首页 优秀范文 诊断技术

诊断技术赏析八篇

发布时间:2022-07-07 00:04:38

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的诊断技术样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

诊断技术

第1篇

关键词:液压支架;故障诊断;泄漏诊断;智能诊断技术;故障树

前言:由于液压支架出现故障最大的缺点就是故障的某些征兆具有很高的隐蔽性和复杂性,不易快速查找原因,故障与征兆之间缺乏明显的关联性,很难凭借简单的感官经验进行诊断。这种特点一方面来自故障与征兆之间关系的不确定性;另一方面又来自故障与征兆在概念描述上的不精确性。为了准确判断故障,本文介绍了几种故障的诊断方法。

1.液压支架的工作原理

液压支架是以高压乳化液作为动力源来驱动多个液压缸的伸缩,完成支架的升起、降落、行走和推移输送机等各种动作使支架随按工作面的要求进行反复支撑、前移和调整。

1.1液压支架工作原理图如下,图 1

图1 液压支架工作原理图

1一顶梁;2一掩护梁;3一立柱液压缸;4一推移千斤顶;5, 6一液控单向阀;7一刮板输送机;8一安全溢流阀;9, 10一三位四通手动换向

2.液压支架的分类

按不同的分类标准,液压支架的种类也有所不同。按支架和围岩的相互作用,液压支架可以分为支撑式、掩护式和支撑掩护式四种。根据使用地点的不同,液压支架又可分为工作面支架和端头支架两种。

3.液压支架液压系统的故障定义、特点及类别

3.1.液压系统故障的定义及特点

3.1.1液压故障的定义

液压系统故障是指:液压元件或系统丧失了应达到的功能及出现某些问题的情形。功能故障包括以下几种情况:人们操作上的不当或失误引起的误动作故障;由于泵容积下降和液压缸速度减慢一起的功能性故障;有电磁铁烧坏和哦那个轴扭断和泵轴扭断引起的功能完全丧失。功能性故障。

3.1.2液压系统故障的特点

①液压系统故障具有隐蔽性:液压系统中的动力传递系统是在密闭的工作介质中进行的,因此液压装置的损坏与失效往往发生在深层内部。又因为装拆不便,现场的检测设备仪器等也很有限,难以直接地对进行故障点观测,并且受故障随机性的影响,虽然故障症状个数有限,但是故障分析也很困难。

②液压系统故障具有随机性:引起系统故障的因素有许多,比如外界污染物进入系统引起故障,环境温度的变化、机器任务变化、环境温度变化等都有可能仪器机械故障。所有这些,导致了,故障发生的不确定因素,从而给故障分析带来了一定难度。

③液压系统故障具有差异性:设计和生产材料及应用环境等不同,对液压元件造成的的磨损劣化速度也有不同的影响。所以不能简单地根据一般的液压元件寿命标准来评价原件的磨损程度,只能对具体的液压元件、液压设备评估个体化的的磨损评价标准。

④液压系统的故障一个症状可能有多种原因引起,同时一个故障源也可能引起多种不同的症状,多个故障源叠加起来又可以形成单个症状或者多个症状。

3.2液压支架液压系统的故障类型

3.2.1按故障发生的时间可分为早发性故障、突发性故障和件发行故障;按照故障的特性分类可分为个性故障、共性故障和理性故障;根据发生故障的零件类型或者部位可分为液压件故障和结构件故障;根据引发故障的原因可分为人为故障、消耗故障、固有故障和环境故障;根据故障的从属关系可分为基本故障和从属故障;根据故障的危害、性质和维修难易程度可分为致命故障、严重故障、轻微故障和一般故障。

4.液压支架诊断技术研究

4.1故障树分析法定义和基本原理

故障树分析法(简称FTA),是目前复杂系统故障分析的中最为高效和广泛使用的一种方法。所谓故障树分析法就是,把所研究系统的故障状态作为的已知项,根据这一故障找寻导致这一故障发生的全部因素,由此再推演可能造成下一级事件发生的故障的全部情况,一直追查到那些故障机理和概率分布都是人们已经掌握的因素为止。 一般我们将把最不愿意发生的事件作为顶事件,影响最小的事作为底事件,介于两者之间的事件都称为中间事件,并用特定的符号表示这些事件,然后用一定的从属关系将他们进行排列并赋予一定的逻辑关系,这样形成的一个树形图我们称之为故障树,以故障树为作为分析系统发生故障途径的工具,进行故障分析和安全靠性评价的方法称为故障树分析法。故障树分析法对于一些传统人工评定方法很难完成的有关问题比如具有相关失效的系统、非指数维修分布的系统、以及有转换判定的冗余系统的故障可靠性研究都有很大帮助。

4.2故障树的建立过程

故障树建造的是否完善直接影响者故障树定性分析和定量分析结果的准确性高低。也就是说故障树分析法的关键在于建造正确的故障树。因此,故障树的建造过程中必须十分谨慎。为了建立正确的故障树,一定要遵循一定的步骤。故障树的建立步骤如下。

4.2.1在了解系统的性能的基础上,收集和分析与系统设计和运行的技术规范等有关的技术资料,然后对所研究的对象作系统分析,准确判别系统中的正常状态和正常事件,故障状态和故障事件,评估各种故障可能对系统造成的影响,找出导致各种故障的原因或者途径。

4.2.2在上一部正确的的基础上,确定最不希望发生的故障事件,以此作为顶事件。

4.2.3以在对系统故障提出假设条件为根据,确定边界条件(确定故障树的建树范围)系统的边界条件应包括以下四个方面的内容:①分析的对象也就是顶事件,顶事件也是边界条件中最根本、最重要的条件;②由于指系统中有的部件可能有多种工作状您,因此需要确定顶事件发生条件下这些部件所处状态,即初始状态;③不容许事件即在建立故障树过程中被认为不容许发生的事件;④必然事件也就系统在指定条件下必然不发生的事件和必然发生事件。

结语:本文通过对液压支架诊断技术中最常见的方法――故障树液压支架诊断技术的基本原理和工作流程的描述,旨在提高施工人员对该技术有一个整体上的认知,其中许多具体的造作方法还应该参考相关工具书或者国家规范进行相应的诊断与检测,由于篇幅的限制就不在这里意义赘述,忘谅解。

参考文献

[1]罗恩波.国内外液压支架现状及我国的发展趋势[J]煤矿机电2000(3):27一 28.

