含了一般线性回归和幂级数回归的内容,故灰色预测模型优于一般的线性回归或指数曲线拟合,也好于确定性时间序列分析法。灰色预测模型不要很多的原始数据,短数据GM(1,1)模型有较高的预测精度,并具有计算简单速度快的优点。

(四)专家系统

专家系统能成功地解决某些专门领域的问题,也有很多优点,但经过多年的实践表明,它离专家的水平总是相差一段距离,有时在某些问题上还不如一个初学者。分析其原因,主要有以下几方面:知识获取的“瓶颈”问题;模拟专家思维过程的单一推理机制的局限性;系统缺乏自学习能力。

(五)人工神经网络预测法

神经网络的故障诊断存在很多问题,它不能很好的利用领域专家积累的经验知识,只利用一些明确的故障诊断实例,而且需要一定数量的样本学习,通过训练最后得到的是一些阑值矩阵和权值矩阵,而不是像专家经验知识那样的逻辑推理产生式,所以缺乏对诊断结果的解释能力。目前应用神经网络进行故障预测的网络训练收敛速度慢,因此无法应用于实时诊断,只能处理历史记录数据。

(六)专家系统和人工神经网络相结合

专家系统和人工神经网络的相结合的方法是目前研究的热点。由神经网络与专家系统构成的神经网络专家系统,它可以利用神经网络的大规模并行分布处理和知识获取自动化等特点,解决专家系统存在的知识获取的“瓶颈”、推理能力弱、容错能力差、处理大型问题较为困难等问题,实现并行联想和自适应推理,提高系统的智能水平,使系统具有实时处理能力和较高的稳定性。同传统的专家系统相比,基于神经网络的专家系统具有以下几种优点:具有统一的内部知识表示形式,任何知识规则都可通过对范例的学习存储于同一个神经网络的各连接权中,便于知识库的组织和管理,通用性强;知识容量大,可把大量知识存储于一个相对小得多的神经网络中;便于知识的自动获取,能够自适应环境的变化;推理过程为并行的数值计算过程,避免了推理速度慢效率低等问题;推理速度快;具有联想、记忆、类比等形象思维能力,可工作于所学习过的知识以外的范围;实现了知识表示、存储和推理三者融为一体,即都由一个神经网络来实现。

参考文献:

[1]蒋宗礼,《人工神经网络导论》高等教育出版社,2001。

第6篇

(1)先动口再动手:对于有故障的电气设备,不应急于动手,应先询问产生故障的前后经过及故障现象。对于生疏的设备,还应先熟悉电路原理和结构特点,遵守相应规则。拆卸前要充分熟悉每个电气部件的功能、位置、连接方式以及与周围其他器件的关系,在没有组装图的情况下,应一边拆卸,一边画草图,并记上标记。

(2)先外部后内部:应先检查设备有无明显裂痕、缺损,了解其维修史、使用年限等,然后再对机内进行检查。拆前应排除周边的故障因素,确定为机内故障后才能拆卸,否则,盲目拆卸,可能将设备越修越坏。

(3)机械后电气:只有在确定机械零件无故障后,再进行电气方面的检查。检查电路故障时,应利用检测仪器寻找故障部位,确认无接触不良故障后,再有针对性地查看线路与机械的运作关系,以免误判。

(4)先静态后动态:在设备未通电时,判断电气设备按钮、接触器、热继电器以及保险丝的好坏,从而判定故障的所在。通电试验,听其声、测参数、判断故障,最后进行维修。如在电动机缺相时,若测量三相电压值无法着判别时,就应该听其声,单独测每相对地电压,方可判断哪一相缺损。

