摘要:提出一种改进蚁狮优化算法,引入混沌序列进行初始值的分配,增强种群的均匀性和遍历性;在个体更新部分引入粒子群算法的思想,分别以当前的最优个体与全局最优个体为目标进行计算,同时提高算法的局部和全局搜索能力;参考当前最优个体位移进行动态空间收缩,可有效减小个体的搜索范围,缩短寻优时间。与粒子群算法、蝙蝠和原蚁狮算法进行仿真对比并应用到太阳电池模型参数辨识中,验证其有效性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
热门期刊服务
相关文章
影响因子:0.39
期刊级别:北大期刊
发行周期:月刊
期刊在线咨询,1-3天快速下单!
查看更多>
超1000杂志,价格优惠,正版保障!
一站式期刊推荐服务,客服一对一跟踪服务!