第2篇

一、国内冶金企业设备诊断成功案例

1999年1月,发现高炉炉顶齿轮箱螺栓拉断;2000年,判断高线精轧机锥轴和辊轴零部件损坏;2006年2月,发现棒材厂16号轧机减速机锥箱轴承故障;2007年11月,判断某大型铁矿排岩车间破碎机回转体隐患;2008年4月,发现冷连轧机五机架第五架传动轴故障;2009年11月,发现高线减定径机30架锥箱输出轴轴系故障;2010年,发现炼钢耳轴倾动机构轴承早期磨损;2011年,发现高炉炉顶新齿轮箱回转支承间隙小,影响运行。由上可见,设备诊断技术不仅可以预测故障隐患,在判断设备制造装配精度方面也可起到一定作用。国内冶金行业设备的诊断成功案例中,宝钢可以追溯到1983年,部分设备在投产时就有诊断成功案例,此后每年均有各类成功案例,特别是在1996年开展设备状态监测诊断受控点工作后,每年均有数百项成功案例。武钢自2002年开展基于设备诊断技术的“万点受控”工程项目以来,已经成功地在首钢、河钢等二十多个大中型企业推广应用,积累各种成功案例达200余个。

二、常用监测诊断技术

冶金机械设备监测诊断技术已形成以振动监测诊断、油样分析、电流监测、温度监测和无损探伤为主,其他技术为辅的格局。

(1)振动监测诊断技术冶金企业以旋转机械为多,这类机械故障所激发的振动多为横向振动,通常是由其核心部件轴部件故障引起,轴部件故障信号大多为周期信号,准周期信号或平稳随机信号等。该类信号的分析方法目前最常用的是时域—频域分析方法。时域波形是机械振动振幅的瞬态值随时间延续而不断变化所形成的动态图像,时域信号分析的基本参数有峰值、均值、均方根值(有效值)、方差、方根幅值、平均幅值、偏度、峭度等。一般说来均方根值、方根幅值、平均值以及峭度均会随着故障的发生和发展而增大。峭度、裕度因数和脉冲因数对于冲击脉冲类的早期故障比较敏感,但随着故障的逐渐发展,其值反而会下降,而均方根值的稳定性较好,但对早期故障不明显,故常将它们同时使用,以兼顾敏感性和稳定性。在频谱分析时,所关心的多是各种轴转速的多倍频率处以及转速的非整数倍频率处的峰值。通过分析频谱中的轴速频率的整倍数波峰可诊断如零部件不平衡、不对中、松动、轴弯曲和磨损等多种故障;不平衡、不对中这两类故障给冶金设备带来巨大损失,应当作为企业设备诊断的重点。

(2)应力应变检测技术机械设备发生失效并最终引发故障往往由其结构的潜在局部损伤引起,结构损伤从细小到扩张再到最终破坏是一个逐渐发展演变的过程。由于应变能使结构随机振动响应中小损伤信息得以“放大”,基于应力应变的检测技术近年来引起关注并得到快速发展,广泛应用于冶金等领域。

(3)声发射检测技术声发射传感器和振动传感器核心部件都是压电元件,声发射检测技术不仅可以利用材料受载以弹性波的形式释放应变能的现象来探测和识别材料内部产生损伤或结构变化的情况,还可以用来检测机械零部件外表点蚀或剥落情况。该技术作为一种无损检测方法已被广泛应用于冶金、石油化工等众多领域。由于其接收信号的频率范围宽(至少可达2~70kHz),灵敏度高,适用于探测结构缺陷发出的高频应力波信号,其高频特性可有效避开周围低频的噪声,对机械设备(尤其是低速重载设备)或大型构件可提供整体或局部快速检测,及早发现故障隐患。

(4)磁记忆检测技术铁磁学研究指出,磁弹性效应是指当弹性应力作用于铁磁材料时,铁磁体不但会产生弹性形变,还会产生磁致伸缩性质的形变,从而引起磁畴壁的位移,改变其自发磁化的方向。当铁制设备的某一部位在周期性负载和外部磁场的共同作用下,在该处会造成残余磁感应强度的增长。采用金属磁记忆检测技术能及时、准确地找出部件可能导致损坏的最大应力集中区域。检测时不需要对被检测对象进行专门的磁化,检测后也无需进行退磁处理;不需要对金属表面做专门的预处理,对表面有保护层的允许距离150mm进行检测;无需耦合剂;它能够检测到金属疲劳损伤和濒临损伤的状态,在应力应变状态评价与设备强度及可靠性分析、寿命预测方面有独到的能力。这方面的研究和应用已初见成效。

(5)油液检测技术从油着手的设备故障诊断技术内容包括:油物理化学指标变化;油在机体内生成沉积物检测;油颗粒污染度检测(磨损颗粒,泄漏介质)等。理化性能指标主要是检测油的酸值、水分、运动黏度、闪点等来检测设备的状态;应用光谱仪、铁谱仪、颗粒计数器等可对油中携带的磨粒的尺寸、颜色、形貌、浓度等指标进行检测,以此来判断设备磨损状态和磨损部位。通过定期采集油液系统摩擦副之后、油滤装置之前,油箱加油口、放油口,专用放油阀的油样,并对所取油样或油脂进行分析来判断是否需要换油和该设备是否存在故障隐患。目前,油液分析技术更多地集中在多技术油液分析信息的融合故障诊断方法及油液分析信息与其他故障信息融合方法的研究上,而油液分析技术的智能诊断方法及在线检测系统成为油液分析技术的发展趋势。

(6)油液测温技术齿轮箱和飞剪等设备的油温过高会引起一系列问题。油温变化引起油性能下降,包括黏度下降、加速老化变质,并导致齿轮啮合摩擦增大、磨损严重以及发生齿面胶合。而飞剪轴瓦温升过高往往是轴与瓦摩擦所致。为了及时发现油温变化,在易出故障部位安装温度传感器并最好同时安装振动传感器,实时监测油温和振动变化,及时采取措施,避免故障发生。

(7)低速重载设备监测诊断技术炼钢耳轴倾动机构、高炉炉顶齿轮箱和粗轧机等低速重载设备的主要特点是工作转速低且在运行中承受较大的冲击载荷,背景噪声大,早期故障特征难以提取,仅用振动方法很难准确判断早期故障隐患。上述检测技术的结合可以有效识别低速重载设备的早期故障。实践证明,对于正常磨损的设备,在设备运行早期,对故障特征较为敏感的是油液、声发射和磁记忆检测技术;在设备运行中期,对故障特征较为敏感的是振动和噪声检测技术;在设备运行后期,电流和温度监测技术对故障情况也很有效,应根据设备运行的不同阶段,采用不同的检测技术来排查设备故障隐患。需要指出的是,多传感器信息融合技术和小波分析等技术不仅适用于中高速设备故障诊断,对于低速重载设备故障也有一定的效果。

三、企业执行层存在的问题及对策

(1)现场维护人员应能看懂频谱图。先学会看基频,再学会看谐波和边频,最后学会看频率结构。

(2)准确出示诊断报告。设备维护人员应当根据培训监测诊断人员的国家标准,经过专业组织机构培训,通过6~12个月的时间达到I级监测诊断人员的水平,再用1~3年的时间达到Ⅱ级监测诊断人员的水平,即可掌握做诊断报告的基本方法。

(3)分清故障发生的基本原因。在长期掌握监测数据的基础上,从机械和电气两个方面分头排查故障。

(4)全方位提高故障诊断准确率。以轴承故障为例,其主要故障形式是磨损和疲劳剥落,服从“浴盆曲线”,班组人员通过趋势图并在时域和频域图中寻找等间隔成分,可以发现60%以上的故障隐患。对于冶炼和轧钢的绝大多数机械设备,通过“感官检测+在线/离线监测系统+责任心”,可达到80%以上的诊断准确率。企业设备维护人员、专业公司专业人员和专家三方会诊,可以进一步提高准确率。

冶金设备故障的情况非常多,全面准确诊断设备故障难度较大,只有生产和维护人员共同实施基于设备诊断技术的点检才能最大限度地掌握设备状态,再加上多种维修模式并存的设备维修体制,才能最大限度地降低设备故障。