(5)先清洁后维修:对污染较重的电气设备,先对其按钮、接线点、接触点进行清洁,检查外部控制键是否失灵。许多故障都是由脏污及导电尘块引起的。

(6)先电源后设备:电源部分的故障率在整个故障设备中占的比例很高,所以先检修电源往往可以事半功倍。

(7)先普遍后特殊:因装配配件质量或其他设备故障而引起的故障,一般占常见故障的50%左右。电气设备的特殊故障多为软故障,要靠经验和仪表来测量和维修。

(8)先后内部:先不要急于更换损坏的电气部件,在确认设备电路正常时,再考虑更换损坏的电气部件。

(9)先直流后交流:检修时,必须先检查直流回路静态工作点,再交流回路动态工作点。

(10)先故障后调试:对于调试和故障并存的电气设备,应先排除故障,再进行调试,调试必须在电气线路速的前提下进行。

2检查方法和操作实践

(1)直观法直观法是根据电器故障的外部表现,通过看、闻、听等手段,检查、判断故障的方法:①检查步骤:调查情况:向操作者和故障在场人员询问情况,包括故障外部表现、大致部位、发生故障时环境情况。如有无异常气体、明火、热源是否靠近电器、有无腐蚀性气体侵入、有无漏水,是否有人修理过,修理的内容等等。初步检查:根据调查的情况,看有关电器外部有无损坏、连线有无断路、松动,绝缘有无烧焦,螺旋熔断器的熔断指示器是否跳出,电器有无进水、油垢,开关位置是否正确等。试车,通过初步检查,确认有会使故障进一步扩大和造成人身、设备事故后,可进一步试车检查,试车中要注意有无严重跳火、异常气味、异常声音等现象,一经发现应立即停车,切断电源。注意检查电器的温升及电器的动作程序是否符合电气设备原理图的要求,从而发现故障部位。②检查方法:观察火花,电器的触点在闭合、分断电路或导线线头松动时会产生火花,因此可以根据火花的有无、大小等现象来检查电器故障。例如,正常紧固的导线与螺钉间发现有火花时,说明线头松动或接触不良。电器的触点在闭合、分断电路时跳火说明电路通,不跳火说明电路不通。控制电动机的接触器主触点两相有火花、一相无火花时,表明无火花的一相触点接触不良或这一相电路断路;三相中两相的火花比正常大,别一相比正常小,可初步判断为电动机相间短路或接地;三相火花都比正常大,可能是电动机过载或机械部分卡住。在辅助电路中,接触器线圈电路通电后,衔铁不吸合,要分清是电路断路还是接触器机械部分卡住造成的。可按一下启动按钮,如按钮常开触点闭合位置断开时有轻微的火花,说明电路通路,故障在接触器的机械部分;如触点间无火花,说明电路是断路。动作程序:电器的动作程序应符合电气说明书和图纸的要求。如某一电路上的电器动作过早、过晚或不动作,说明该电路或电器有故障。另外,还可以根据电器发出的声音、温度、压力、气味等分析判断故障。运用直观法,不但可以确定简单的故障,还可以把较复杂的故障缩小到较小的范围。

(2)测量电压法测量电压法是根据电器的供电方式,测量各点的电压值与电流值并与正常值比较。具体可分为分阶测量法、分段测量法和点测法。

(3)测电阻法可分为分阶测量法和分段测量法。这两种方法适用于开关、电器分布距离较大的电气设备。

(4)对比、置换元件、逐步开路(或接入)法。①对比法:把检测数据与图纸资料及平时记录的正常参数相比较来判断故障。对无资料又无平时记录的电器,可与同型号的完好电器相比较。电路中的电器元件属于同样控制性质或多个元件共同控制同一设备时,可以利用其他相似的或同一电源的元件动作情况来判断故障。②置转换元件法:某些电路的故障原因不易确定或检查时间过长时,但是为了保证电气设备的利用率,可转换同一相性能良好的元器件实验,以证实故障是否由此电器引起。运用转换元件法检查时应注意,当把原电器拆下后,要认真检查是否已经损坏,只有肯定是由于该电器本身因素造成损坏时,才能换上新电器,以免新换元件再次损坏。③逐步开路(或接入)法:多支路并联且控制较复杂的电路短路或接地时,一般有明显的外部表现,如冒烟、有火花等。电动机内部或带有护罩的电路短路、接地时,除熔断器熔断外,不易发现其他外部现象。这种情况可采用逐步开路(或接入)法检查。逐步开路法:遇到难以检查的短路或接地故障,可重新更换熔体,把多支路交联电路,一路一路逐步或重点地从电路中断开,然后通电试验,若熔断器一再熔断,故障就在刚刚断开的这条电路上。然后再将这条支路分成几段,逐段地接入电路。当接入某段电路时熔断器又熔断,故障就在这段电路及某电器元件上。这种方法简单,但容易把损坏不严重的电器元件彻底烧毁。逐步接入法:电路出现短路或接地故障时,换上新熔断器逐步或重点地将各支路一条一条的接入电源,重新试验。当接到某段时熔断器又熔断,故障就在刚刚接入的这条电路及其所包含的电器元件上。