(5)提取低频微冲击信息。国内外均有振动仪器可以提取到0.1Hz的故障特征频率,其中声发射仪器效果也非常好,低频微冲击信息提取已经有许多成功案例。

四、企业管理层存在的问题及对策

(1)认为设备总是要坏的,监测没有用。2011年4月14日到4月22日,江南某高线厂精轧机检修完毕,准备在48h后投入运行,北京某高校诊断人员在检修前的振动在线监测系统频谱图上发现锥箱Z3/Z4齿轮啮合频率和边频,该边频与Ⅱ轴轴频相等,即报告厂方,重新开箱检查,发现Z3齿轮沿轴向出现穿透性裂纹,立即更换后避免了一起恶性事故。

(2)认为设备一直没出问题,降成本压力大,不需要上监测系统。某钢厂用了6年的50t转炉耳轴倾动机构突发故障,停产196h,造成700万以上的直接损失,远超过6年来降低的成本。实际上这种间歇性低速重载设备的隐患是可以通过状态监测技术诊断出来的。

(3)认为振动离线监测可以取代在线监测系统。在低端产品,例如普通型材和普通棒材等产品,由于装备水平不高,用离线监测系统可以发现设备中晚期故障,如果专业人员水平较高,也可以发现一些高速设备的中晚期隐患。

在中高端产品,例如钢帘线、冷轧板、硅钢板等,离线系统很难埔捉到故障早期特征;而且无法记录轧制每一块原材料的时刻,从而也就无法知道影响产品质量的准确原因;更重要的是,某些新型复杂机电系统,不容许维护人员用手持式仪器靠近设备,例如炼铁高炉炉顶齿轮箱附近煤气大,冷连轧机组机架进行封闭式轧制等。所以,在轧制品种钢或者新建具有国际竞争力生产线的企业,应有比例的投运在线监测诊断系统。

(4)认为建设新厂时已经投入大量费用,再没有资金投入,刚运行的新设备不需要上在线监测系统。2008年9月17日凌晨4时左右,某新建热轧厂点检工人听见粗轧机下接轴平衡轴承座处一声异响,人工检测出该部位温度升高,由于测温仪无法识别轴承故障,停车后又恢复转车,该部位又听到一声异响,同时冒出大量黑烟,轧机停止运行,停机后发现该轴承严重烧损,多处融接在一起。由于下接轴轴颈烧损,仅在换上新接轴之前,热连轧机R2下接轴平衡轴承的累计检修时间就长达204h,直接损失高达4420万元。而在承德钢铁集团公司热轧厂,由于投入了在线监测系统,不仅在试车阶段就发现了制造厂的设备缺陷,且从投产至今从没有发生过恶性机械故障。

第3篇

Abstract: Introduces two parts which are the most prone to malfunction in hydraulic system, in combination with the practical situation of underground scene, puts forward several simple solutions.

关键词: 液压系统;故障诊断;解决办法

Key words: hydraulic system;fault diagnosis;solutions

中图分类号:TG502.32 文献标识码:A 文章编号:1006-4311(2013)09-0026-02

1 液压系统的故障来源

液压系统的故障主要来自两方面,一是构成系统的元件,如液压泵、溢流阀、换向阀等;二是液压系统的工作介质(液压油),其中以液压油污染变质引起的故障发生率最高,而液压油引起的故障中约有90%是由污染颗粒造成的。

2 液压系统的故障特征

2.1 正常情况下液压系统的故障不会突然发生,因为无论是元件磨损、密封件变质、液压油污染都是渐进性的,不发展到一定程度不会造成故障。因此,对液压系统监测流量、压力、振动、温度等参数的变化,实现“状态维修”,使设备经常处于正常状态,具有十分重要的意义。

2.2 液压系统是一个封闭结构,各元件的工作状况不能直接在外界观察,也不便于测量检查,再加上影响液压系统正常工作的原因错综复杂,泵、阀、缸、管路、液压油都可能导致相同的故障现象,所以寻找故障部位的工作比较困难,但同时由于液压元件及其辅助元件都已标准化、系列化、通用化,因此一旦查出故障原因,在更换时相对容易。

3 液压系统的故障诊断参数

目前常用的有以下几种状态信息的特征参数:执行机构的工作状态、压力、流量、振动、噪声、温度、液压油污染。

①执行机构的工作状况:执行机构的速度、运动范围、承载能力等功能参数发生异常变化是设备出现故障的征兆,但是这些诊断参数灵敏度不高,往往液压系统的组成元件已经出现缺陷,设备的这些参数仍然没有出现明显的变化。②压力:压力变化是系统中泵、阀、管路、液压油等出现缺陷的征兆,而且也影响系统的负载能力,所以液压系统一般都安有压力表进行检测,除监测系统的工作压力外,对某些系统还要检测控制压力和回油压力。③流量:流量变化也是系统中泵、阀、管路、液压油等出现缺陷的征兆,而且也影响液压系统运动部分的速度大小和稳定性。但是监测流量非常困难,目前应用很少。④振动和噪声:振动和噪声是液压系统故障的征兆,特别是液压泵性能劣化的主要征兆,而且振动也会影响其他液压元件的使用寿命。⑤温度:液压系统工作时,能量损失转化为热能使系统温度升高,温度过高能量损失过大是液压系统元件和液压油质量下降的征兆。而且温度过高也对液压系统产生许多较显著的不良影响,一旦温度过高(一般在75℃以上),液压油的黏度、性能参数会急剧恶化,密封件使用寿命严重下降,影响设备的正常运行。⑥液压油污染:油中的磨损颗粒、腐蚀产物、煤粉、外界水分和气体以及油中化学成分发生变化都会使液压油发生变质,这不仅是液压系统的故障征兆,也是导致液压系统产生故障的根源。油液中混入的固体微粒直接使运动件的配合面产生磨料磨损,使元件寿命缩短,泄漏增加,甚至出现动作失灵现象;混入的固体颗粒还可能将系统中阻尼孔、阀口、滤网堵塞,使系统不能正常工作。油液化学成分变化使性能下降,密封件损坏。油液中混入空气会使油被乳化,或呈泡沫状使元件不稳定。油液中混入水分会降低油的黏度,导致元件磨损加剧。因此,监测油液污染程度具有十分重要的意义。

4 液压系统故障诊断方法

4.1 简易诊断 液压系统简易诊断是操作者必须经常进行的工作,通常是依靠简单的仪表和操作者的感官经验,根据执行机构的工作状况、泄漏、温度、振动、噪声和液压油质量等的变化作出正常与否的结论,利用这种方法处理故障往往不够准确,处理时间长。

4.2 精密诊断 在熟悉和了解整个系统的工作原理,清楚每个原件与辅件性能和作用的基础上,按功能将液压系统划分成几个区域。在分析故障时,首先应按故障现象的特点确定故障所在的区域,然后按一定顺序在确定的区域内进行查找,严禁盲目拆卸或任意调整,必须调整时(流量、压力、元件行程等可调整部分)一要注意每次只能调整一个变量,以免产生干扰,调整后若故障无变化,则应复位后再进行另一变量的调整;二要注意调整幅度,避免过大或过小,以免产生新的故障;三要注意调整后开动系统的时间不宜太长,以防意外。

一般的液压系统如图1所示可划分为以下几个部分:①油箱部分。包括油箱、油位计、过滤器、冷却器等,这里为系统提供所需要的工作介质,对泵和所有元件的性能及使用寿命都有很大影响。②动力部分。包括液压泵、溢流阀及卸载回路等部分,这是液压系统的心脏,为系统提供所需的能量(一定压力和流量的液压油),从而推动整个液压系统的正常工作。③整个系统的控制部分。包括系统压力、流量控制元件、压力开关等控制整个油路的所有装置。④执行机构控制部分。包括油缸、液压马达等执行机构和他们的专用压力阀、流量控制阀、换向操作阀和安全阀等。控制部分的数量随执行机构的数量而改变,图中2个执行机构相互独立,所以控制部分也是2个。控制部分的复杂程度与执行机构的工作特性相适应,最简单的控制部分只由一个换向阀组成。

例如图1所示系统,当系统故障仅限于某执行机构时,则故障源必在该执行机构的控制部分;若所有执行机构都有相同的故障,则故障源可能在整个控制系统的控制部分,也可能在动力部分或油箱部分,诊断时就应在这三部分按一定顺序查找。当故障缩小到回路的一个部分或一个元件时,有时需要检测元件性能才能确定出故障程度、部位和原因,在此,可以将压力表、流量计、温度计和控制油压的加载阀等检测元件组合在一起,形成一种专门用来测试液压回路的仪器(以下简称测试器)。该测试器的进油口接在被测元件之后,出油口接油箱,对系统中的组件进行分隔测试,逐步判断故障。

现以一个简单的液压系统来具体说明测试器的使用。

图2中液压系统的故障表现形式为负载加大时,液压油缸动作缓慢或不动作。通过故障表现可以判定为某处元件泄漏量大,导致推动活塞的流量不足。为了查出故障部位,需要使用测试器检查液压泵、溢流阀、换向阀、液压缸的泄漏量。①液压泵测试。按图3所示在A处将液压泵与系统断开接入测试器,空载启动电机以额定转速旋转,油液全部经测试器流回油箱,调节测试器的加载阀,使系统压力由空载逐渐上升到系统的额定工作压力(不能超过额定工作压力,因为此时未接溢流阀),如果流量计显示值减少到不能允许的程度,说明液压泵有故障。在检测时还应注意压力表的指针是否存在跳动现象,若有跳动说明液压泵吸油侧液面太低,此时应检查油箱是否油位不够,或过滤器堵塞,吸油管密封不严出现了气穴现象。②溢流阀测试。按图4所示在B处断开后接入测试器,启动电机,先逐渐调节测试器的加载阀,压力表显示的数值为该液压系统溢流阀的调定值时,在溢流阀打开之前,如果测试器流量计显示的数值变化大,就说明故障在溢流阀,此时应进一步检查溢流阀阀芯及阀座有无过度磨损伤痕。③换向控制阀测试。按图5所示在C处断开接入测试器。启动电机逐渐调节测试器加载阀,在溢流阀打开之前,若流量基本保持不变,则换向阀良好,若变化大则说明换向阀处泄漏大,需更换。

5 液压系统的油液监测

由于因液压油出现污染而导致液压系统出现故障的频率也很高,因此对液压油油质进行监控同样具有很重要的意义。目前对液压系统油液进行维护主要是更换新油,当系统运行一段时间后,通过肉眼观察油箱油液比较脏的情况下,将原有油液全部倒出,再彻底清洗油箱和各处阀后倒入新的油液,这种方法工作量大,而且非常滞后,无法实现对油液的实时监控。

为了能够较准确的掌握油液的污染程度,有两种方法可以实施。

5.1 油液取样观察法

5.1.1 斑痕试验法。在一片洁净的过滤纸上(井下也可用干净的普通白纸代替)滴1~3滴使用中的液压油,如中心部浓,周围清澈,并且分界线清晰,则说明油污染度大,油液中大微粒多;如中心部扩展很宽,分界线不清晰,也说明油污染度大,但是油液中小微粒多;如没有中心部分只有扩散部分则说明油液的污染度很小,可以继续使用。

5.1.2 外观检查法。定期将油箱中的油液取样后带到井上,交机电科油液化验室,在玻璃容器中检查油的透明度、污染微粒、气味变化,以此判别油的污染程度,详见表1。由于人眼的能见度下限为40μm,如能用肉眼观察出油液中存有杂质,则说明该油液已经很脏了,必须更换。

5.2 电磁吸附法 在液压系统的某些特定部位,可以在其管路上接入永久性的“T”形三通接头,一端采用磁性旋塞做堵头,定时拆下旋塞可以通过检查上面的吸附微粒来判断油液的污染程度。

以上简单介绍了液压系统中最容易出现故障的两个部分,同时结合井下现场实际情况,提出了几种简单易行的解决办法,望能对缩短我矿液压设备的故障处理时间和降低液压设备故障率有所帮助。

参考文献:

[1]范士娟,杨超.液压系统故障诊断方法综述[J].机床与液压, 2009(05).

第4篇

关键词:汽车检测;诊断技术;实际应用;发展方向

1 汽车检测诊断的目的

1.1 安全环保检测的目的

近年来,对汽车尾气的治理较为严格,为了保证汽车在运行过程中能处于安全、高效及低污染下运行,所以可以通过对汽车进行定期和不定期的检测,从而使车辆的外观及安全性能都得以保证,确保尾气的排放量符合国家规定的标准范围内,从而使汽车达到安全、环保的运行状态。

1.2 综合性能检测的目的

对汽车进行检测,可以采取定期和不定期的方式进行,从而对其综合性能进行检测,对车辆的运行能力和技术状态进行检测,从而及时发现汽车的故障隐患,确定故障的原因并进行排除,实现对车辆的质量监控体系,从而确保车辆的良好性能。保证车辆得以安全、可靠的运行,同时还可以以检测的数据来对车辆的修复制度进行制订,从而确定检测、维护和修理的具体时间及内容。

1.3 故障诊断的目的

车辆在运行过程中,在不解体的情况下对其进行故障检测,可以有效的判明事故的原因,并对其进行分析和对故障部位进行判断,并于诊断出来的故障进行调整及修理,确定具体的修理方法,从而保证汽车得以良好的运行。

2 汽车诊断的方法和标准

2.1 人工经验诊断法

检修人员在长期的工作过程中积累了非常多的实践经验,同时再结合自己的理论知识,从而对汽车通过眼看、耳听、手摸和鼻闻等手段来对车辆进行和分析,从而对汽车的运行状态做出判断的方法。

2.2 现代仪器设备诊断法

随着科学技术的快速发展,在人工经验诊断法的基础上利用先进的仪器设备事对车辆进行检测,从而根据所取得的参数、曲线和波形来为汽车的运行提供定量的依据,从而保证检修的顺利进行。

2.3 汽车检验标准

2.3.1 侧滑:机动车转向轮的横向侧滑量,用侧滑仪检测时,其值不得超过5m/km。

2.3.2 车速表:车速表允许误差范围为-5%~+20%。即当实际车速为40km/h,汽车车速表指示值应为38km/h~48km/h。超出上述范围车速表的指示为不合格。

2.3.3 转向:汽车方向盘应转动灵活、操纵方便、无阻滞现象;汽车在平坦、硬实、干燥、清洁的水泥或沥青路面上,应以10km/h速度在5s内由直线行驶过度到直径为24m的圆周行驶,其施加于方向盘外缘的最大圆周力应小于等于245N。

2.3.4 发动机:应动力性能良好,运转平稳,怠速稳定,无异响,机油压力正常。发动机功率不允许小于标牌(或产品使用说明书)标明的发动机功率的75%。

2.3.5 噪声:车内最大允许噪声级不大于82dB;汽车驾驶员耳旁噪声级应不大于90dB;机动车喇叭声级在距车前2m、离地高1.2m处测量时,其值应为90dB~115dB。