(5)强迫闭合法在排队电器故障时,经过直观检查后没有找到故障点而手下也没有适当的仪表进行测量,可用一绝缘棒将有关继电器、接触器、电磁铁等用外力强行按下,使其常开触点闭合,然后观察电器部分或机械部分出现的各种现象,如电动机从不转到转动,设备相应的部分从不动到正常运行等。

(6)短接法设备电路或电器的故障大致归纳为短路、过载、断路、接地、接线错误、电器的电磁及机械部分故障等六类。诸类故障中出现较多的为断路故障。它包括导线断路、虚连、松动、触点接触不良、虚焊、假焊、熔断器熔断等。对这类故障除用电阻法、电压法检查外,还有一种更为简单可靠的方法,就是短接法。方法是用一根良好绝缘的导线,将所怀疑的断路部位短路接起来,如短接到某处,电路工作恢复正常,说明该处断路。具体操作可分为局部短接法和长短接法。以上几种检查方法,要活学活用,遵守安全操作规章。对于连续烧坏的元器件应查明原因后再进行更换;电压测量时应考虑到导线的压降;不违反设备电器控制的原则,试车时手不得离开电源开关,并且保险应使用等量或略小于额定电流;注意测量仪器的挡位的选择。

第7篇

关键词:挖掘机;维修;保养

随着科技的进步,现代挖掘机一般都采用了机电液一体化控制模式,我们在排除一些故障时,解决的多是发动机、液压泵、分配阀、外部负荷的匹配问题。一般在挖掘机作业中,这几方面不能匹配,经常会表现为:发动机转速下降,工作速度变慢,挖掘无力以及一些常见问题。

一、发动机转速下降

首先要测试发动机本身输出功率,如果发动机输出功率低于额定功率,则产生故障的原因可能是燃油品质差、燃油压力低、气门间隙不对、发动机的某缸不工作、喷油定时有错、燃油量的调定值不对、进气系统漏气、制动器及其操纵杆有毛病和涡轮增压器积炭。如果发动机输出动力正常,就需要查看是否因为液压泵的流量和发动机的输出功率不匹配。

液压挖掘机在作业中速度与负载是成反比的,就是流量和泵的输出压力乘积是一个不变量,泵的输出功率恒定或近似恒定。如果泵控制系统出现了故障,就不能实现发动机、泵及阀在不同工况区域负荷优化匹配状态,挖掘机从而将不能正常工作。此类故障要先从电器系统入手,再检查液压系统,最后检查机械传动系统。

二、工作速度变慢

挖掘机工作速度变慢主要原因是整机各部磨损造成发动机功率下降与液压系统内泄。挖掘机的液压泵为柱塞变量泵,工作一定时间后,泵内部液压元件(缸体、柱塞、配流盘、九孔板、龟背等)不可避免的产生过度磨损,会造成内漏,各参数据不协调,从而导致流量不足油温过高,工作速度缓慢。这时就需要整机大修,对磨损超限的零部件进行修复更换。

但若不是工作时间很长的挖掘机突然变慢,就需要检查以下几方面。先查电路保险丝是否断路或短路,再查先导压力是否正常,再看看伺服控制阀-伺服活塞是否卡死以及分配器合流是否故障等,最后将液压泵拆卸进行数据测量,确认挖机问题所在。

三、挖掘机无力

挖掘无力是挖掘机典型故障之一。对于挖掘无力可分为两种情况:一种为挖掘无力,发动机不憋车,感觉负荷很轻;第二种为挖掘无力,当动臂或斗杆伸到底时,发动机严重憋车,甚至熄火。