3 汽车检测诊断技术的项目

3.1 安全性

3.1.1 制动力检测程序:采用汽车制动试验台,当电脑确定汽车进入制动试验台后,采集汽车左右车轮的最大制动力,然后通过电脑将采集到的数据进行计算,并与国家标准进行比较,以判断制动是否合格。

3.1.2 侧滑:汽车以3km/h~5km/h的速度垂直侧滑板驶向侧滑试验台,使前轮平稳通过滑动板;当前轮完全通过滑动板后,从指示装置上观察侧滑方向并读取、打印最大侧滑量。

3.1.3 转向:做转向试验,进行转向沉重的故障确诊;检查轮胎气压是否充足;检查转向器及转向节衬套、轴承和纵、横拉杆各连接处的情况;检查转向器有无故障;检查转向节与主销。

3.1.4 前照灯:采用前照灯检验仪对前右灯和前左灯进行发光强度和光速照射方向的检测,从前照灯检测仪的显示屏上分别测量左右远、近光束的水平和垂直照射方位的偏移值。

3.2 动力性

3.2.1 检测车速。将汽车开上车速表试验台,待汽车的驱动轮在滚筒上稳定后,挂入最高档,松开驻车制动器,踩下加速踏板使驱动轮带动滚筒平稳地加速运转;当汽车车速表的指示值达到规定检测车速(40km/h)时,读出试验台速度指示仪表的指示值。

3.2.2 检测加速能力。

3.2.3 检测底盘输出功率。

3.2.4 检测发动机功率。对于发动机功率的检测,通过外观就可以发现是否有异常,如看动力性能、燃料和油的损耗情况,起动情况及是否有漏水、油、气和电的情况发生,发动机运行时是否有异常等。

3.2.5 检测扭矩和供给系统。

3.2.6 检测点火系统状况。

对于点火线路可以使用万能表来进行检测,利用逐点搭铁和依次拆断检测法来对断路和短路部位进行检测。

3.3 油消性

通过燃油消耗检测仪测定燃油消耗量的容积或质量来表示,以此来评价在用汽车状况和维修质量的综合性参数。

3.4 噪声和废气排放状况

3.4.1 汽车噪声的检测:采用声级计进行汽车噪声检测。

3.4.2 检测汽车废气。针对于汽车废气的检测,还要区别汽油车和柴油利车,两种车需要用不同的检测方法来进行。汽油车通过采用不分光共外线吸收型监测仪利用怠速法或双怠速法来进行检测;而柴油车则需要利用滤纸式烟度计采用滤纸烟度法来进行检测。

4 汽车检测诊断技术的主要发展方向

近年来,智能传感器开始在汽车检测诊断设备中广泛的应用,其优越于普通传感器,具有人工智能的功能,可以通过对信号的接收,并进行相应的信息处理和信息选择,不仅可以起到有效的对汽车故障进行诊断的目的,同时还可以通过智能传感器来准确的对汽车相应部位的具体信息进行获取,对汽车检测技术的提高起到了重要的作用。

目前微型计算机也开始在汽车检测诊断技术上开始进行应用,并已成为其中必不可少的一部分,智能传感器及微型计算机汽车检测设备中的应用,有效的提高了汽车检测诊断技术的智能化和自动化水平,使检测技术的进一步发展起到较大的推动作用。

目前随着网络的普及,在进行汽车故障诊断时,人们可以通过多种途径来实现,如通过互联网来对检测故障进行查询,得到故障诊断的相关资料及信息,同时还可以通过在线诊断直接对汽车故障与相关的专家进行沟通和咨询,从而对汽车故障进行处理。同时目前网络远程协助技术也得以发展起来,这时则可以通过传感器检测到的汽车相关数据传输到网络系统当中,从而对其进行正确的分析和处理,使汽车的故障得以顺利解决。

5 结束语

目前科学技术的快速发展,使我国的汽车产业得以不断的发展壮大,汽车已走入寻常百姓家。在汽车量不断增加的情况下,现阶段汽车产业更加注重汽车检测诊断技术的发展,这对我国汽车行业的快速发展,及车辆的安全、稳定运行具有极其重要的意义,所以在此种情况下,应加大对汽车检测诊断技术的投入力度,从而使汽车检测技术得以快速的发展,为我国经济的发展做出应有的贡献。

参考文献

[1]李沛峰.刍议汽车检测诊断技术应用与发展趋势[J].中国新技术新产品,2011.02.

第5篇

【关键词】故障检测;故障诊断;小波分析

一、概述

现代化工业技术发展突飞猛进,现代工业自动化程度越来越高,系统规模也越来越大,简单控制系统已经不能达到工业生成的需求,大规模、综合性、复杂的自动化系统运用越来越广[1]。自动化设备和系统结构的日益复杂和集成化,使得系统发生故障的机率也增加,故障的产生会毁坏设备,影响系统正常运转,甚至造成人员伤亡。国内外由于设备故障所引起的设备损坏、锅炉爆炸、道路塌陷,不仅造成经济损失也造成人员伤亡,社会影响及其恶劣。为了达到以人为本同时维护经济的目的,可以加强系统的稳定性、可靠性、鲁棒性和安全性,但任何设备都不可能无限期使用,这就需要防患于未然,因此故障检测技术应运而生。

二、故障检测重要性

故障检测技术是是一门多学科融合交叉性学科[1],如:信号提取则依赖于传感器及检测技术;信号降噪离不开信号处理技术;状态估计和参数估计方法以系统辨识理论为基础;鲁棒故障诊断涉及到鲁棒控制理论知识;此外数值分析、概率与数理统计等基础学科也是故障检查和诊断不可缺少的方法。多门学科知识的支撑确保了故障诊断技术的迅速发展,在工业领域也应用广泛,如化工生产、冶金工业、电力系统、航空航天、机器人等生产的各个领域。

三、故障检测技术经济效益

数据显示[2],故障检测技术与经济发展息息相关,对故障检测技术的研究与发展越来越多,在工业生产中也得到了应用和推广。通过故障诊断技术的推广,大大降低了设备维修费用,各国在故障诊断技术上的投入也逐渐增加。日本对故障检测与诊断技术的投入占其生产成本的5.6%,德国和美国所占比例分别为 9.4%和7.2%。在冶金工业生产中,我国每年承担的设备维修的费用就高达 250 亿元,金额庞大,然而如果应用故障检测与诊断技术,每年可以减少事故发生率同时也能节约 10%~30%的维修费用。因此故障检测能带来经济效益,不容小觑。

四、故障检测的分析方法

(一)状态估计法

状态估计法一般分为两步:首先求取残差,再从残差数据中提取故障特征从而实现故障诊断。目前状态估计法的故障检测诊断方法方兴未艾,如H2估计[3]、鲁棒故障检测与反馈控制的最优集成设计方法[4]等。

(二)等价空间法

低阶的等价向量在实现过程中较易实现但性能不佳,而高阶的等价向量能够得到较理想的性能参数,但以较大的计算量和计算时间为代价。为了解决上述问题,文献[5]采用窄带IIR滤波器运用于等价空间法中,在几乎不改变计算量的前提下,提高系统检测性能,但此方法会产生较高的漏报率。

(三)参数估计法

参数估计法是因为模型参数和相应的物理参数的特点不同,分别统计这两类参数的变化特性来分析和确定故障。物理参数携带重要的信息,具有物理含义,因此,可以分析物理参数的特点,如果异常可以确定故障位置。与状态估计法比较,参数估计法能更有效的故障确定。参数估计法研究越来越丰富,故障诊断方法新成果倍出[6]。

(四)热门的分析方法

(1)小波分析技术

小波分析由于具有时频域局部化特性[7],可任意调节时间窗和频率窗,因此突变信号能够检测出来。但是,小波基选取一直是在小波信号分析没能解决的问题,也是研究的一个难点,针对同一信号采用不同的小波基进行分析其分析结果往往不同。通过小波分析可以检测信号的奇异点,在信号降噪和信号分析中应用广泛。小波变换是结合时域和频域的分析方法,特征提取方便,在故障检测中应用较广。小波分析对单一的故障源检测效果明显,但较复杂情况,如多故障源效果不佳。

(2)神经网络技术

神经网络技术是根据模式识别理论,采用分类器理论,用神经网络进行故障分析和诊断。采用人工神经元网络进行故障诊断一般有四种方式[8]:神经元网络计算残差;神经元网络分析残差;神经元网络进一步分析确定故障点;神经元网络自学习过程进行自适应误差补偿。

(3)小波包分析和神经网络结合技术

用有限元法建立系统动力学模型[9],再根据系统采集信号进行小波包分解,建立基于小波包能量谱指标。把信号指标作为改进BP神经网络的输入特征参数,用分步识别方法进行识别。

(五)展望

故障检测技术运用广泛,用单一方法进行处理存在准确度和精确度的问题,因此可以考虑多学科技术结合的方法,进一步提高准确度和精确度。

参考文献:

[1] 周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报. 2009, 35(6).

[2] 周福娜. 基于统计特征提取的多故障诊断方法及应用.[博士学位论文].上海:上海海事大学, 2009.

[3] Fadali M S, Colaneri P, Nel M. H2robust fault estimation for periodic systems[C]MProc. American Control Conference,Denver, Colorado,2003: 2973-2978.

[4]钟麦英,张承慧, Ding S X.一种鲁棒故障检测与反馈控制的最优集成设计方法[J].自动化学报, 2004, 30(2): 294-299.

[5] Ye H, Wang G Z, Ding S X. An IIR filter based parity space approach for fault detection[C] Proc. the15th IFAC World Congress, Barcelona,2002.

[6] Abidin M S Z, Yusof R, Kahlid M, et al. Application of a model based fault detection and diagnosis using parameter estimation and fuzzy inference to a DC-servomotor[C] Proc.2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada,2002:783-788.

[7]李青锋,缪协兴,徐余海.连续复小波在工程检测数据处理中的应用[J].中国矿业大学学报,2007,36(1):22-26.

第6篇

【关键词】红外诊断技术;变电设备;故障诊断

1 红外诊断技术及其工作原理

1.1 红外诊断技术

红外线诊断技术是把红外线辐射的特性应用到变电设备故障的诊断中,红外线技术主要包括红外诊断技术,其是诊断变电设备故障的一种技术手段。根据物理学的相关理论知识,如果物体的绝度温度大于零,那么物体就会散发出红外辐射能量,而且,如果物体的温度还很高的话,那么,这种情况下,物体发出的红外线能量就会比较强。

1.2 红外诊断技术的原理

大自然中的任何物体都会发出一种人类肉眼无法看到红外辐射能量,也包括人类。如果物体的温度比较高,那么红外辐射的能量就会比较强。变电设备一旦出现故障,那么基本上可以断定是由于整个或者是局部过热, 或者是温度分布异常所造成的。因此,如果用可续的技术设备对变电设备运行中发射出来的红外辐射能量进行相应的测定, 并通过一些设备把这些能量转化成电信号,那么经过相关的处理,就可以清楚掌握变电设备表面的温度分布情况,从而判断变电设备潜在的故障信息以及事故隐患可能发生的位置、性质和大小程度等。

1.3 红外诊断技术的特点

红外诊断技术根据红外辐射原理来检测变电设备表面所散发出来的红外辐射能量,通过一系列的工序,然后把变电设备表面的温度分布情况转化成肉眼能够识别的热图像。工作人员可通过观察热图像来具体了解变电设备的温度变化情况,从而能够快速且准确地诊断出变电设备的故障。红外诊断技术的优点是:在诊断变电设备的故障时,工作人员无需接触变电设备,这样就切实减少了对工作人员生命安全的威胁,节省了大量的人力、物力和财力,且维修和养护的费用也比较低;红外线检测技术直观形象,具有极高的敏感度,适用面比较广。但是其缺点主要有,其仅仅可以测定变电设备表面的温度分布,测定的准确度比较低等。

2 电力设备故障及其诊断原理

2.1 电力设备故障及电力设备诊断机理

受电压和电流两者作用的影响,变电设备在运行过程中,一般有四种发热的来源:

(1)介质损耗发热

受到交变电场作用的影响,电气绝缘介质极化方向会造成损耗,最终造成发热情况。介质损耗发热是一种因电压效应所引起的发热现象。

(2)电阻损耗增大的故障分析

在电力系统导电回路中,如果所有的金属导体均会产生电阻,那么符合电流在通过时,就会有相当一部分的电能以热损耗的形式损耗掉。在这个过程中,符合电流和发热功率是的平方是正比例的关系,但和电力系统的电压没有关系,其仅属于电流效应所造成的发热。

2.2 泄露电流增大以及其分布异常故障

一般情况下,会存在一部分的高压电力设备,比如输电线路绝缘子以及避雷针等, 这些变电设备均可能存在泄露电流的状况,因此存在一定的电压分布,那么,变电设备如果出现了故障,就会改变泄露电流I、分布电压U 的大小,而且还会造成表面温度出场的异常分布。

2.3 铁损增大的故障

如果把工作的电压施加于励磁回路上,受铁芯磁滞、涡流影响损耗电能,就会造成变电设备的发热。

2.4 电气设备的热故障分析

(1)电气设备的内部故障

造成电力设备内部故障的因素有很多,主要有设备壳体、油绝缘封闭电气回路以及固体绝缘、绝缘介质等。电气设备的故障由于是发生在金属外壳,而且是绝缘材料的内部,因此,红外线的穿透能力非常弱,几乎无法穿透电气设备的外壳、绝缘材料,因此不能进行内部缺陷的检测。但是,由于电气内部的缺陷一般具有较长的发热时间,而且相对来说比较稳定。故故障点与周围的导体以及绝缘材料能够通过对流转化等方式来传递热量,可以引发这些部位的高温,尤其是传热导体的升温会比较显著。

(2)电气设备的内部故障

电气设备外部故障的因素主要有两方面:①外部的接头由于接触不良而袒露在外面,或者是由于连接管件不良可造成过热的故障,比如套管、线夹以及断路器等等;②由于绝缘的强度比较低,从而造成了绝缘性能的降低,进而引发过热的故障。比如绝缘子劣化、严重污秽也会造成电流泄露的增大,从而引发发热的故障。那么,如果发现不处理,就会造成局部的烧断和断线,从而可能引发设备事故等。在电气设备外部和内部故障中,外部设备所占的比例比较大。

3 红外诊断技术应用实例

机电设备如果出现故障,那么总会伴随着的温度的变化,而红外线诊断技术的基本工作原理就是测定变电设备的红外辐射能量,经过一系列的转化,显示出变电设备的温度分布情况,从而可以判定变电设备的热状态,判断变电设备是不是健康,从而采取措施预防故障的发生。按照红外线诊断进行分类,变电设备的故障一般可划分为两类:①外部的故障;②内部的故障。外部的故障主要指的是可直接检测出设备故障,可根据红外检测技术来产生温度分布图。造成外部故障的主要原因有变电设备长期暴露在空气中或者是其表面有垃圾等。