①挖掘无力但发动机不憋车。挖掘力的大小由主泵输出压力决定,发动机是否憋车取决于油泵吸收转矩与发动机输出转矩间的关系。发动机不憋车说明油泵吸收转矩较小,发动机负荷轻。如果挖掘机的工作速度没有明显异常,则应重点检查主泵的最大输出压力即系统溢流压力。如果溢流压力测量值低于规定值,表明该机构液压回路的过载溢流阀设定值不正确,导致该机构过早溢流,工作无力。则可以通过转动调整螺丝来调整机器。②挖掘无力,发动机憋车。发动机憋车表明油泵的吸收转矩大于发动机输出转矩,致使发动机超载。这种故障应首先检查发动机速度传感系统是否正常,检查方法与前文所述发动机检查方法类似。经过以上细致的检查与排除故障,发动机速度传感系统恢复正常功能,发动机憋车现象消失,挖掘力就会恢复正常。

四、挖掘作业过程中的常见故障

挖掘机在施工作业中经常出现的一些普遍的故障,如:挖机行走跑偏,原因可能为行走分配油封(又称中心回转接头油封)损坏;两个液压泵流量大小不一;一边行走马达有问题。液压缸快速下泄则可能为安全溢流阀封闭不严,或缸油封严重损坏等等。

五、挖掘机的日常保养

为了防止挖掘机的故障发生,在日常使用过程中需要十分注意对挖掘机的保养。日常保养包括检查、清洗或更换空气滤芯;清洗冷却系统内部;检查和拧紧履带板螺栓;检查和调节履带反张紧度;检查进气加热器;更换斗齿;调节铲斗间隙;检查前窗清洗液液面;检查、调节空调;清洗驾驶室内地板;更换破碎器滤芯(选配件)。清洗冷却系统内部时,待发动机充分冷却后,缓慢拧松注水口盖,释放水箱内部压力,然后才能放水;不要在发动机工作时进行清洗工作,高速旋转的风扇会造成危险;当清洁或更换冷却液时,应将机器停放在水平地面上。

同时在启动发动机前需要检查冷却液的液面位置高度(加水);检查发动机机油油位,加机油;检查燃油油位(加燃油);检查液压油油位(加液压油);检查空气滤芯是否堵塞;检查电线;检查喇叭是否正常;检查铲斗的;检查油水分离器中的水和沉淀物。

挖掘机在日常工作中遇到的故障还有很多,这里只是介绍了较为常见的几类故障的维修方法,并且为了减少故障的发生,对挖掘机的日常保养是很重要的。只有做到保养和维护的双重保障,才能保障挖掘机更好的正常工作。

参考文献:

钟陈添.挖掘机液压系统的常见故障分析及排除.科技资讯,2007,(22).

聂永光.工程机械液压油的正确选用方法.科技资讯.2007,(19).

黄科鹏.浅谈挖掘机液压系统的故障分析及排除.今日科苑,2007,(20).

纪伟东.液压挖掘机常见故障诊断.科技资讯.2008,(28).

第8篇

[关键词]汽车故障故障诊断

汽车在使用过程中,由于各种各样的原因不可避免的要发生故障,使汽车的动力性、经济性、操纵稳定性、乘坐舒适性、使用安全性等发生变化。汽车故障有的是突发性的,有的是渐进性的。当汽车发生故障时,如能够用经验和科学知识准确快速地诊断出故障原因和部位,找出损坏的零部件,及时修复或更换,排除故障,恢复汽车原有的性能,就能发挥汽车高效、便捷的交通作用。

一、故障成因

汽车在使用过程中不发生故障是相对的,而发生各种各样的故障是必然的。汽车故障的形成原因主要有:

1.存在易损零件。汽车在设计中不可能做到所有零件都具有同等寿命,有些零件为易损零件。例如:空气滤清器滤芯,火花塞,离合器摩擦片等使用寿命较短,均需定期更换,如没有及时更换就会发生故障。

2.零件质量差异。汽车零件批量大,并由不同厂家生产,因此不可避免地存在质量差异。

3.运行材料质量。汽车上的消耗品主要有燃油和油等,这些用品质量差会严重影响汽车的使用性能和寿命,使汽车易发生故障。加入劣质燃油和机油对发动机危害极大。

4.使用环境影响。汽车使用环境变化很大,涉及气温高低,风霜雪雨,道路不平使汽车振动颠簸严重,容易发生故障或引起突发性损坏。

5.驾驶技术影响。驾驶技术对汽车故障的产生影响很大,使用方法不当影响更大。如汽车新车磨合期超速超载,不定期维护,就会使汽车损坏和出现故障。

6.维修技术影响。汽车在使用中要定期维护,出了故障要作出准确的诊断,及时排除。要求汽车使用、维修工作人员要了解和掌握汽车技术性能和高新技术在汽车上的应用。

二、故障症状

汽车常见故障的表现和症状有:

1.性能异常

动力性和经济性变差,如最高行驶速度明显降低;汽车燃油消耗量大和机油消耗大。乘坐舒适性差,如汽车振动和噪声明显加大。汽车操纵稳定性差,如汽车易跑偏,车头摆振;制动侧滑和距离长,排放超标等。

2.工况异常

使用中突然出现某些不正常现象,如行驶中发动机突然熄火;制动无效;冬季起动困难;发动机熄火后再也起动不了等。

3.声响异常

使用中发生的故障往往以异常响声的形式表现出来,如果响声比较沉闷并且伴有强烈的振抖时,故障比较严重。例如,汽车怠速运转时,发出有规律的哒哒声,加速时响声杂乱无规律,这是气门间隙过大发出的敲击声。如果发动机在正常运转时,出现像敲砧板的嘎嘎声,且响声越来越严重,这是发动机缺机油造成烧轴瓦的响声。

4.排烟异常

汽车排气管冒黑烟一般为混合气过浓,燃烧不完全;排气管冒蓝烟,一般为烧机油;排气管冒白烟,一般为燃油中有水,或气缸有水,或室外温度过低。

5.操作异常

汽车不能按驾驶员意愿进行加速、转向、制动。如油门踏板、离合器踏板、制动踏板、转向盘、变速杆操作不灵活等。

6.气味异常

刹车片和离合器片的非金属材料发出的烧焦味;蓄电池电解液的特殊臭味;电气系统导线烧毁的焦糊味;漏机油滴到排气管的烧焦味和汽油味。

7.外观异常

汽车停放在平坦场地上时,检查外观时会发现汽车纵向倾斜或横向歪斜;灯光、信号、仪表失常;表面碰伤、擦痕损伤等。

8.过热

各部温度超出正常使用温度范围。如水箱“开锅”、变速器、制动器、后桥壳发热烫手。

9.渗漏

燃油、机油、冷却液、制动液、电解液、制冷剂等漏液;电气系统漏电;气缸垫,进、排气管垫,真空管等漏气。

三、故障诊断方法

汽车发生故障,如果查不出故障原因和故障部位,就无法动手修理。就好像医生给病人看病一样,如果诊断不出病因,乱开药,就很难将病人的病治好。如果诊断病因准确,对症下药,就可以药到病除。汽车故障种类繁多,千变万化,但万变不离其中,只要掌握汽车的构造、原理、性能,且具有丰富的维修实践经验,就很容易作出准确的判断。内行的人只要汽车一开过他身旁,他一听一看就可以判断出该车的技术状况,这就相当于一个中医医生,单凭一个人的脸色,行动,眼神,精神状态就可以判断出有没有病一样。汽车一般故障诊断方法大概归纳为深问历程、慎察症状、细听异响、触感变化、辨嗅气味、试验求证、部件替换、分离检查和局部拆装等过程,对于疑难故障,在利用仪器和设备进行检测的过程中也要结合维修经验,灵活运用检测结果,对故障进行综合诊断。

1.深问历程

中医诊病要望、闻、问、切,汽车故障诊断也是一样。其中深问也是快速诊断汽车故障的方法之一。例如,汽车发生故障时,应了解汽车使用年限和行驶里程。因为可以根据这些使用情况估计可能发生的故障原因。因此,维修人员一定要向车主询问使用年限、修理历史、发生故障时的症状以及发生故障后的状态,进一步深入地了解故障产生的原因,判断故障的部位。

2.慎察症状

所谓慎察症状是对初步判断的故障发生部位进行仔细观察或模拟检测。如发动机冒蓝烟,如果是使用过程中长期冒蓝烟,且汽车使用里程又很长,一般可判断为气缸、活塞、活塞环磨损造成机油上窜至燃烧室燃烧引起的;如果只是在发动机刚启动时冒一股蓝烟,以后又逐渐变得比较轻微,一般可判断为气门油封老化或气门杆与导管磨损造成机油漏入燃烧室燃烧引起的;如果是发动机大修后出现冒蓝烟,只能是活塞环装反所致。特别是梯形活塞环,由于梯度很小,肉眼很难看得清楚,如果标记不清或标错,就易造成活塞环泵油现象。