红外线几乎无力穿越任何的物体,因此,红外线技术无法诊断变电设备的内部故障。但如果变电设备的内部出现了故障,由于其热量无法排除,则发热持续的时间通常情况下会比较长,而与机电设备相连接的物体,会把其产生的热量不间断地传输到设备的表面,因此也就改变了机电设备表面的温度分布状况。在一般情况下,在日常工作中采用的是相对温差法来判断变电设备的故障大小状况。而诊断变电设备内部故障的形式有:内部的不良连接导致内部内热;变电设备内部老化或者是受潮;设备比较劣质、设备的绝缘状况不良等等。

3.1 变电设备接头处发热

第7篇

【关键词】流化床 锅炉 防磨 技术

神华福建晋江热电有限公司一期工程建设装机容量2×50MW热电联产机组,两台机组分别于2006年3月和8月投入商业运行。锅炉是华西能源工业股份有限公司生产的DG-260/9.8-1型高温高压、单汽包横置式、单炉膛、自然循环、高温分离、全悬吊结构循环流化床锅炉。锅炉设计煤种为福建龙岩无烟煤。炉膛顶部标高36.5米,炉膛中上部长宽规格为5638×11250mm,前、后墙水冷壁管各设计144根,左、右墙水冷壁管各设计74根,水冷壁管材质为20G,规格51mm×5mm。

截止2015年5月,两台锅炉已运行约58000小时,共发生5次水冷壁磨损泄漏事件。该公司于2013年初对水冷壁局部磨损区域进行了喷涂防磨,但在2013年及2014年初仍在喷涂区各发生了1次水冷壁磨损泄漏事件。经现场检查分析,确认防磨喷涂在应对自然磨损方面可取得较好的效果,但在一些局部磨损速率较快的特殊区域防磨效果明显不佳。对该公司而言,锅炉水冷壁防磨问题已十分突出,通过单一的治理的方式已无法满足防止锅炉水冷壁泄漏的需要。2014年上半年该公司进行了水冷壁防磨综合治理,治理后两台锅炉未发生水冷壁泄漏事件。

1 水冷壁磨损现状分析及措施制定

经搭设炉膛满膛架,对锅炉水冷壁管进行全面测厚检查后,分析发现水冷壁存在以下磨损现状,并制定相应治理措施。

(1)管壁吊装块两侧水冷壁管冲刷磨损:因基建期未把好锅炉安装质量验收关,水冷壁管屏起吊点(吊装块)未进行清除,造成锅炉运行后,沿壁下落的内循环灰受到吊装块的阻拦,向两侧水冷壁管形成八字形冲刷。两台锅炉水冷壁上共存在92个吊装块,主要布置于炉膛标高15米、17米、28米、38米层,每个吊装块两侧水冷壁管均存在一定程度的磨损现象,并且磨损点程深沟式,磨损减薄量无法用测厚仪进行测量。因吊装块布置点分散,清除工作量大,该公司曾采取对管子上八字磨损深沟进行补焊临时处理的措施,但仍无法达到防止此处磨损泄漏的目的。遗留吊装块问题已成为造成该公司锅炉水冷壁磨损泄漏的最大风险因素。治理措施:对遗留吊装块两侧水冷壁管进行更换,达到清除吊装的目的。

(2)大面积侧磨:炉膛后墙中部标高16-19米区域、左(右)墙标高19-22米区域、前墙标高22-26米区域水冷壁存在较大面积的侧磨,并且部分点壁厚已磨损至3.0mm以下。治理措施:该磨损现状主要为炉膛内扰动风冲刷造成,故采取焊接防磨鳍片,减小扰动风携带物料贴壁冲刷的现象。

(3)局部敷设浇注料区域两侧磨损:锅炉4个中部压力测点、3个水冷蒸发屏下部穿墙区、4个屏式过热器下部穿墙区,共11个敷设浇注料的区域与两侧水冷壁管过渡边缘存在磨损。治理措施:该磨损现状主要为可塑料边缘敷设不平齐,造成沿壁下落的内循环灰冲刷磨损。故采取在11个敷设浇注料区域的边缘焊接鳍片衬边,使可塑料边缘平齐,避免冲刷。

(4)炉膛四角不规则磨损:炉膛四角由卫燃带可塑料(标高14米)至炉顶区域均存在四角不规则磨损现象,并且磨损点因位于角部,无法用测厚仪进行检测。治理措施:将炉膛四角五根水冷壁管用可塑料进行敷设,并在可塑料两侧边缘用鳍片衬边处理,确保边缘平齐。

2 防磨措施技术要求

2.1 对水冷壁进行换管,清除吊装块

(1)水冷壁换管以遗留吊装块为中心,上下各取300mm,共更换总长600mm。(2)水冷壁切割时,应使用机械切割。(3)切割时,先切下口,然后对下口进行封堵后,再切割上口。(4)水冷壁管焊接前,必须对管子焊口加工坡口,坡口应使用专用工具,确保坡口整齐,符合标准。(5)水冷壁对接焊口及鳍片焊缝均应平滑过渡,凹坑及凸起部分不得超过1mm。(6)焊接应由持有高压焊工证人员进行操作,应确保焊接工艺,避免产生焊瘤、虚焊、漏焊等情况,新焊口应进行100%射线探伤。

2.2 焊接防磨鳍片,防止大面积侧磨

防磨鳍片安装示意图1所示:

图1 防磨鳍片安装示意图

(1)焊接鳍片长度由项目负责人根据现场标识情况,向施工人员进行交待。(2)必须根据现场标识位置及长度,逐根量好尺寸,并根据尺寸下料。(3)为确保顶部统一角度,施工时应先制做样版。(4)鳍片下料必须用机械切割,确保端面平整。(5)将防磨鳍片焊在侧磨区中部,与管子圆弧切线面保持垂直,应履盖管子最薄点。(6)鳍片安装时,应由钳工整条预放好,由上至下每隔15cm双面点焊,待鳍片完面定位后,再由上至下烧焊,确保鳍片垂直。(7)所有对接焊缝应进行打磨,确保焊缝整齐平滑,凹坑及凸起部分不得超过1mm。(8)鳍片顶部两侧应打磨,实现水冷壁管与鳍片平滑过渡。(9)焊接应由持有高压焊工证人员进行操作,应确保焊接工艺,避免产生焊瘤、虚焊、漏焊等情况。

2.3 局部敷设可塑料区域两侧边缘焊接鳍片衬边

可塑料两侧边缘防磨衬边示意图2所示:

图2 可塑料两侧边缘防磨衬边示意图

(1)将可塑料两侧边缘敲除,对已磨损的水冷壁管进行补焊处理。(2)焊接衬边鳍片时,应在现有可塑料敷设的区域再向外扩展1根水冷壁管的范围,确保目前补焊点被新的可塑料敷盖。(3)焊接鳍片长度由项目负责人根据现场浇注料高度,向施工人员进行交待。(4)必须根据现场标识位置及长度,逐根量好尺寸,并根据尺寸下料。(5)为确保顶部统一角度,施工时应先制做样版。(6)鳍片下料必须用机械切割,确保端面平整。(7)将防磨鳍片焊在水冷壁管中部,与管子圆弧切线面、水平面保持垂直。(8)鳍片安装时,应由钳工整条预放好,由上至下每隔15cm双面点焊,待鳍片完面定位后,再由上至下烧焊,确保鳍片垂直。(9)鳍片外侧点焊处应进行打磨,确保表面平滑,凹坑及凸起部分不得超过1mm。(10)鳍片顶部两侧应打磨,实现水冷壁管与鳍片平滑过渡(主要质检点)。(11)焊接应由持有高压焊工证人员进行操作,应确保焊接工艺,避免产生焊瘤、虚焊、漏焊等情况。

2.4 炉膛四角防磨保护

(1)四角防磨可塑料敷设起点与卫燃带可塑料进行对接,沿四角一直沿升至炉膛顶部。(2)可塑料共敷设设角部5根水冷壁管,并且边缘同样采用鳍片衬边技术,确保侧面平齐。(3)炉膛角部待敷设可塑料区域应预焊V字形,材质为1Cr18Ni9Ti的耐热销钉。销钉采用横纵交错布置,间距为8cm,以防止敷设的可塑料脱落。(4)鳍片采取内侧单面焊,外侧点焊,其它安装工艺要求与可塑料区域两侧边缘焊接鳍片衬边安装工艺相同。

3 成效分析

(1)两台锅炉水冷壁防磨治理技术措施实施后,锅炉水冷壁受热面积虽然减少约3.6%,但其不同于防磨梁的效果,未对炉膛内循环灰贴壁流造成影响,故其只提高炉膛床温约5℃,对锅炉运行未造成影响。(2)防磨鳍片的增加,解决了局部区域因炉内扰动风造成的侧磨的问题。(3)遗留吊装块两侧水冷壁管八字形磨损隐患得到彻底消除。(4)局部敷设可塑料区域两侧边缘焊接鳍片衬边技术,避免了可塑料两侧与水冷壁管过渡区不平整造成的磨损问题。(5)炉膛四角防磨保护技术,彻底解决了四角不规则区域磨损问题,但因耐磨可塑料的敷设减少了锅炉水冷壁约3.6%的换热面积,影响锅炉床温升高约5℃。

第8篇

【关键词】:电气设备 红外诊断 红外检测

中图分类号:TM507 文献标识码:A 文章编号:1003-8809(2010)08-0198-01

随着我国国民经济的稳定发展,电力规模也快速发展,随之而投产建成的大容量机组、500kV、750kV超高压系统的应用使国家对电力生产的安全性、稳定性要求越来越高。因此,电力企业对先进的在线监测设备的投入不断加大,其中,红外诊断技术备受国内外电力行业的重视,并得到快速发展。对提高电力设备运行可靠性、有效度,提高系统运行经济效益、降低检修成本有着重要的意义。红外检测技术的应用是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。

一、电力设备红外诊断技术原理

众所周知,人体病变往往引起发热、体温升高,医生会根据测得的病人体温配合其他检验结果做出病理诊断。同样,在电力系统中,往往由于产生故障而导致设备不正常的发热,通过监测这种异常温度的变化,我们可以对设备故障做出诊断。红外诊断就是利用红外热像仪对带电设备存在的各种热源分布及变化规律进行测量,并根据设备运行工况及热像、热点数据分析、判断设备的缺陷。

世间万物都会发射人眼看不见的红外辐射能量,并且物体的温度越高,发射的红外辐射能量越强,而许多电力设备故障往往都以设备相关部位的温度或热状态变化为征兆表现出来,因此只要运用适当的红外仪器检测红外辐射能量,并转换成相应的电信号,经过处理就可以获得电力设备表面温度的分布状态及运行情况。根据电力设备的不同性质、不同部位、严重程度会在设备表面产生不同温升,而且有不同的分布特征,经过分析、处理所检测到的运行状态信息,就可以对设备潜伏的故障隐患做出判定。

二、电力设备故障信息与红外探测

由于高压电气设备的诸多故障都以设备热状态异常为征兆表现出来,仅从红外诊断技术的角度来说,电力设备故障可以分为两类。

1.电气设备的外部故障

这类故障是指在设备外部的各部位发生的故障,可以直接从红外监测仪器的视场范围内监测到,很容易直观获得故障部位信息。 例如:长期暴露在大气中的各种电气裸接头因接触不良常常引起过热故障,接触不良的主要原因为:(1) 设备设计不合理;(2) 安装施工工艺不严格,不符合工艺要求,如连接件的接触表面未除净氧化层及其污垢、焊接工艺差、紧固螺母不到位、未加弹簧垫、未拧紧、连接件内导体不等径等;(3)导体在风力舞动下,或外界引起的振动等机械力的作用下,以及线路周期性过载及环境温度的周期性变化,都会使部件周期热胀冷缩,引起连接松驰;(4) 长期在大气环境中工作,因受雨、雪、雾、有害气体及酸、碱、盐等腐蚀性尘埃的污染和侵蚀,造成接头表面材料氧化;(5) 长期运行引起弹簧老化等。由于表面污秽或机械力作用引起绝缘性能降低造成的过热故障。如绝缘子劣化或严重污秽,引起泄漏电流增大而发热。

2.电气设备的内部故障

这是指封闭在固体绝缘、油绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的故障。根据各种电气设备的内部结构和运行状态,依据传热学理论,分析金属导电回路、绝缘油和气体等引起的传导、对流,从电气设备外部显现的温度分布热像图,可以判断出的各种内部故障。

当电力设备故障以热状态表现出来,就要通过红外检测仪将被诊断设备的红外辐射信号转换为电信号,从而做出设备有无故障及故障属性、位置、严重程度的诊断判别。电气设备在工作的时候,由于电流、电压的作用,将产生以下三种主要来源的发热。(1)电阻损耗发热。按照焦耳定律,当电流通过电阻时将产生热能,这是电流效应引起的发热,大量表现在载流电气设备中。(2)介质损耗发热。电气绝缘介质由于交变电场的作用,使介质极化方向不断改变而消耗电能并引起发热。由此产生的发热功率为:P=U2ωCtgδ式中 U――施加的电压;ω――交变电压角频率;C ――介质的等值电容tgδ――介质损耗角正切值。这种发热为电压效应引起的发热。(3)铁损致热。当在励磁回路上施加工作电压时,由于铁芯的磁滞、涡流而产生电能损耗并引起发热。

电力设备热状态与其产生的红外辐射信号之间的规律:(1)辐射的光谱分布规律;(2)辐射光谱的移动规律;(3)辐射功率随温度变化的规律;(4)辐射的空间分布规律。自然界中普遍存在的红外辐射源就是物体的自发热辐射源,不同材料的性质、不同的表面状态、温度、背景状态以及大气效应都对实际物体的红外辐射存在一定影响,在测量时必须做好设备热状态信息检测的相应修正。

三、红外诊断检测及维护

俗话说:“工欲善其事,必先利其器。”要想做好电力设备运行状态的红外诊断,就必须根据需要选择合适的仪器。电力系统现阶段常用的有:红外辐射测温仪、红外热像仪、红外热电视等。在工作中主要是把被测物体表面温度的分布借助于红外辐射信号的形式经接受成像与红外探测器上,再由探测器将其转换为电信号,这个微弱的电信号经过放大器的放大处理最终传送至终端显示器上。在检测中注意消除环境辐射对其的影响,还要正确使用发射率修正。