3.细听异响

用听觉判断汽车故障是常用的简便方法。当汽车某个部位发生故障时,就会出现异常响声,有经验者可以根据响声判断故障部位。如汽车直行时响声正常,而拐弯时有异响,可判断差速器中的行星齿轮有问题;如发动机抖动,加速时排气管有突突声,可判断为发动机缺缸工作;如踩下离合器踏板时有沙沙声,松开离合器踏板时响声消失,说明离合器分离轴承缺油;如发出叽叽声,说明分离轴承卡死不转,磨到分离杠杆发出的响声,必须及时更换分离轴承。

4.触感变化

凭触感来诊断汽车故障就像中医切脉一样,以传到人体上感觉到的汽车状况来判断故障。如柴油机动力不足、怠速不稳、加速不顺有突突声,用手指触碰各缸高压油管,如果哪一条高压油管没有脉动感,说明该缸不工作(缺缸工作);如用手摸水泵出水口胶管可以感觉到水流压力波动,说明水泵工作正常;如感觉不到水流压力波动,说明水泵坏或者水箱无水;如用手指的压力检查风扇皮带的松紧度:用拇指从皮带中间用40N的力按下皮带,其挠度为10-15mm为合适,否则说明皮带过松或过紧。

5.辨嗅气味

汽车上不同的气味代表着不同的状态。如闻到焦糊味是电线短路烧焦味,必须立即关掉电源,查找故障部位。当手摸到发烫的地方就是电线短路的部位。当停车时或行驶中闻到汽油味,可能是某处油管或油箱漏油,要查明原因;如汽车载重上坡,发动机转速很高,但车速很慢,且在车后闻到一股古怪难闻的焦臭味,这是离合器打滑的故障。

6.试验求证

所谓的试验求证就是以试验来证明汽车技术状态的变异程度,以确定故障原因和部位。如汽车液压制动不灵的故障诊断:

(1)当踩下制动踏板时,有松软或有弹性的感觉,说明液压制动系统中制动液(刹车油)不足或有空气造成制动不灵;

(2)当第一次踩下制动踏板时,感觉踩下去很深,而第二次、第三次踩下去时,制动踏板逐次增高,说明制动蹄片和制动鼓磨损间隙过大造成制动不灵;

(3)如真空助力制动系统制动不灵。可以在不发动时把制动踏板踩到底并保持不动,再启动发动机,如果发动机启动后制动踏板还下移一些,说明真空助力器性能良好,否则,说明真空助力器损坏造成制动不灵。

7.部件替换

所谓的部件替换就是对可能发生故障的部件用合格的部件替换。如果故障排除说明该该部件损坏,如果故障依旧,说明该部件是好的,故障不在此处。例如,发电机不充电,用一个新的发电机换上去,充电正常,说明原发电机损坏;如果换上新的发电机仍然不充电,说明故障不在发电机,可能是在调节器或充电线路。

8.分离检查

分离检查就是对具有系统性的结构进行分段或隔离检查,以确定故障部位。如转向沉重故障现象,很难判断故障在转向器还是转向传动机构。如果把转向摇臂拆下,转动方向盘,如觉很轻松灵活,故障就在转向传动机构;如果方向盘仍然沉重,故障就在转向器或转向轴。

9.局部拆装

所谓局部拆装就是已经判明故障发生在某个总成以后,还不能准确判断具体某个零件发生故障时,可按总成工作原理,局部拆卸某个零件进行检查。例如发动机缺缸工作,可用逐缸断火(油)法来检查。当拆到某缸高压线或高压油管时,发动机转速发生变化,说明该缸工作正常,如果没有任何变化,说明该缸不工作。

四、结语

通过汽车一般常见故障形成的原因及故障表现的症状和故障诊断方法的论述。便于汽车使用和维修工作人员在汽车发生故障时能够快速诊断出故障的原因和部位,及时修复,提高汽车的维修工作效率和汽车的使用效率,使汽车造福于人类。

参考文献:

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

发表咨询 加急见刊 文秘服务 杂志订阅 返回首页